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Summary 

In a study of 207 SARS-CoV2-infected individuals with a range of severities followed over 12 weeks 

from symptom onset, we demonstrate that an early robust immune response, without systemic 

inflammation, is characteristic of asymptomatic or mild disease. Those presenting to hospital had 

delayed adaptive responses and systemic inflammation already evident at around symptom onset. 

Such early evidence of inflammation suggests immunopathology may be inevitable in some 

individuals, or that preventative intervention might be needed before symptom onset. Viral load 

does not correlate with the development of this pathological response, but does with its subsequent 

severity. Immune recovery is complex, with profound persistent cellular abnormalities correlating 

with a change in the nature of the inflammatory response, where signatures characteristic of 

increased oxidative phosphorylation and reactive-oxygen species-associated inflammation replace 

those driven by TNF and IL-6. These late immunometabolic inflammatory changes and unresolved 

immune cell defects, if persistent, may contribute to “long COVID”. 

 

Introduction 

The immune pathology associated with COVID-19 is complex (Wang et al., 2020; Zhou et al., 2020). 

Most infected individuals mount a successful anti-viral response, resulting in few if any symptoms. In 

a minority of patients there is evidence that ongoing cytokine production develops, associated with 

persistent systemic inflammation, end-organ damage and often death (Del Valle et al., 2020; Lucas 

et al., 2020). The relationship between the initial immune response to SARS-CoV-2, viral clearance, 

and development of the ongoing inflammatory disease which drives severe COVID-19 is not clearly 

established, nor have the kinetics of the immune changes seen in COVID-19 been fully assessed as 

disease progresses. Defective immune recovery might drive ongoing disease, and contribute to long-

term disease sequelae (“long COVID”) and perhaps to secondary immunodeficiency with an 

increased risk of subsequent infection. 
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Severe COVID-19 is associated with profound abnormalities in circulating immune cell subsets 

(Arunachalam et al., 2020; Hadjadj et al., 2020; Kuri-Cervantes et al., 2020; Laing et al., 2020; Mann 

et al., 2020; Mathew et al., 2020; Maucourant et al., 2020; Schulte-Schrepping et al., 2020; Su et al., 

2020; Wen et al., 2020). There is a decrease in many peripheral blood subsets of both CD4 and CD8 T 

cells (Kuri-Cervantes et al., 2020; Laing et al., 2020; Mann et al., 2020; Mathew et al., 2020; Su et al., 

2020), but an increase in activated and differentiated effector cells (Arunachalam et al., 2020; 

Hadjadj et al., 2020; Kuri-Cervantes et al., 2020; Laing et al., 2020; Mann et al., 2020; Mathew et al., 

2020; Su et al., 2020). Cells expressing PD1 and other inhibitory molecules are increased, though 

whether these reflect genuine T cell exhaustion or changes accompanying T cell activation, has not 

been firmly established (Hadjadj et al., 2020; Laing et al., 2020; Mathew et al., 2020; Su et al., 2020; 

Zheng et al., 2020). There is, nonetheless, evidence of functional impairment in both CD8 and CD4 T 

cells in a number of studies (Chen and Wherry, 2020). Data on T helper cell subsets is variable, but 

there is evidence of increased TH17 cells and markedly reduced T follicular helper cells (TFH) (Kuri-

Cervantes et al., 2020; Mathew et al., 2020; Su et al., 2020). There have been conflicting reports 

regarding B cell immunity (Laing et al., 2020; Mann et al., 2020; Mathew et al., 2020), but increased 

circulating plasmablasts (Arunachalam et al., 2020; Hadjadj et al., 2020; Laing et al., 2020; Mathew 

et al., 2020) and reduced germinal centre responses (Su et al., 2020) are consistently observed in 

severe COVID-19. A number of innate T cell subsets, including γδ T cells and MAIT cells, are also 

reduced (Kuri-Cervantes et al., 2020; Laing et al., 2020; Maucourant et al., 2020; Parrot et al., 2020), 

as are non-classical monocytes (Schulte-Schrepping et al., 2020; Su et al., 2020) and both 

plasmacytoid and myeloid dendritic cells (Kuri-Cervantes et al., 2020; Laing et al., 2020). 

 

By analysing longitudinal samples from COVID-19 patients with a range of disease severities, for up 

to 3 months from symptom onset, we were able to address two important questions regarding the 

immune response to SARS-CoV-2: (i) How does the very early immune response in patients who 

cleared virus and recovered from disease with few or no symptoms, compare with those who 
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progressed to severe inflammatory disease. This provided insight into what constitutes an effective 

versus an ineffective immune response, and whether systemic inflammation is an early or later 

development in those who progress to severe disease. (ii) How rapidly do the profound immune 

defects that accompany severe COVID-19 recover, and do the kinetics of recovery relate to ongoing 

inflammation and clinical status. 

 

We recruited 207 patients with COVID-19, ranging from asymptomatic healthcare workers in whom 

SARS-CoV-2 was detected on routine screening, through to patients requiring assisted ventilation, 

and compared their results to 45 healthy controls. We performed detailed immune phenotyping at 

multiple time points up to 90 days from symptom onset, reporting absolute cell counts rather than 

proportions as the latter are difficult to interpret in many studies in the context of profound 

lymphopenia. Correlation of these data with clinical and other meta-data demonstrated that the 

immune response in patients with progressive COVID-19 is delayed compared to those with mild 

disease, and is inflammatory in nature from the outset. Early immune cellular changes predict severe 

disease course. Their variable recovery over 3 months is associated with marked changes in the 

nature of the systemic inflammation seen in severe COVID-19. 

 

Results 

Patient cohorts 

SARS-CoV-2 PCR positive subjects were recruited for this study between 31st March and 20th July 

2020 in three contexts. Those without symptoms, or with mild symptoms, were recruited from 

routine screening of healthcare workers (HCW) at Addenbrooke’s Hospital (Rivett et al., 2020). 

COVID-19 patients were recruited at presentation to Addenbrooke’s hospital if their symptoms were 

consistent with COVID-19, and then formally included for follow-up if subsequent swab results were 

positive for SARS-CoV-2. In addition, some patients were recruited having already been admitted, 

twenty-nine having developed COVID-19 in hospital after admission for another reason, with others 
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recruited after transfer to intensive care at either Addenbrooke’s or Royal Papworth hospitals. After 

recruitment patients were bled approximately weekly, and then invited to an outpatient follow-up 

visit 4-12 weeks after study enrolment. HCWs were sampled at study entry, and then approximately 

2 and 4 weeks later. 

 

Study participants were divided into five categories according to clinical severity, which we use 

throughout this paper unless otherwise stated (Figures 1A and S1). These were:  

 A) asymptomatic HCWs. 

 B) HCWs who either were still working with mild symptoms insufficient to meet the criteria 

for self-isolation (Rivett et al., 2020), or who were symptomatic and self-isolating.  

 C) patients who presented to hospital but never required oxygen supplementation. 

 D) patients who were admitted to hospital and whose maximal respiratory support was 

supplemental oxygen. 

 E) patients who at some point required assisted ventilation. Three patients who died without 

admission to intensive care were also included in this severe group. 

In addition, 45 healthy controls were recruited, distributed across a range of age and gender.  

 

This study analysed the immune phenotype of 605 blood samples from 246 participants out to 90 

days from the onset of symptoms (Figure 1A). Patients were included irrespective of co-morbidity to 

reflect “real world” disease (Table S1), apart from the exclusion of 6 patients whose severe non-

COVID-19 disease determined their clinical outcome, which made investigation results 

uninterpretable, and in whom COVID-19 was essentially a side-issue (details in Table S2). It is 

important to note that as the clinical severity category increased, patients were more likely to be 

older and to be male (Figures 1B and 1C), as expected (Wang et al., 2020). A high-sensitivity C-

reactive protein (CRP) assay was performed on all samples, and is shown for each cohort - 

demonstrating that classifying disease severity by subdivision on the basis of maximal respiratory 
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support is reflected in the CRP (Figure 1D). Time is measured since the first positive swab for cohort 

A, and since the onset of symptoms for other cohorts, and CRP (and, later, other variables such as 

cell number) is compared to the interquartile range of 45 healthy controls. Nasopharyngeal swabs 

were assessed for SARS-CoV-2, allowing diagnosis and inclusion in this study, and were repeated in 

some patients at various times. Initial viral titres (higher in those with low PCR cycle threshold or CT 

values) were higher in group E. With only occasional exceptions, patients in all severity groups had 

cleared virus by 24 days after the onset of symptoms (Figures 1D and S1D). Of the 6 patients with 

positive swabs after 30 days, four were overtly immunosuppressed (3 solid organ transplants with 

recent induction/rejection treatment, 1 myeloma on B-cell depletion therapy) and one was a 

peritoneal dialysis patient admitted with peritonitis. 

