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S1 Models parameters

Table S1 – Models parameters and constraints.

Notation Signification Model Constraint/value Reference

R0
Basic reproduction
number all 3.02 (1)

p Infection fatality ratio all 0.874 % (1)

pωiqiPN
Serial interval distribu-
tion stochastic

discretised Weibull
(mean: 4.8 d., sd:
2.3 d.)

(2)

θ
Infection to death de-
lay stochastic LogNormal(mean:

23.3 d., sd: 9.7 d.) (1)

k
Shape parameter
(Gamma distribution) stochastic 0.16 (3)

t0
Time of epidemic wave
initiation SEAIRHD 2020/01/22 inferred

β
Per capita infectious
rate SEAIRHD R0 γ σ

S0 pγ`σq
calculated

ηlockdown Lockdown effect SEAIRHD 0.232 inferred
ε Rate of end of latency SEAIRHD 0.415 inferred

σ
Rate of symptoms on-
set SEAIRHD 1

5.6´1{ε
(4)

γ End of infectivity rate SEAIRHD 0.653 inferred
α Death rate SEAIRHD 1

17.7´1{γ
(1)

N total population SEAIRHD 64171900 INSEE
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Figure S1 – Parameter notations are shown in the main text.

S2 Markovian SEAIRHD model

The model is captured by the following set of differential equations:

dS
dt
“ ´ηnβpA` IqS (S1a)

dE
dt
“ ηnβpA` IqS ´ εE (S1b)

dA
dt
“ εE ´ σA (S1c)

dI
dt
“ σA´ γI (S1d)

dR
dt
“ p1´ pqγI (S1e)

dH
dt

“ pγI ´ αH (S1f)

dD
dt
“ αH (S1g)

where ηn measures the public health intervention impacts on the disease spread at day n, β is
the per capita transmission rate of asymptomatic and symptomatic hosts, ε is the rate of end of
latency, σ is the rate of symptoms onset, γ is the recovery rate, p is the infection fatality ratio
(IFR), and α is the rate at which hospitalised patients die. Our goal is to capture the key features
of the infection life-history, especially the incubation period, the asymptomatic transmission, and
the delay to hospitalized deaths, but not to fit the epidemic in details.

Deterministic implementation: The set of ODE shown in the previous paragraph is solved
using ’odeint’ function from Numpy on Python 3.8.3. We then applied a moving average, with
a window of 7 days, as done with the real data. We estimated the following parameters for the
SEAIRHD model using a maximum likelihood procedure: t0, γ, σ and ηlockdown. We computed
the likelihood of our model using the data of daily hospital mortality in France from January 1st
to May 11 (end of national lockdown), on which a moving average of 7 days is applied to avoid
"week-end effects".

We compared this model to the discrete time non-markovian model, and a SEAIRH4D model
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Figure S2 – Best fitted SEAIRDH model number of daily deaths compared to the actual death
data in France (AIC: 1324). The SEAIRH4D is the case where memory is introduced on the
hospitalisation duration, following an Erlang with shape parameter 4 and the same mean (AIC:
730). The discrete time model with memory effects provides a better fit (AIC: 461).

in which memory in the delay from hospitalization to death is implemented (Fig. S2).

Stochastic implementation: Using the same parameters, we simulated 1,000 times a stochas-
tic version of this model, using a Gillespie algorithm with the package TiPS (5) on R v.3.6.3 (6).
We stored the time to 100 daily deaths, after applying a moving average with a window of 7 days
on the simulations.
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S3 DS model sensitivity analysis

Effect of the serial interval distribution

The time elapsed between infection events in an infector-infectee pair is called the generation
time. It is a key epidemiological parameter in our model, though almost impossible to measure
directly. However, the serial interval distribution - i.e. the time between symptom onsets in an
infector-infectee pair- has theoretically the same expectation, but a higher variance.

