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Research in context 

Evidence before this study 
There have been varying approaches across countries and jurisdictions as to how to manage the COVID-

19 pandemic, ranging from elimination of community transmission (e.g. Australasia, Taiwan and other 

East Asian and Pacific Island countries) to loose suppression or mitigation that attempts to keep the case 

numbers within health services capacity (e.g. Sweden, USA, India, UK and some continental European 

countries).  The best or optimal approach is unknown, and involves an invidious balancing of health, 

social and economic consequences of the pandemic.  But it has become apparent that in high income 

countries using loose suppression that one still has to use lock-downs from time to time to keep case 

numbers within health service capacity, raising the question as to what is the best for the economy – 

attempting elimination, tight suppression or loose suppression?  

One approach to integrating the health and economic consequences is cost effectiveness analysis, but to 

date such approaches have mainly been focused on SARS-CoV-2 treatments rather than societal 

intervention, and have not incorporated a counterfactual approach to compare the same jurisdiction 

across the many (stochastically varying) realizations for different policy options. 

Added value of this study 
This study uses one high-income jurisdiction, the state of Victoria in Australia as it exited its second 

wave, to estimate the health and economic consequences of four policy options: aggressive and 

moderate elimination strategies, and tight and loose suppression strategies.  The modeling is done in 

two steps: first, an agent-based model to simulate 100 possible trajectories of daily SARS-CoV-2 

infections over one year for each of the four policy options; and second, an integrated epidemiological 

and economic model that estimates health and economic costs.  Whilst there is considerable 

uncertainty in outcomes for all of the four policy options, the two elimination options are usually 

optimal from both a health system and a partial societal (health expenditure plus GDP cost) perspective.  

However, if the remaining duration of the pandemic is lessened from 1 year to half a year (as may be the 

case with vaccine roll-outs), loose suppression becomes more favorable – suggesting countries with 

already high infection rates ‘ride it out’ till vaccination coverage is adequate.  
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Abstract 

Background 
We compared the health and economic consequences for the State of Victoria, Australia, of four COVID-

19 strategies: aggressive and moderate elimination, tight suppression (aiming for 1 to 5 cases per million 

per day) and loose suppression (5 to 25 cases per million per day). The strategies shifted up and down 

through five levels of policy stringency based on the number of cases per day, for one year. 

Methods 
An agent-based model (ABM) generated 100 runs of daily SARS-CoV-2 case numbers, that then fed into 

a proportional multistate lifetable to estimate health adjusted life years (HALYs) and costs.  We used a 

net monetary benefit approach to estimate the optimal strategy.  

Findings 
Aggressive elimination resulted in the highest percentage of days with the lowest level of restrictions 

(median 31.7%, 90% simulation interval 6.6% to 64.4%).  However, days in hard lockdown were similar 

across all four strategies (medians 27.5% to 36.1%).  

HALY losses (compared to a no-COVID-19 scenario) were similar for moderate elimination (286, 219 to 

389) and moderate elimination (314, 228 to 413), and nearly eight and 40-times higher for tight and 

loose suppression.  The median GDP loss was least for moderate elimination ($US41.7 billion, $29.0 to 

$63.6 billion), but there was substantial overlap in simulation intervals between the four strategies.   

From a health system perspective aggressive elimination was optimal in 64% of simulations above a 

willingness to pay of $15,000 per HALY, followed by moderate elimination in 35% of simulations.  

Moderate elimination was optimal from a partial societal perspective in half the simulations followed by 

aggressive elimination in a quarter.  

Shortening the pandemic duration to 6 months saw loose suppression become preferable under a 

partial societal perspective.   

Interpretation 
For this single high-income jurisdiction, elimination strategies were preferable over a 1-year pandemic 

duration.  

Funding 
Anonymous philanthropic donation to the University of Melbourne.  
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Introduction 
There is no ‘right’ COVID-19 approach for all countries to follow. Rather, each country will devise an 

approach given its infection load, its ability to manage borders and quarantine, vulnerability and age 

structure of its population, health system capacity, economic and other resources, social values and 

preferences 1 – and more recently timelines and progress to vaccination. One way to support this 

challenging decision-making is to use an integrated assessment of health and economic outcomes. Such 

an optimisation approach is often implicit in commentaries, with phrases such as “ensuring the cure is 

not worse than the disease”.  But seldom is this balance or optimization explicitly defined and 

empirically addressed.  