We will first outline the major datasets collected in this study, before integrating them to study early 

and recovering disease. 

 

Cytokines and complement components 

We assessed cytokine and complement components in plasma at each time point (Figures 1D and 

1E). Asymptomatic HCWs in group A had no evidence of cytokine or complement dysregulation, 

while those with mild symptoms (group B) showed an early, transient increase in C3c and the 

terminal complement complex (TCC), but not in C-reactive protein (CRP) or cytokine levels. Once 

patients developed symptoms severe enough to warrant attendance at hospital (group C or above), 

a different picture was apparent. Both IL-6 and TNF- were significantly raised, along with other 

cytokines, as were all of the complement components measured. These abnormalities were maximal 

at the first bleed, and largely persisted in group E, where many patients remained in intensive care 

throughout their course. Abnormalities in both IL-6 and TNF- persisted in groups C and D despite 

clinical improvement (all had been discharged by the 49-60 time window). Interferon-gamma (IFN-) 

was raised in only a subset of patients, and in all severity groups this increase was short-lived. 
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Increased C3c was prominent in those with mild symptoms (group B), while C3a became the 

dominant complement component elevated in more severe disease (groups C –E). 

Cytokine levels vary with disease severity and over time, with IL-6, TNF-, IL-10 and IL-1 rising in 

those with more severe disease (groups C-E). In contrast, there is no evidence of increased 

inflammatory cytokines in patients from groups A and B, pointing to marked differences in very early 

immune responses between resolving and progressive disease. In addition, the persistence of 

cytokine abnormalities even beyond 60 days from symptom onset could have implications for 

resolution of both immune abnormalities and clinical disease. 

 

Both onset and recovery of immune cellular abnormalities vary with disease severity 

Using standardised flow cytometry panels, we explored the size of 65 cell populations over time 

across the five clinical strata. Trucount analysis enabled calculation of absolute cell numbers. Cellular 

changes were assessed across time “bins” of 12 days (using the earliest measure per patient per bin 

in instances of repeat sampling), with four cell subsets shown in Figure 2A as examples. The 

outcomes for 30 cell types are summarised in a heat map, showing changes in cell population size 

relative to the median for healthy controls (Figure 2B). CyTOF, which uses whole blood rather than 

peripheral blood mononuclear cells (PBMCs), was also used in a subset of patients, as this allows 

quantification of granulocytes (largely absent in PBMCs) and non-classical and intermediate 

monocytes (both variably lost in PBMC separation: Figure 2B and Methods). Apart from these 

exceptions, cell numbers generated by CyTOF correlated well with data from flow cytometry (Figure 

S2). Data for all cell types, also including time as a continuous variable, is shown in Figure S3. Also 

shown in Figure S3 are samples taken beyond 48 days which, with the exception of group E, were 

not numerous enough for statistically useful inclusion in the “binned” data. 

Few changes in the immune phenotypes were seen in patients with asymptomatic (A) and very mild 

(B) disease, but once symptoms had become sufficient to warrant presentation to hospital, the 

picture changed markedly (see below). There were widespread immune abnormalities in patients 
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with moderate through to severe disease (C-E), most marked at the time of first blood sampling 

(Figure 2B), even when this coincided with or was within a day or two of symptom onset (Figure S3). 

Almost all CD4 T cells subsets were reduced, as were many CD8 T cell subsets and both naive and 

memory B cells. A number of innate lymphoid subsets were also reduced, including MAIT cells, 

various γδ T cell subsets, and NK cells. The myeloid compartment was also affected, with a reduction 

in myeloid dendritic cells, and both non-classical and intermediate monocytes. These changes were 

correlated with, and were predictive of, severity, as discussed below. 

 

Blood transcriptomic inflammation-related signatures vary with severity and time. 

RNA was prepared from whole blood collected in PAXGene tubes at each bleed. RNA was isolated, 

and whole blood transcriptomes were generated by RNA-Sequencing (see Methods) and analysed in 

two time “bins” – 0 to 24 days and 25 to 48 days (finer gradations were not possible due to sample 

size). We first analysed the transcriptome data using PLIER which performs matrix factorization to 

identify interpretable latent factors. The contribution to each latent factor by immune cell subsets 

was then calculated across the severity groups and time points (Figures 3A and S4A). These RNA-

Seq-derived latent factors were broadly aligned with the pattern observed in the cell count data 

(Figure 2B). An exception to this was the pronounced neutrophil signature seen at day 0 to 24 across 

groups C to E, and persisting at day 25-48 in group E. This transcriptomic analysis shows more 

pronounced neutrophil dysregulation across severity categories than is suggested by increasing 

neutrophil number alone. An erythrocyte gene expression-driven latent factor was also seen, and 

was prominent in group E at late times. This may be associated with heme metabolism, and is 

discussed below. 

 

We then used weighted gene correlation network analysis (WGCNA) to identify, in an unbiased 

fashion, modules of co-regulated genes in the whole blood transcriptome data, where each module 

can be summarised as an “eigengene”. Prominent gene expression modules were observed, that 
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correlated with both disease severity and time (Figures 3B, S4B, S4C and Table S3). It can be seen 

that the module enriched for TNF- /IL-6 genes correlates well with the cytokine levels determined 

in Figure 1 – rising early in groups C-E and then largely resolving by 25-48 days. A neutrophil 

activation module was also prominent early across groups C to E, as was one associated with 

glycolysis. Thus, there is clear transcriptional evidence of activation of broad inflammatory pathways 

at early time points, and these largely recover in most patient groups (with the exception of group E, 

in which many patients have persistent disease). In contrast, an interferon-related module is 

upregulated prominently in groups B-E at day 0 to 24 from symptom onset, but declines at later time 

points. As previously described (Banchereau et al., 2017), the relative contributions to this module 

by Type I, II and III interferons cannot be easily distinguished at the transcriptome level. A more 

detailed analysis of the kinetics of this interferon-stimulated gene (ISG) – associated module shows 

that, while expression peaks at different levels in each severity group it then declines in all of them 

by around 30 days (Figure 3C), coincident with viral clearance and occurring irrespective of clinical 

and inflammatory state (Figure 3D). 

Finally, a supervised gene set enrichment analysis (GSEA) was performed using publicly available 

Hallmark gene signatures (Figure 3E) (Liberzon et al., 2015). These findings were largely consistent 

with those generated from the unbiased approaches above, and demonstrated a late upregulation 

of genes associated with reactive oxygen species and oxidative phosphorylation. Late upregulation 

of these pathways is discussed below in the context of immune recovery.  

 

Immune phenotype at presentation correlates with severity and may predict outcome. 

To determine if the immune phenotype at presentation correlated with, or indeed could predict, 

subsequent disease course, we first performed a Principal Component Analysis using cell numbers 

across 24 primary immune cell populations from blood draws taken between 0 and 10 days after the 

development of symptoms. Study participants in groups A and B clustered together with HC and 

were separate from those in groups C-E (Figure 4A). Hierarchical clustering of absolute cell counts 
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from COVID-19 cases identified two clear clusters (Figure 4B), one almost entirely comprised of 

HCWs from groups A and B (cluster 2), and the other containing all patients who progressed to 

ventilation and/or death, and most who required supplementary oxygen support (cluster 1). The 

severe cluster 1 was associated with increased age, CRP, TNF- and IL-6 (Figures 4C and S5A). Early 

differences between cell types drive this clustering, despite different cell subsets having quite 

different subsequent trajectories (Figure S5B). To determine which specific immune subsets drove 

this clustering, we used a sparse partial least squares discriminant analysis (sPLS-DA), which showed 

patient clusters 1 and 2 could be discriminated with a minimum classification error rate of 0.07 ± 

0.02 (93% accuracy) based on 13 key cell populations selected by the model as most informative for 

cluster prediction (Figures 4D, S5C-E). The area under the receiver operator characteristic curve 

(AUROC) for patient cluster classification based on these 13 cell types was 0.98 (98% chance of 

accurate cluster prediction) (Figure 4E). These cell types were often the most profoundly affected by 

severe COVID-19, and those most associated tended to recover poorly over time (particularly MAIT, 

 T cells, TFH and CD4 EMRA T cells) suggesting a persistent association with disease severity. We 

also clustered patients using RNA-Seq data obtained from 1-10 days after onset – this largely 

recapitulated that seen using immune cell number, and was driven by ISG, TNF- and IL-6 associated 

gene pathways (Figure 4F). 