Figure S3 – Serial interval distributions used hereafter to analyze the sensitivity to the serial
interval standard deviation. In black is shown the reference from (7). The mean is kept constant,
but the standard deviation is increased or decreased.

To our knowledge, the only available data to estimate this parameter come from Asia (7, 8).
This estimate could change, e.g. through behavioral on contact structure between the countries
where the data come from and France. Intuitively, the epidemic growth is very sensitive to the
generation time expectation, hence the epidemic starting date would be shifted significantly. Here,
we focus on the generation time variance to see to what extent the generation time distribution
can affect the epidemiological dynamic (fig. S3).
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We observe that the higher the standard deviation, the later the starting date is inferred (Fig.
S4). The median value is shifted from January 11th to 19th when the standard deviation is
doubled, under the homogeneous infectivity model. However, this variation remains within the
interval containing 95 % of the variation, using the serial interval determined by (7).

Figure S4 – Generation time standard deviation impact on the starting date inference. The mean
generation time is kept constant, following (7). The boxplots show the following quantiles: 2.5%,
25%, 50 %, 75%, 97.5 %.

S3.1 Effect of the initial number of imported cases

We made the assumption that only one imported case was responsible for the whole outbreak
wave. To note, this is not incompatible with the occurrence of earlier cases, such as the one that
occurred on December 27th in France, because in case of individual R0 heterogeneity, most of
those early cases could have died out without contributing to the main outbreak wave.

However, it can be argued that several imported cases may have contributed to the outbreak
wave, and consequently may have accelerated the dynamic. This would imply that the outbreak
would have started later.

The total number and intensity of imported cases responsible for the outbreak wave in France
affects the starting date of the wave in the order of 4 to 9 days (fig. S5), which is similar to the
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Figure S5 – Duration and intensity of the infectious individuals importation impacts on the
starting date inference. The boxplots show the following quantiles: 2.5%, 25%, 50 %, 75%, 97.5
%.

sensitivity to the individual infectivity heterogeneity. We can see that only the importation of
new infected individuals during the first days has an impact on the epidemic.
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S4 Contact rate variation during and post lock-down period
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Figure S6 – Variation of ηt for the estimation of τ : On Mar 17 a lock-down was instated in
France. We estimated its efficacy to be around 1-ηt “ 0.76 (1). The lock-down officially ended on
May 11, for a total of 55 days under full lock-down. We evaluated the time to reach extinction
under various extension constraints by assuming an infinite lock-down prolongation with fixed
intensity, potentially different from the value estimated during the Mar 17 and May 11. The
intensity of the lock-down/extension is inversely proportional to ηt.

S5 Eradication and rebound risk with superspreading events
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Figure S7 – Estimated variation of p0ptq with finite lock-down extension post 11 May:
Here the x-axis corresponds to the number of days since the start of the lock-down (Mar 17) and
the y-axis to estimation of p0ptq. For the first 55 days ηt “ 0.24, during the extension of the
lock-down we set ηt “ 0.25, and for the rest of the simulation we fixed ηt “ 1. On the left panel
(panel A) we displayed the case without transmission heterogeneity and on the right panel (panel
B) with superspreaders. We plotted the estimation of p0ptq as dashed lines and the confidence
interval as solid lines.
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S6 Eradication and lock-down initiation date
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Figure S8 – Effect of the lock-down intensity, stochasticity, and initiation date on the
time to extinction (τ) under individual spreading heterogeneity assumption. The
distributions of τ (number of days since the start of the lock-down on Mar 17) for several lock-
down intensities increase after the first 55 days are plotted on the Y-axis (ζt) using violin plots
and boxplots. In this graph we assume individual spreading heterogeneity. The colors indicates
the different initiation date of the lock-down: in purple it starts on Feb 17, green Mar 03 and
yellow on Mar 17 (official start). The box extends from the lower to upper quartiles of the data.
The whiskers expand from the 2.5% to the 97.5% quantiles.
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