To this point in the pandemic, a standard ‘cost-effectiveness’ analysis resting on epidemiological 

modelling has not been widely used with the exception of cost-effectiveness and cost-benefit studies 

looking at a narrow range of policy measures or focused on a particular population group (e.g. 2 3 and 

reviews 4,5).  Undertaking cost effectiveness studies in a pandemic is challenging for reasons such as 

which perspective to use (health system only, or societal) and uncertainty in many inputs – yet be it 

implicit or explicit, cost-effectiveness does feature in decision-making.5  

In this paper we apply an integrated epidemiological and economic modelling approach to estimate the 

optimal COVID-19 pandemic control strategy for varying willingness-to-pay (WTP) per health adjusted 

life year (HALY) thresholds in a single high-income jurisdiction – the state of Victoria, Australia, as it was 

coming out of its second wave from 1 September. The four policy options include continuing stringent 

social and economic controls in an effort to achieve elimination of local transmission (‘aggressive 

elimination’ and ‘moderate elimination’ strategies), compared to ‘living with the virus’: ‘tight 

suppression’ as in some East Asian countries with low daily rates that the public health workforce can 

mostly manage with contract tracing; and ‘loose suppression’ with daily rates within health services 

capacity (e.g. countries like Spain, the UK and France between their first and second waves).  We use 

both a health system perspective and a partial societal perspective (the latter adding GDP losses to 

health expenditure).   

Methods 

Conceptualisation and specification of policy scenarios 
Most countries have some form of stages, ‘tiers’, or levels of control measures that a country or 

jurisdiction escalates up or de-escalates down depending on SARS-CoV-2 infection rates.  Supplementary 

Table 1 shows the stages as applied in this study. Stage 1 has minimal restrictions, and by stage 4 there 
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are marked restrictions on who are essential workers and what is considered an essential workplace 

with stay at home order applying to remaining citizens (i.e. stage 4 equates to ‘hard lockdown’). The 

rules encoded in the ABM to escalate and de-escalate stages are shown in Table 1 – and for ‘tight 

suppression’ (as one example) in Figure 1. We assume that mandatory mass-mask-wearing will be 

retained in stages 2 to 4, and in stage 1a and 1 b will remain mandatory in public transport and busy 

indoor settings where physical distancing is difficult. 

Agent-based model 
Further details on the ABM specification, validation and calibration are given elsewhere.6,7 Briefly, the 

model is a generic COVID-19 model of 2,500 agents that is then scaled up to the population of interest, 

here the state of Victoria with a population of 6.4 million. The ABM has a daily cycle length.  Each agent 

‘moves’ in a two-dimensional space, contacting other agents, with opportunities for between-agent 

infection given transmission rates and contact duration. The model has been calibrated to the first 

waves in NZ and Australia, has performed well in prediction (noting inherent stochastic uncertainty) 6, 

and has been used by the Victorian Government to help develop its RoadMap out of the second wave in 

Victoria.8,9  Supplementary Table 2 and 3 give the parameterisation of stages in the ABM.   

GDP and unemployment impacts 
Each stage was associated with a GDP impact per week compared to business-as-usual or no COVID-19 

(Stage 1 US$0.535 billion; Stage 1b US$0.6 billion; Stage 2 US$0.725 billion; Stage 3 US$1.275 billion; 

Stage 4 US$2.61 billion; Supplementary Table 6 and Appendix 1 for details).  

Proportional multistate lifetable model 
A PMSLT 10,11 consists of parallel cohort lifetables for every sex by five-year old age cohort in 2020, 

simulated for all-cause mortality and morbidity over the remainder of their lives. Beneath this main all-

cause lifetable sit parallel disease lifetables (with disease incidence and case fatality assumed 

independent) that proportions of the cohort reside in based upon disease incidence, case fatality and 

remission rates. In this paper, we use a PMSLT adapted for COVID-19 with disease states for SARS-CoV-2 

infection and (for sensitivity analyses only – below) three indirect consequences of COVID-19 policy 

responses through changes in GDP and unemployment rates – road traffic crash (RTC), depression and 

anxiety. The inputs to the PMSLT are given in Supplementary Table 4. 