 

Thus, it appears that abnormalities in perhaps 13 cell subsets, when detected at presentation with 

the symptoms of COVID-19, define a group with, or who progress to, severe COVID-19 disease. 

Twenty of 36 patients within cluster 1 required respiratory support, and this was already maximal at 

initial blood sampling in 14 of them. In 6 patients, membership of this group was thus predictive of 

treatment escalation, in another 7 it was predictive of death – so clustering by immunophenotype 

correlated with severity in essentially all patients, and with subsequent disease progression in 36%. 

Such an observation, once independently validated and correlated with other indicators of disease 
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severity (such as imaging, oxygen saturation measurements, and CRP and other inflammatory 

markers), could form part of clinically useful prognostic assessment tools.  

Characteristics of a successful anti-SARS-CoV-2 immune response. 

HCW in categories A and B did not progress to severe COVID-19 disease, and they also cluster apart 

from those with more severe disease when using either early immune cell counts or RNA expression 

profiles (Figure 4). We therefore compared the early features of these successful immune responses 

to those in patients with more severe COVID-19, to shed light on what differentiated effective 

antiviral responses from those associated with progression to severe disease - binned now in 7-day 

intervals to provide finer definition of the earlier immune response. For comparison, we show CRP 

and selected complement components (Figure 5A).  

A number of key features emerge. First, there is no evidence of systemic inflammation in groups A 

and B. CRP is normal (Figure 5A), cytokines are not raised (Figure 1E), and there is no RNA evidence 

of systemic inflammatory gene-related signatures (Figures 3B and 3C). The exception is the 

significant but transient increase in C3c and TCC. Most cell types which are profoundly reduced in 

groups C to E are normal in A and B (Figure 2), but some show mild reductions in group B in 

particular, of which we show pDCs and memory B cells as examples (Figure 5A). pDCs fall to a lesser 

extent than in more severe disease, and for a shorter time period; a fall that is perhaps consistent 

with tissue localisation to allow local interferon production as part of a successful antiviral response. 

There is an early increase in cytotoxic CD8 T cells seen in group B compared to the rise seen in 

groups C to E, with the increase seen by day 7 and peaking up to 2 weeks after symptom onset. This 

contrasts with the later and more sustained rise seen in the more severe COVID-19 patients (Figures 

5A, 5B and 5C). There is enrichment of a CD8 cytotoxic RNA signature in group B by GSEA, which is 

significantly raised compared to group C to E between 0 and 24 days after symptom onset (Figure 

5D). Consistent with these findings, spontaneous generation of IFN by T cells, as detected by 
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ELISpot analyses, is more pronounced in group B at samples taken two weeks post symptom onset 

(Figure 5E). A robust anti-SARS-CoV-2-specific T cell response is also seen in group B, comparable to 

more severe groups (Figure 5E and S6). There is also an early increase in plasmablasts seen in both 

groups A and B, again occurring up to a week before a larger rise is seen in more severe disease 

(Figures 5F and 5G). Anti-Spike IgG is also prominent in groups A and B at weeks 1 and 2 (though 

samples from asymptomatic patients in group A are timed since their swab, and may be further out 

from infection than those able to be timed from symptom onset) (Figure 5H). Taken together, these 

data suggest that an early adaptive immune response is prominent in individuals who are 

asymptomatic or have mild disease, characterised by a rapid production of cytotoxic CD8 T cells, 

plasmablasts and likely pDC tissue localisation.  

 

Virus at first swab, as assessed by PCR CT value, is comparable in groups B, C and D, and is low in 

group A (again perhaps in part because these samples may be taken later after infection than 

symptomatic groups, see above). Initial viral titre was therefore not associated with an increased risk 

of hospital admission (being similar in groups B, C and D), but was significantly higher in group E than 

in other groups (Figure 5I). These viral titres are reflected in interferon-related transcription 

signatures, which are prominent in groups B-E (Figure 5J). If the strength of this early antiviral 

response helps govern outcome, it might be that a higher initial interferon response is associated 

with a better prognosis. That those in group E with low interferon signatures in early disease are 

more likely to have persistently high CRP appears consistent with this notion (Figure 5K), though this 

needs confirmation in a larger dataset.  

 

In those with more severe disease (groups C-E), evidence of systemic inflammation is present from 

the first blood test, evident in samples taken from 0 and 7 days from the onset of symptoms (Figure 

5) but evident early in that window. If we focus on the 16 patients in groups C-E sampled between 2 

days before and 4 days after symptom onset, 15 had a CRP > 10 and/or neutrophil activation 
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eigengene > 0. All of the 5 patients sampled between 2 days before and 2 days after symptom onset 

met these criteria. Thus, inflammation does not develop later from the progression of a non-

inflammatory immune response or as a result of failure to clear virus. The immunopathology 

associated with COVID-19 appears to develop at or very early after infection, making strategies to 

prevent its onset difficult. 

 

Distinct patterns of immune recovery in COVID-19. 

In contrast to groups A and B, cellular changes in groups C - E were profound and usually most 

prominent at the first bleed (Figure 2). Determination of the rate and direction of change among 

immune cell subsets over time was likely to be most informative in these groups, and we therefore 

explored immune cell kinetics in groups C, D and E, assigning patients to two categories based on 

whether their CRP levels remained elevated above 10mg/L (“Persisting CRP”) or fell below 10mg/L 

(“Resolving CRP”) by their final bleed within 3 months post symptom onset (Figure 6A). The latter 

group included both individuals with high CRP levels early, and those for which CRP remained low 

(10mg/L) at all measured time points over the course of study. Changes in CRP over time differed 

significantly between these two groups when assessed using a mixed-effects model, with time 

modelled as a continuous variable (Figure 6B). 

 

In order to compare the nature of cellular changes over time, both across cell subsets and between 

persisting and resolving CRP patient groups, a “rate of change” for each cell population was 

calculated over 60 days post symptom onset. In brief, this rate captured both the initial deviation in 

cell counts from normal within a window of 0-12 days, and the time taken for cells counts to stabilise 

within a normal range if cellular recovery did occur (see Methods). Five predominant trajectories 

were observed; populations that did not deviate from heathy levels over the duration of study (e.g. 

NKT cells), those which increased progressively from normal over time (e.g. effector CD8 T cells), 

those which fell progressively from normal over time (e.g. transitional B cells), those which trended 
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toward recovery after an initial rise in numbers (plasmablasts) and those which tended toward 

recovery after an initial drop in numbers (e.g. naïve CD4 T cells) (Figure 6C). 

 

The absolute number of most cell populations fell precipitously early, and then showed variable 

degrees of recovery. For descriptive purposes these are arranged into a group of cell subtypes that 

failed to recover, or recovered, in the persisting CRP group (Figure 6C quadrants I and III 

respectively), and their equivalents in the resolving CRP group (Figure 6C quadrants II and IV 

respectively). Notably, a few populations remained consistently abnormal in both persisting and 

resolving CRP groups out to 60 days post symptom onset, including pDCs, Tfh, MAIT cells and 

Vg9Vd2 (hi)  T cells. All other populations showing an early drop in counts (with the exception of 

naïve CD8 T cells) recovered to normal levels in the patients with resolving CRP (II and IV), and at 

rates more rapid than seen in those with persisting high CRP values. In the persisting CRP group, a 

number of cell types remained markedly abnormal (including memory B cells and various CD4 T cell 

subsets: quadrant I), whereas a second group of cell types recovered despite persisting inflammation 

(including NK cells and a number of CD8 T-cell subsets: quadrant III).  

 

We then explored the relationship between cell recovery and the nature and kinetics of the 

inflammatory response. It is not surprising that where the CRP remains persistently elevated, 

immune defects might persist, on the assumption that these defects are secondary to the 

inflammatory state. Consistent with this, the cohort with persistently raised CRP also has raised TNF-

 and IL-6 at the protein level over time (Figure 1D). Likewise, transcriptional signatures of TNF-, IL-

6 and neutrophil activation were increased in severe disease (Figure 3), particularly in the persistent 

CRP group (Figure 6D). This ongoing inflammation may contribute to the sustained reduction in cell 

numbers at late times seen in quadrant I, together with persistently raised HLA-DR+/CD38+ effector 

T cells and plasmablasts (Figure 6C). Consistent with this, it is also perhaps not unexpected that most 
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cell types reduced in acute disease recover over a few weeks as the CRP falls, as is seen for most 

cells in quadrants II and IV (Figure 6C).  

 

More intriguing are the cells that recover rapidly in the face of ongoing inflammation (quadrant III). 

While the reasons for this are likely to differ between cell types, and to be multifactorial, there is the 

possibility that some of these cell reductions are driven by the viral infection per se, virus-induced 

interferon, or a combination of the two. It is notable that, after an initial rise, IFN-returns to normal 

in patients irrespective of disease severity (Figures 1D and 1E). Interferon-stimulated gene (ISG) 

signatures fall to normal levels over about 3 weeks independent of disease severity group (Figure 

3C) and CRP (Figure 6D), but correlating with declining virus titre (Figures 3D and S4E). Thus, cell 

types known to leave the circulation due to interferon stimulation (Kamphuis et al., 2006), such as T 

and NK cells (Hirsch and Johnson, 1986; Zafranskaya et al., 2007) , may recover as interferon-

dependent inflammation falls, presumably as a result of control of viral infection and independently 

of ongoing CRP-associated inflammation.  

 

Finally, a small number of cell types remain statistically abnormal after 60 days, even in the resolving 

CRP group. These include effector CD4 and CD8 T cells (HLA-DR+/CD38+), and plasmablasts, all of 

which remain elevated, and pDCs, Tfh, Vg9Vd2 expressing γδ T cells and MAIT cells, which remain 

reduced (Figure 6C) and are among those cells most predictive of poor prognosis (Figure 4D). These 

abnormalities persist despite resolution of CRP-reflected inflammation, with evidence for neutrophil 

degranulation, TNF- /IL-6 and glycolysis all falling alongside CRP (e.g. Figures 1D and 6D). They also 

persist despite early resolution of interferon-stimulated gene signatures in all severity groups. 

Possible mechanisms behind these sustained abnormalities are discussed below.  

 

The late appearance of OXPHOS and ROS pathways correlates with differential immune recovery.  
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At late time points, whole blood transcriptome analysis shows an increase in inflammation-related 

signatures distinct from those that are prominent early in the disease course, particularly in severity 

groups C-E. These signatures are characteristic of oxidative phosphorylation (OXPHOS), reactive 

oxygen species generation (ROS) and heme metabolism. These are demonstrated in an un-biased 

fashion using WGCNA, where modules characterised by OXPHOS and heme metabolism signatures 

are prominent in samples analysed at day 25 to 48 post symptoms, with OXPHOS most prominent in 

group E, and heme metabolism in C, D and E (Figures 3B and 3C). Enrichment of Hallmark signatures 

in RNA-seq datasets confirmed the association of OXPHOS and heme metabolism in groups C, D and 

E, and also found association of a ROS signature (Figures 3E and 7A). Consistent with this, the 

expression of the genes driving the enrichment of each signature was upregulated in the three most 

severe clinical groups (Figure 7B and Table S3). The late rise in these three correlated signatures 

occurs irrespective of persisting or resolving CRP-associated inflammation (Figure 6D).  

 

We then sought correlation between cellular and transcript signature changes in COVID-19. In the 

first 24 days after symptom onset, there is a strong association between TNF- /IL-6, neutrophil 

degranulation and interferon signatures with most of the lymphoid cell types whose numbers fall in 

severe disease (Figure S7). Later, between 24 and 48 days after symptom onset, these associations 

change (Figure 7C). While TNF- /IL-6 and neutrophil degranulation signatures are still associated 

with many cell subsets that continue to be reduced, the interferon signature is no longer a 

significant player. Strikingly, the persistent increase seen in effector lymphocytes, both CD4 and CD8 

activated T cells (HLA-DR+, CD38+) and plasmablasts, is now particularly associated with the OXPHOS 

signature which, having become more prominent later in disease (Figure 3B), has a much more 

restricted and specific association with immune dysfunction than other inflammatory signatures.  

 

It is thus clear that, for some cell types, the association with the inflammatory milieu changes over 

time, but for others it is more consistent. It is interestingly the inflammatory signatures which 
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appear late in disease, in particular OXPHOS, are specifically associated with persistent derangement 

of cell types of potential pathological importance, such as increased HLA-DR+CD38+ T cells and 

plasmablasts, and reduced pDCs.  

 

 

Discussion. 

This study has been able to compare very early immune responses in SARS-CoV-2 infected 

individuals whose disease is asymptomatic or mildly symptomatic, and does not progress (groups A 

and B respectively), to those in which more severe COVID-19 manifestations become apparent 

(groups C-E). In groups A and B there is evidence of an early robust adaptive immune response. This 

is characterised by an increase in circulating plasmablasts, and in CD8+HLA-DR+CD38+ activated T 

cells, which expand earlier and in higher numbers than in more severe COVID-19 groups, most 

notably in the first week after symptom onset. Both of these cell populations then contract in A and 

B, as they continue to rise in groups C-E.  

 

Consistent with this there is prominent early anti-spike antibody in patients in groups A and B. Total 

activated T cells are increased, as demonstrated by anti-interferon gamma ELISpots performed 

immediately ex vivo, and robust early SARS-CoV-2 specific T cell responses are also apparent. These 

early cellular changes are accompanied by a prominent early interferon signature. Others have 

shown that anti-SARS-CoV-2 responses can be seen early in disease (Rydyznski Moderbacher et al., 

2020), though their prominence in  asymptomatic and very mildly symptomatic individuals has not 

been established (e.g. only 2 patients in  (Rydyznski Moderbacher et al., 2020) would have fallen 

within groups A and B of our classification). 

 

At the same time as these signs of an early adaptive immune response are seen in groups A and B, 

there is no evidence of systemic inflammation, apart from some early, transient complement 
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activation. CRP, circulating TNF- and IL-6, and transcriptional signatures of a number of 

inflammatory pathways (including those associated with neutrophil activation and TNF- /IL6 

signalling) are not raised in groups A and B, at time points when they are already prominent in 

groups C-E. The severe and widespread leucocyte subset depletion seen at the initial bleed in the 

more severe COVID-19 patient groups C-E, and observed by many others (Carissimo et al., 2020; 

Laing et al., 2020; Mathew et al., 2020; Su et al., 2020), is not apparent in those with asymptomatic 

or mildly symptomatic disease, suggesting this is a unique feature of a pathological immune 

response. Absolute cell counts from 13 immune cell subsets measured within 10 days of symptom 

onset can identify patients with severe and progressive disease. Coupled with evidence of early 

systemic inflammation seen in severity groups C-E, our findings suggest that the immune pathology 

associated with severe COVID-19 is either established immediately post-infection or, if there is a 

transition point from an effective to a pathological response, this is likely to occur before or around 

the time of symptom onset (Figure 7D). This finding may have major implications as to how disease 

needs to be managed, since intervention to prevent immune pathology would need to be targeted 

very early in the disease course, and perhaps pre-emptively in high risk groups screened and 

diagnosed before symptoms develop.  

 

The reason for the failure to mount a robust early B and T cell response in the context of severe 

COVID-19 is likely to be multifactorial. There is no evidence for a relationship with viral load and 

progression to inflammatory disease, as initial viral titres were comparable between group B and 

groups C and D. Once inflammatory disease is established, however, viral titre may be associated 

with subsequent outcome (as early increased viral titre is seen in group E), consistent with reports 

that high initial viral titre might be associated with mortality (Pujadas et al., 2020). Genetic 

association studies in severe COVID-19 point to genes that are implicated in driving antiviral 

responses, such as those involved in type 1 interferon-mediated immunity (Pairo-Castineira et al., 

2020; Zhang et al., 2020), and increasing age and comorbidity such as diabetes and chronic 
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inflammatory disease are all known to suppress early CD8 T cell and B cell responses (Shen-Orr et al., 

2016; Weiskopf et al., 2009). An in-depth understanding of these risk factors may instruct screening 

strategies to assess risk of progression before inflammatory responses become self-sustained.  

 

While clear distinctions in immune responsiveness were apparent between groups A and B versus 

groups C, D and E, differences between the more severe groups themselves were less obvious. 