The PMSLT was run 100 times for each policy response scenario using a 30-day cycle length, with the 

monthly number of SARS-CoV-2 cases from each of the ABM simulation inputted.  These infections were 

distributed by age to match the actual proportionate distribution by age of cases in Victoria (skewed to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.11.21249630doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.11.21249630


6 

 

older ages due to outbreaks in residential aged care). The outputs of the PMSLT include incremental 

HALYs and net health expenditure due to SARS-CoV-2 cases and average citizen health expenditure 

among the living, incremental to the no-COIVD-19 business-as-usual.  Up-front health expenditure (e.g. 

ICU capacity, surveillance systems) was assumed to be a ‘sunk cost’ the same between scenarios.  90% 

uncertainty intervals about these two outputs capture both stochastic uncertainty (from the varying 

infection rates in the ABM) and input parameter uncertainty (in the PMSLT about variables such as 

hospitalisation rates from SARS-CoV-2, and to a lesser extent input parameter uncertainty in the ABM).   

We then estimate the monetary benefit (NMB) approach for each of the 100 runs: 

𝑁𝑀𝐵𝑖𝑗𝑘 = (𝐻𝐴𝐿𝑌𝑠𝑖𝑘 ×  𝑊𝑇𝑃𝑗) −  𝐶𝑜𝑠𝑡𝑖𝑘   

Where: 

- i indexes the 100 iterations 

- j indexes the WTP 

- k indexes the four policy scenarios 

- and Cost is the net health expenditure for the health system perspective analyses, and from the 

societal perspective adds GDP costs to health system costs.   

For example, for a WTP of $10,000 per HALY from a health system perspective, an incremental loss of 

HALYs of 500, and $2,000,000 increased health expenditure (net of the increased cost of treating people 

with SARS-CoV-2, and the medium to long-run cost savings (discounted at 3%) of fewer people alive with 

attributable annual health expenditure), then the NMB is 2,000,000 + (-500 × 10,000) = -$3,000,000.  

This same calculation is completed for all 100 i iterations for each of the four (k) policy-scenarios and j 

WTP levels.  Then within each iteration i and WTP j, the policy scenario with the highest NMB is selected.  

Across all 100 iterations, each policy response k will have a probability of having the highest NMB, and 

the policy option with the highest probability is deemed ‘optimal’ at that WTP.  Finally, these outputs 

can be shown as cost effectiveness acceptability curves, allowing a useful visual interpretation.      

Sensitivity analyses 
For HALYs and net health expenditure, they were re-estimated for 0% and 6% discount rates. Our base 

assumption of an intervention duration (i.e. the time to a vaccine) was 12 months; we reran the PMSLT 

for 6- and 18-month duration outputs from the ABM. 
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The main model only considered SARS-CoV-2 events.  Whilst the indirect impact of policy restrictions 

(independent or direct SARS-CoV-2 effects) on other health events is uncertain, it seems likely that there 

are impacts on mental health (deleterious for depression and anxiety, but neutral for suicides) and 

reduced road traffic crash (RTC; beneficial.  Ideally, one would estimate the counterfactual impacts on 

these health events at each level (stage) of COVID-19 policy response using published natural 

experiments using one of: time series analyses of change in conditions incidence or prevalence with 

changing policy response settings; or comparisons across space of similar jurisdictions under differing 

policy settings; and best of all these two study designs combined for difference in difference estimates.  

But this is a major task with, currently, inadequate data.  Therefore, as a ‘simple’ sensitivity analysis to 

understand the potential impacts, we used the following approaches.  First, for RTC we used the 

association of mobility data with stages experienced in Victoria, and in turn the association of mobility 

data with Victorian RTC rates (Appendix 4).  Second, for depression and anxiety we assumed time spent 

in at stages 1a, 1b, 2, 3 and 4 had 2%, 4%, 6%, 8% and 10% increases in the age by sex prevalence of 

depression and anxiety, respectively.  These are obviously crude sensitivity analyses and intended to 

give a rough idea of the magnitude of impact only.  

Finally, a key rationale for tight or tight suppression is that by keeping case numbers low, contact tracing 

is more effective, meaning one can function with lesser social and public health restrictions. We 

therefore reran the four policy scenarios incorporating a dynamic contract tracing variable that varied 

with the log of the number of cases per day (% of contacts identified per day = 0.586 – ln (cases per day) 

× 0.06213). Accordingly, the base case of 30% of contacts traced each day was assumed to apply at 100 

cases per day, improving to 34% at 50 cases a day, 39% and 25 cases a day, 44% at 10 cases a day and 

50% at 4 cases a day. 