Those with symptomatic disease warranting admission to hospital clustered together using the size 

of just 13 key cell populations: these clusters correlated strongly with clinical severity, and provided 

prediction of subsequent progression, as well as COVID-19 associated death. Similar observations 

have been made by others (Chen and Wherry, 2020), though whether the predictive ability of 

clustering by immune parameters adds to that provided by clinical and other predictors remains to 

be determined. While determining prognosis after presentation to hospital could be of clinical use, it 

would be of more benefit to predict progression to severe disease in cases with milder COVID-19 – 

but it is not clear whether this will be possible in practice, given our observation that inflammatory 

immunopathology is already present at first presentation. A study to address this issue would need 

to be conducted in particularly high-risk patient groups to ensure an adequate event rate, and 

require diagnosis through asymptomatic screening to detect changes before symptoms develop.   

 

The recovery of the profound immune dysregulation seen in those with severe COVID-19 is 

potentially of major clinical relevance, as such recovery may be required to prevent secondary 

infection or SARS-CoV-2 reinfection, and persistent immunopathology could be associated with 

clinical manifestations of “long COVID”. We show that profound alterations in many immune cell 

types often persist for weeks to months after SARS-CoV-2 infection, and different cell populations 

exhibit strikingly different patterns of resolution. Some recover as systemic inflammation (as 

measured by CRP) resolves, others remain persistently abnormal despite a drop in CRP toward 

normal levels, and a third group resolve even in the face of persistent systemic inflammation. 
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Understanding the different inflammatory drivers or associations of this differential recovery could 

provide insight into the immune pathology of COVID-19, and potentially of other infections.  

Here, to begin to explore this, we correlated immune changes with measurements of systemic 

inflammation throughout the disease course. Patients with severe COVID are characterised by high 

CRP, and this correlates with evidence of TNF- and IL-6 driven processes both at the protein and 

transcriptome level, as well as with both neutrophil activation and glycolytic metabolism. The fact 

that many cellular abnormalities persist while these biologic processes are apparent – while others 

appear to resolve alongside them – suggests that the nature of systemic inflammation is important 

in driving different aspects of immune pathology. 

 

Finally, some cell populations remain markedly abnormal, or show a limited recovery, even once 

CRP-associated inflammation has resolved, and indeed after patients have been discharged from 

hospital. These persistent changes may reflect a slow intrinsic regenerative capacity of the cell type 

concerned, but in other situations, such as the continued elevation of effector T and B cells, it is 

tempting to speculate that there is ongoing abnormal signalling driving such changes. For that 

reason, we explored late changes that are seen in the inflammatory response in COVID-19. 

Interestingly, three transcriptional signatures arise late in those with severe COVID-19 and are not 

present in early severe, nor mild, disease. These include activation of OXPHOS-, ROS- and heme-

related metabolic pathways (Figure 7E). Activation of immune cells results in metabolic 

reprogramming that supports cell growth, proliferation and differentiation. Disruption of metabolic 

pathways can result in bioenergetic, anabolic, epigenetic or redox cellular crises – culminating in 

immune dysfunction (Bantug et al., 2018). It is unlikely that the metabolic signatures observed here 

simply reflect heightened bioenergetic requirements of activated immune cells, as one would expect 

that similar requirements are present also at early stages in the disease. OXPHOS can drive 

inflammation (Mills et al., 2017), and it is intriguing to note COVID-19 patients treated with 

metformin, which inhibits Complex I of the respiratory chain, had lower amounts of circulating 
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inflammatory cytokines (Cheng et al., 2020). The ROS transcriptional signature may relate to more 

abundant production of ROS-species inevitably accompanying increased OXPHOS. Alternatively, it 

may reflect specific mitochondrial pathology, and thus per se contribute to immune cell dysfunction 

(Nathan and Cunningham-Bussel, 2013). Mitochondria are also critically involved in heme 

biosynthesis. Heme serves as a prosthetic group for haemoglobin as well as many other proteins – 

including several that constitute the respiratory chain of mitochondria. While free heme can act as 

damage-associated molecular pattern and promote ROS formation, the role of heme biosynthesis vs. 

catabolism in balancing cellular sensitivity to oxidants is complex and context dependent (Prestes et 

al., 2020). Here, given correlated regulation of heme and OXPHOS pathways in the clinical categories 

C, D and E, activity of these modules may be interrelated and possibly jointly reflective of 

dysfunctional mitochondria. How heme and OXPHOS transcriptional programmes are linked on a 

molecular level cannot be inferred from our data. Erythroid cell activation has recently been 

detected in severe COVID-19 (Bernardes et al., 2020) and could also contributes to a heme 

transcriptional signature. However, the increase in heme metabolism in our cohort correlates 

strongly with a falling haemoglobin, and reticulocytes (Figure S7) in patients in groups C, D and E are 

low – suggesting suppression rather than activation of erythropoiesis in these individuals. 

Understanding the mechanism linking metabolic dysregulation to persistent immune pathology in 

COVID-19, and also to “long COVID”, will require further study over longer disease courses. 
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Figure Legends 

Figure 1: Cohort characteristics. A) Study participant and sample numbers split by severity 

categories and 12-day time bins post screening (group A) or symptom onset (group B-E). Distribution 

of participant age B) and gender C) across severity categories. D) Boxplots showing measured CRP 

(mg/L), complement proteins, cytokines and SARS-CoV-2 PCR cycle threshold (CT) for samples 

collected within 12-day time bins. Grey band indicates the interquartile range of the corresponding 

measure in HCs, or the SARS-CoV2 negative swab cycle threshold (CT > 38). Points are coloured 

based on asymptomatic or symptomatic classification for categories A and B respectively, normal or 

abnormal chest radiology (group C), and mode of respiratory support at sampling (group D and E); 

time points missing respiratory status are coloured grey. E) Heatmap showing log2 fold change in 

median measure between COVID-19 cases and HC, within severity categories and across 12-day time 

bins. Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005. CT, cycle threshold; CRP, C-

reactive protein; IL, interleukin; TNF, tumour necrosis factor; IFN, interferon; C3, complement 3; TCC, 

terminal complement complex; NIV/HF, non-invasive ventilation/high-flow oxygen; ECMO, 

extracorporeal membrane oxygenation. 

 

Figure 2: Cellular changes over time. A) Boxplots showing absolute counts (cells/uL) for four 

representative cell populations, split by severity categories and 12-day time bins post screening 

(group A) or symptom onset (group B-E). Grey band indicates the interquartile range of the 

corresponding population in HC. Points are coloured based on asymptomatic or symptomatic 

classification for categories A and B respectively, normal or abnormal chest radiology (group C), and 

type of respiratory support at time of sampling (group D and E). B) Heatmap showing the log2 fold 

change in median absolute cell count between COVID-19 cases and HCs, within severity categories 

and across 12-day time bins. Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005. 
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Population hierarchy and associated cell surface markers are shown to the left. PBMC, peripheral 

blood mononuclear cells, analysed by flow cytometry; WB, whole blood, analysed by CyTOF. 

 

Figure 3: Whole blood transcriptomic signatures over time.  A) Cell subset deconvolution 

performed using PLIER, leveraging off prior knowledge of cell specific pathways. COVID-19 cases split 

by severity categories and 24-day time bins. Latent factor expression compared with HC, FDR 

adjusted p-value: *<0.05, **<0.005, ***<0.0005. B) Heatmap derived from WGCNA, illustrating the 

correlation of whole blood co-expression gene modules (coloured blocks, y axis) with COVID-19 

severity groups (x axis) split by 24-day time bins. Boxplots displaying eigengene of key transcriptomic 

modules according to disease severity and time. Boxes are coloured by strength of correlation. C) 

Mixed-effects model with quadratic time trend showing the longitudinal expression of key 

eigengene over time, grouped by severity. Grey band indicates the interquartile range of the 

corresponding eigengene in HCs. Nominal and adjusted p-values for the time x severity group 

interaction term are reported. D) Equivalent mixed-effects model showing changes in SARS-CoV-2 

PCR cycle threshold (viral load), over time across severity groups. Y-axis is inversed. E) GSEA 

assessing enrichment for HALLMARK genesets against HC in COVID-19 cases split by severity 

categories and 24-day time bins, FDR adjusted p-value: *<0.2, **<0.1, ***<0.05, ****<0.01. CT, cycle 

threshold; ISG, interferon stimulated genes. 

 

Figure 4: Multivariate analysis of immune-cell populations in early disease. A) Principal component 

analysis of peripheral blood absolute cell counts for 24 key cell subsets from HC and COVID-19 cases, 

for samples taken <10 days from screening (group A) or symptom onset (group B-E). Points are 

coloured according to severity category. B) Unsupervised clustering of absolute cell counts 

(normalised to the median of healthy controls) for COVID-19 samples and cell types included in A), 

showing grouping of cases into two clusters (cluster 1, orange; cluster 2, purple) by Euclidean 

distance and Ward D hierarchical clustering. C) Boxplots comparing age and inflammatory 
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characteristics of individuals in clusters 1 and 2 at the time of sampling. D) Thirteen cell types 

selected by sPLS-DA as most informative in predictive models discriminating patients in clusters 1 

and 2. Bars indicate loading coefficient weights of selected features (ranked from most to least 

informative in cluster prediction, from bottom to top). E) AUROC curve showing sensitivity of cluster 

group prediction at varying specificity thresholds, based on absolute counts of 13 selected cell types. 

F) K-means clustering of 18357 whole blood transcripts from COVID-19 samples taken <10 days from 

screening or symptom onset. Gene clusters are annotated for enriched signatures, samples are 

annotated according to corresponding cluster membership in B) where possible. 

 

Figure 5: Early immune changes associated with mild disease and outcome. A) Heatmap showing 

the log2 fold change in median absolute cell counts, CRP or complement measures between COVID-

19 cases and HCs, within severity categories and across 7-day time bins from screening (group A) or 

symptom onset (group B-E). Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005. B) 

Boxplots showing absolute non-naive HLA-DR+CD38+ CD8 T cell counts (cells/uL) across severity 

categories from weeks 1-3 post screening or symptom onset. Wilcoxon tests p-values annotated as 

above. Grey bar represents the interquartile range of the same population in HCs. C) Mixed-effect 

model with quadratic time trend showing corresponding cellular trajectories in sample group B,D 

and E. D) Enrichment score for CD8 T-cell activation signature as determined by GSEA in group B-E 

for samples taken <24 days from symptom onset. E) Number of CD3 T cells secreting IFN  

spontaneously or following SARS-CoV-2 antigen stimulation, in patient samples from groups B, and D 

and E combined, one or two weeks post symptom onset. Kruskal-Wallis test p-values annotated as in 

B).  Equivalent boxplot and longitudinal modelling of plasmablast counts are shown in F) and G). H) 

Area under the curve for SARS-CoV-2 spike-specific IgG titres at 1, 2 and 5 weeks post screening 

(group A) or symptom onset (group B-E). Groups C,D and E are combined for increase statistical 

power, p-values as in E. I) Boxplots showing SARS-Cov-2 viral load, taken as first positive swab PCR 

cycle threshold (CT), in severity groups. Wilcoxon test P-values annotated as in B.  J) Boxplots 
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capturing expression of ISG and neutrophil activation-related transcriptomic eigenvalues across 

disease severity and time. K) Stratification of group E samples taken <24 days post symptom onset 

into high and low expression of interferon stimulated genes (ISG), with persisting and resolving CRP 

status and final respiratory status reported within 12 weeks shown by bar charts.  

SFU, spot forming units 

 

Figure 6: Cellular and transcriptional trajectories in persisting and resolving disease. A) CRP (mg/L) 

over 7-day time bins in patients grouped by persisting and resolving CRP. B) Mixed-effect model with 

quadratic time trend showing log2(CRP) trajectories in both patient groups, the likelihood-ratio test 

p-value for the time x group interaction term is reported. Grey band indicates the interquartile range 

of the corresponding measure in HCs. C) Heatmap showing the log2 fold change in median absolute 

cell count between COVID-19 cases and HCs, within CRP groups and across 12-day time bins. 

Wilcoxon test FDR adjusted p-value: *<0.05, **<0.005, ***<0.0005. Rate of cellular change is shown 

for each cell by lollipop plot; a faster rate of recovery, or deviation from normal, is indicated by 

increasing stem length. Points are coloured by log2 fold change in median absolute cell counts from 

HC at 0-12 days, black outline indicates failure to recover to HC levels within 60 days (as defined in 

methods). D) Mixed-effect models showing longitudinal trajectories of gene module eigenvalues 

capturing neutrophil degranulation, interferon stimulated genes (ISG), heme metabolism and 

oxidative phosphorylation in CRP groups, p-values reported as previously.  

 

Figure 7: Transcriptional changes in prolonged disease. A) Enrichment score for HALLMARK 

genesets capturing heme metabolism, oxidative phosphorylation and ROS related genes (as 

determined by GSEA) in group A-E samples taken 25-48 days post screening or symptom onset. B) 

Heatmap showing enrichment for the intersection of GSEA leading edge genes from groups C,D and 

E, across all severity groups in samples taken 25-48 days post screening or symptom onset. C) 

Heatmap showing correlation between transcriptional eigengenes and absolute cell counts, at 25-48 
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days post symptom onset. Boxes are coloured by strength of correlation, Pearson correlation p-

values: *<0.05, **<0.01, ***<0.001.  D) Schematic illustrating the concentration of profound 

changes seen at the first blood sample at around the time of symptom onset, truncating a process 

suggested by some to be sequential to associations that can all be made from a single blood sample 

at around the ime of symptom onset. E) A schematic showing the trajectory of viral titre (grey) and 

inflammatory transcriptional signatures (yellow, including TNF/IL-6, OXPHOS, ROS and interferon-

stimulated genes, ISG) in COVID-19 patients with persistent or resolving CRP (red).  

  

Methods 

Participant recruitment  

Study participants were recruited between 31/3/2020 and 20/7/2020 from patients attending 

Addenbrooke’s Hospital with a suspected or nucleic acid amplification test (NAAT) confirmed 

diagnosis of COVID-19 (including point of care testing (Collier et al., 2020; Mlcochova et al., 2020)), 

patients admitted to Royal Papworth Hospital NHS Foundation Trust or Cambridge and Peterborough 

Foundation Trust with a confirmed diagnosis of COVID-19, together with Health Care Workers 

identified through staff screening as PCR positive for SARS-CoV-2 (Rivett et al., 2020). Controls were 

recruited among hospital staff attending Addenbrooke’s serology screening programme, and selected 

to cover the whole age spectrum of COVID-19 positive study participants, across both genders. Only 

controls with negative serology results (45 out of 47) were subsequently included in the study. 

Recruitment of inpatients at Addenbrooke’s Hospital and Health Care Workers was undertaken by the 

NIHR Cambridge Clinical Research Facility outreach team and the NIHR BioResource research nurse 

team. Ethical approval was obtained from the East of England – Cambridge Central Research Ethics 

Committee (“NIHR BioResource” REC ref 17/EE/0025, and “Genetic variation AND Altered Leucocyte 

Function in health and disease - GANDALF” REC ref 08/H0308/176). All participants provided informed 

consent. 
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Inpatients were sampled at study entry, and then at regular intervals as long as they remained 

admitted to hospital (approximately weekly up to 4 weeks, and then every 2 weeks up to 12 weeks). 

Discharged patients were invited to provide a follow-up sample 4-8 weeks after study enrolment. 

Health care workers were sampled at study entry, and subsequently after approximately 2 and 4 

weeks. At each time-point, blood samples were drawn in EDTA, sodium citrate, serum and PAXgene 

Blood RNA tubes (BD Biosciences). 

 

Clinical data collection 

Clinical data were retrospectively collected by review of medical charts and entered into spreadsheets 

or Castor EDC, a cloud-based clinical data management system. Available laboratory test results and 

administered in-patient medications were extracted from Epic electronic health records 

(Addenbrooke’s Hospital) and from MetaVision ICU (RPH ITU). Data were merged from the various 

data sources using R version 3.6 and the R packages readr (1.3.1), openxlsx (4.1.4), dplyr (0.8.3), tidyr 

(1.0.2) and lubridate (1.7.4).  

 

Health care workers were classified in 2 groups (A and B) according to whether they were 

asymptomatic (group A) or had possible COVID-19 symptoms (group B) at the time of PCR testing. For 

this purpose, new-onset fever (>37.8 C), cough, loss of sense of smell, hoarseness, nasal discharge or 

congestion, shortness of breath, wheeze, headache, muscle aches, nausea, vomiting and diarrhoea 

were considered as possible COVID-19 symptoms.  

Participants in group A were further sub-grouped according to whether they were completely 

asymptomatic (n= 8), or had had any of the above COVID-19 symptoms before PCR testing (n=10, 

median time from symptoms to COVID-19 PCR test 26 days, range 9-42 days).  

Group B participants included both staff who were self-isolating because of COVID-19 symptoms 

(n=30), and staff members who were reporting fit for duty, but had some symptoms that did not reach 

the threshold for self-isolation at that time (n=10). 
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Hospital patients were assigned to 3 severity groups, mainly reflecting the maximum level of 

respiratory support for COVID-19 received during their hospital stay: 

- group C: did not receive any supplemental oxygen. Five patients were discharged soon after initial 

diagnosis and assessment but followed up as part of the study. 

- group D: received supplemental oxygen using low flow nasal prongs, simple face mask, Venturi 

mask or non re-breather face mask 

- group E: received any of non-invasive ventilation (NIV), mechanical ventilation or ECMO. Patients 

who received supplemental oxygen (but no ventilation) and deceased in hospital were also 

assigned to group E. 

 

In patients who were already established on home NIV for chronic respiratory failure, NIV delivered 

as per the home prescription (e.g. nocturnal) was not considered for the purpose of classification. 

Moreover, oxygen requirements that were clearly not related to COVID-19 were also not considered 

for classification purposes. In particular, 2 cases who received low flow supplemental oxygen for non-

COVID-19 indications (ascitic splinting in decompensated cirrhosis in one case, and recovery from 

anesthesia after orthopedic surgery in the other) were assigned to group C. Cases in group C were 

further sub-classified according to chest radiology results (X-ray and, if available, CT scan), as: 

- abnormal radiology: chest X-ray/ CT scan showed changes compatible with COVID-19 

- normal radiology: chest X-ray/ CT scan did not show any abnormality compatible with COVID-19 

(reported as normal or showing lung changes diagnostic of conditions other than COVID-19). 

 

Immunological parameters were analyzed according to time since onset of symptoms, or otherwise 

time since positive SARS-CoV-2 NAAT (in group A and in 4 asymptomatic patients in group C). Seven 

cases admitted to hospital for COVID-19 had no date of onset of symptoms documented in the medical 
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records. In these cases, the date of onset of symptoms was estimated as follows: hospital admission 

date - median time from symptoms to hospital admission in patients admitted for COVID-19. 

 

Following clinician review, 6 cases were considered not classifiable, due to complex concomitant 

pathologies that coexisted with COVID-19 and dominated the clinical picture, confounding the 

interpretation of clinical outcome. These cases were not included in any analyses; more details are 

reported in Table S2. Figure S1 summarizes the timing of research samples and clinical trajectories for 

volunteers in severity groups C, D and E included in the analysis. 

 

Peripheral blood mononuclear cell preparation and flow immunophenotyping 

Each participant provided 27 mL of peripheral venous blood collected into 9 mL sodium citrate tube. 

Peripheral blood mononuclear cells (PBMCs) were isolated using Leucosep tubes (Greiner Bio-One) 

with Histopaque 1077 (Sigma) by centrifugation at 800x g for 15 minutes at room temperature. PBMCs 

at the interface were collected, rinsed twice with autoMACS running buffer (Miltenyi Biotech) and 

cryopreserved in FBS with 10% DMSO. All samples were processed within 4 hours of collection. 

 

Five distinct antibody cocktails (Table S4) were used to label approximately 106 PBMCs using standard 

methods. T regulatory cells were fixed and permeabilised following surface staining prior to the 

addition of intracellular antibodies. Samples were stored at 4°C and acquired within 4 hours using a 5-

laser BD Symphony X-50 flow cytometer. Single colour compensation tubes (BD CompBeads) or cells 

were prepared for each of the fluorophores used and acquired at the start of each flow cytometer 

run. 

 

For direct enumeration of T, B and NK cells, an aliquot of whole blood (50l) was added to BD 

TruCount tubes with 20l BD Multitest 6-colour TBNK reagent (BD Biosciences) and processed as 

per the manufacturer’s instructions. 
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Samples were gated in FlowJo v10.2 according to the schema set out in Figure S8. The number of cells 

falling within each gate was recorded. For analysis, these were expressed as an absolute concentration 

of cells per l, calculated using the proportions of daughter populations present within the parent 

population determined using the BD TruCount system.  

 

CyTOF 

The protocol used to isolate PBMCs led to an impaired recovery of the different monocytes 

population, specifically intermediate and non-classical monocytes. To extend our analysis to these and 

other granolucyte populations we performed mass cytometric analysis on a subgroup of patients and 

healthy controls (249 samples). Briefly, whole blood samples (270l) were stained using the Fluidigm 

Maxpar Direct Immune Profiling Assay according to the manufacturer’s instructions. Samples 

were cryopreserved at -80C following staining and thawed for analysis within 4 weeks. Samples were 

acquired using a Fluidigm Helios mass cytometer and normalised using the CyTOF Software v6.7.1016. 

FCS files generated were analysed using the Maxpar Pathsetter software v2.0.45 (Verity Software 

House, Topsham, ME). Standard settings were used to generate immune cell frequencies for 37 

immune cell populations. Absolute cell numbers were calculated using the proportions of these 

immune cell populations within the parent populations determined by BD TruCount. 

 

Reticulocyte counts 

Reticulocyte numbers were measured using a Sysmex XN-1000 haematology analyser as previously 

described (Akbari et al., 2020). 

 

Complement 

Complement activation was assessed by measuring C3 activation products (C3a and C3c) together with 

the terminal complement complex (TCC) as an end product of the complement cascade. 
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Concentrations of these complement components were measured in EDTA plasma from patients using 

commercially available enzyme-linked immunosorbent assays (ELISA) kits (HK354 (C3a), HK368 (C3c), 

HK328 (TCC), Hycult Biotech, Uden, the Netherlands) according to the manufacturer’s protocols.  

CRP 

High sensitivity CRP was measured using the standard assay by the Core Biochemical Assay Laboratory 

(CBAL) at Cambridge University Hospitals NHS Foundation Trust. 

Cytokines 

IL-6, IL-10, IL-1, TNF and IFN were measured using standard clinical assays performed by the 

Clinical Immunology Laboratory at the Department of Biochemistry and Immunology, Addenbrooke’s 

Hospital Cambridge. 

 

IFNγ FLUOROSPOT assays 

Frozen PBMCs were rapidly thawed, and the freezing medium was diluted into 10ml of TexMACS 

media (Miltenyi Biotech), centrifuged and resuspended in 10ml of fresh media  with 10U/ml DNase 

(Benzonase, Merck-Millipore via Sigma-Aldrich), PBMCs were incubated at 37°C for 1h, followed by 

centrifugation and resuspension in fresh media supplemented with 5% Human AB serum (Sigma 

Aldrich)  before being counted. PBMCs were stained with 2ul of each antibody: anti-CD3- fluorescein 

isothiocyanate (FITC), clone UCHT1; anti-CD4- phycoerythrin (PE), clone RPA-T4; anti-CD8a- peridinin-

chlorophyll protein - cyanine 5.5 (PerCP Cy5.5), clone RPA-8a (all BioLegend, London, UK), LIVE/DEAD 

Fixable Far Red Dead Cell Stain Kit (Thermo Fisher Scientific). PBMC phenotyping was performed on 

the BD Accuri C6 flow cytometer. Data were analysed with FlowJo v10 (Becton Dickinson, Wokingham, 

UK). 1.5 to 2.5 x 105 PBMCs were incubated in pre-coated Fluorospot plates (Human IFNγ 

FLUOROSPOT (Mabtech AB, Nacka Strand, Sweden) ) in triplicate with peptide mixes specific for Spike, 

Nucleocapsid and Membrane proteins of SARS-CoV-2 (final peptide concentration 1µg/ml/peptide, 

Miltenyi Biotech) and an unstimulated and positive control mix (containing anti-CD3 (Mabtech AB), 
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Staphylococcus Enterotoxin B (SEB), Phytohaemagglutinin (PHA) (all Sigma Aldrich)) at 37ºC in a 

humidified CO2 atmosphere for 48 hours.  The cells and medium were decanted from the plate and 

the assay developed following the manufacturer’s instructions.  Developed plates were read using an 

AID iSpot reader (Oxford Biosystems, Oxford, UK) and counted using AID EliSpot v7 software 

(Autoimmun Diagnostika GmbH, Strasberg, Germany). All data were then corrected for background 

cytokine production and expressed as SFU/Million CD3 T cells. 

 

SARS-CoV-2 serology 

Quantification of Spike SARS-CoV-2 specific antibodies was performed by ELISA as described by Xiong 

X et al (Xiong et al., 2020). Briefly, serum samples collected at time of enrolment in the study and at 

the 4-8 week follow-up visit were first screened for positivity and then antibody titres were 

determined by an end-point analysis. AUC values were calculated in R (3.6.3) using the flux (0.3-0) 

package. Kruskal–Wallis test was used to calculate p-values among the different disease severities. 

 

Whole blood bulk RNA-Seq 

Whole blood RNA was extracted from PAXgene Blood RNA tubes (BD Biosciences) of 188 COVID-19 

patients at up to 2 time points and 42 healthy volunteers. RNA-Sequencing libraries were generated 

using the SMARTer® Stranded Total RNA-Seq v2 - Pico Input Mammalian kit (Takara) using 10ng RNA 

as input following the manufacturer’s protocol. Libraries were pooled together (n = 96) and sequenced 

using 75bp paired-end chemistry across 4 lanes of a Hiseq4000 instrument (Illumina) to achieve 10 

million reads per sample. Read quality was assessed using FastQC v.0.11.8 (Babraham Bioinformatics, 

UK), and SMARTer adaptors trimmed and residual rRNA reads depleted in silico using Trim_galore 

v.0.6.4 (Babraham Bioinformatics, UK) and BBSplit (BBMap v.38.67(BBMap - Bushnell B. - 

sourceforge.net/projects/bbmap/)), respectively. Alignment was performed using HISAT2 v.2.1.0 (Kim 

et al., 2019) against the GRCh38 genome achieving a greater than 95% alignment rate. Count matrices 
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were generated using featureCounts (Rsubreads package - (Liao et al., 2019) and stored as a DGEList 

object (EdgeR package (Robinson et al., 2010) for further analysis. 

 

All downstream data handling was performed in R (R Core Team, 2015). Counts were filtered using 

filterByExpr (EdgeR) with a gene count threshold of 10 CPM and the minimum number of samples set 

at the size of the smallest disease group. Library counts were normalised using calcNormFactors 

(EdgeR) using the method ‘weighted trimmed mean of M-values’. The function ‘voom’ (Law et al., 

2014) was applied to the data to estimate the mean-variance relationship, allowing adjustment for 

heteroscedasticity. 

 

Statistics 

All statistical analyses were conducted using custom scripts in R (R Core Team, 2015). Absolute cell 

counts (cells/uL) were offset by +1 to allow subsequent log2 transformation of zero counts. Where 

shown, time measures represent time from symptom onset (for severity groups B, C, D and E) or first 

positive COVID-19 swab (group A). Unless otherwise specified, longitudinally collected data was 

grouped by bins of 7 or 12 days. Pairwise statistical comparison of absolute cell counts, CRP or serum 

measures between individuals in a given severity group at a given time bin and HCs, or between 

severity groups, was conducted by Wilcoxon test unless otherwise specified. For analyses involving 

repeated measures, false discovery rate corrected (Benjamini & Hochberg) p value were reported. For 

individuals sampled more than once within a given time bin, data from the earliest blood collection 

was used.  

Cell subset deconvolution of the whole blood RNA-Seq dataset was performed using pathway-level 

information extractor (PLIER) (http://gobie.csb.pitt.edu/PLIER). Latent factors were generated by 

leveraging off pre-existing knowledge of cell specific pathways.To better understand the relationship 

between gene expression and clinical severity, weighted gene co-expression network analysis was 

carried out using the WGCNA package (Langfelder and Horvath, 2008) in R. Briefly, a signed adjacency 
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matrix was generated and a soft thresholding power was chosen to impose approximate scale-free 

topology. Modules were identified from the resulting topological overlap matrix with a specified 

minimum module size of n = 30. Modules were summarized using singular value decomposition, and 

the resulting module eigengene correlated with clinical traits. Significance of the correlation between 

a given clinical trait and a modular eigengene was assessed using linear regression with Bonferroni 

adjustment to correct for multiple testing. Modules were annotated using Enrichr (Chen et al., 2013). 

Longitudinal mixed modelling of gene module changes over time (𝑦𝑖𝑗) was conducted using the nlme 

package in R (Pinheiro J et al., 2020), including time (𝑡𝑖𝑗) with a quadratic trend and disease severity 

category or unsupervised cluster ids (𝑋𝑗) as fixed effects, and sampled individuals as random effects 

(𝑢𝑗): 

𝑦𝑖𝑗 = β0𝑗 + β1𝑗𝑡𝑖𝑗 + β2𝑗𝑡𝑖𝑗
2 + ε𝑖𝑗,  εij ∼ 𝒩(0, 𝜎2), 

β0𝑗 = γ00 + γ01𝑋𝑗 + 𝑢𝑗,  β1𝑗 = γ10 + γ11𝑋𝑗,  β2𝑗 = γ20 + γ21𝑋𝑗,  𝑢𝑗 ∼ 𝒩(0, 𝜏2), 

i.e., using the lme formula: 

module_eigenvalue ~ (time + I(time^2)) * category, random = ~ 1|subject. 

 

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was used to identify biological 

pathways enriched in COVID-19 severity groups relative to healthy controls. Briefly, a list of ranked 

genes, determined by Signal-To-Noise ratio was generated. An enrichment score was calculated, 

determined by how often genes from the geneset of interest appeared at the top or the bottom of 

the pre-ranked set of genes with the enrichment score representing the maximum deviation from 

zero. To assess statistical significance, an empirical phenotype- based permutation test was run, where 

a collection of enrichment scores was generated from the random assignment of phenotype to 

samples and used to generate a null distribution. To account for multiple testing, an FDR rate q < 0.20 

was deemed significant. A leading edge analysis was performed to determine the genes contributing 

the most to the enrichment of a given pathway and was subsequently illustrated in a heatmap. 
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HALLMARK gene sets from the Molecular Signatures Database 

(http://www.broadinstitute.org/gsea/msigdb) were used in analysis. 

 

Principal component analysis (PCA) of centred and scaled absolute counts for 24 major cell types was 

conducted using the pca()function from the package mixOmics (Rohart et al., 2017). Unsupervised 

clustering of log2 transformed absolute cell counts, normalised to the median of the corresponding 

control population, was conducted using the heatmap.2() function from the package gplots (Gregory 

R. Warnes et al., 2020), with a Euclidean distance function applied to both rows and columns of the 

data matrix and hierarchical clustering computed using the ward.D method. Partial least squares 

discriminant analysis (PLS-DA) was conducted using the plsda() function from the package mixOmics 

(Rohart et al., 2017), a supervised method of sample discrimination whereby sample clustering is 

informed by group membership (here patient clusters 1 and 2). The classification performance of the 

PLS-DA model was determined using the perf() function via 10 iterations of 5-fold cross-validation, 

with two components deemed sufficient to minimise the balanced error rate of prediction. Variable 

selection on components 1 and 2 was conducted using the tune() function, with 13 cell types selected 

as those most strongy contributing to discrimination of patient clusters. An AUROC curve showing the 

performance of a predictive model based on these 13 cell types was generated using the auroc() 

function. To assess whether clinical severity was reflected on a transcriptional level in an unsupervised 

fashion, K-means clustering was utilised on normalised whole blood RNASeq gene expression counts. 

Heat maps were created using the ComplexHeatmap package (Gu et al., 2016), with data scaled and 

centred prior to visualisation. 

  

Cellular recovery rates over 60 days were calculated for each cell type in patients from groups C, D 

and E, split into those with persistently elevated (>10mg/L) or resolving CRP (falling below 10mg/L by 

final bleed), over 60 and 40 days respectively. Using a 12 day sliding window with single day 

increments, the ‘window of recovery’ for each given cell population was defined as the window in 
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which absolute cell counts for COVID-19 samples no longer differed significantly from controls when 

assessed by Wilcoxon test, and remained as such for the subsequent 7 windows, and 80% of all 

windows remaining. Recovery rate was taken as the log2 normalised ratio of test and control absolute 

counts for patient samples collected within the first time window (0-12 days), subtracted from the 

equivalent value calculated within the window of recovery, divided by the upper day boundary of the 

recovery window. 

The relationships between immunophenotyping and transcriptional data in the form of gene 

expression modules were assessed using Pearson’s correlation (Hmisc package) and visualized with 

corrplot. 
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