 

Findings are reported in accordance with the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) checklist.12  

Results 

Impacts of each policy response strategy 
The daily numbers of SARS-CoV-2 for 100 runs of each strategy are shown in Figure 2.  All strategies saw 

a decrease in cases in the first two months, then marked stochastic variation in daily numbers (and 

hence varying times in stages 1a to 4 as shown in Figure 2 by varying the colour of each run’s trace).  
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Table 2 shows the outputs from the ABM in terms of numbers of infections and numbers of days at 

varying policy stringency.  The cumulative number of additional SARS-CoV-2 infections from the starting 

date over one year were lowest for aggressive elimination (median: 1,530, 90% simulation interval [SI]: 

1,150 [i.e. 5th percentile], to 2,030 [(i.e. 95th percentile, across the 100 runs]). Infections were highest 

at 55,900 for loose suppression (90% SI: 28,700 to 82,300).   

Moderate elimination (31.7%, 6.6% to 64.4%) had the greatest percentage of days with the least 

restrictions (stage 1a) compared to 21.7% for aggressive suppression, 15% and 16% for tight and loose 

suppression.  However, the percentage of days with maximum restrictions (stage 4) was similar across 

all strategies (medians ranging from 27.5% for moderate elimination to 36.1% for loose suppression – 

but with wide overlapping 90% SIs). Consequently, given much of the total loss of GDP is driven by Stage 

4, whilst moderate elimination had the lowest median GDP loss up to 12 months of $US41.7 billion (90% 

SI 29.0 to 63.6), it was similar across strategies when allowing for the wide SIs.     

Table 3 shows that deaths varied by stage pro-rata with the above infections. The crude case fatality 

rate is about 4% across scenarios, reflection the concentration of cases in aged care during the Victorian 

second wave.  Table 3 also gives the net health losses in HALYs for each scenario compared to BAU.  

Lifetime HALY losses, discounted at 3% annually, were similar for aggressive elimination (286, 90% SI 219 

to 389) and moderate elimination (314, 228 to 413), and 7 ½ and 36-times higher for tight and loose 

suppression.  Net health expenditure differences compared to BAU varied over the time horizon, with 

expenditure in the first year increasing by $US2.71 million for aggressive elimination ($1.49 to $3.82 

million) up to $117 million for loose suppression ($50 to $214 million) – largely pro-rata with health loss.  

However, in out-years health expenditure decreases compared to BAU in all strategies due to fewer 

people being alive incurring increasing health expenditure as they age, with loose suppression having 

the greatest ‘savings’ over the remainder of the populations’ lifetimes at $107 million (3% discount 

rate).    

Differences between policy responses 
Table 4 shows the difference between policy response options, for the median and percentiles of the 

differences within each of the 100 runs.  Unsurprisingly, there were clear differences in health loss with 

no overlap in 90% SIs for the two elimination options compared to the two suppression options – but 

overlap in SIs between aggressive and moderate elimination, and between tight and loose suppression. 

A similar pattern was seen for the health expenditure.   
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There is considerable stochasticity and overlap between policies in GDP loss, due to the elimination 

strategies using stage 3 and 4 (where GDP loss compared to BAU is maximal) more readily and early, 

while the suppression strategies have to move into Stages 3 and 4 frequently to keep infection and case 

rates within the target range.  The net result is widely overlapping SIs for differences with aggressive 

elimination in GDP for the three other strategies (top panel of Table 4).  Therefore, we also determine 

the percentage of runs in which GDP loss was the greatest: loose suppression had the greatest GDP loss 

in 44% of simulations, followed by tight suppression at 33% and aggressive elimination at 19% (middle 

panel of Table 4). Whilst not an exact mirror image, the percentage of runs in which GDP loss was the 

least was 49% for moderate elimination, followed by aggressive elimination at 23% and both 

suppression options at 14% each (bottom panel of Table 4).     

Figure 3 shows the cost effectiveness acceptability curves for the four strategies.  From a health system 

perspective, loose suppression has the highest probability of being ‘optimal’ up to $10,000 per HALY (i.e. 

has highest net monetary benefit across the four policy options).  Interventions tend to be considered 

cost-effective up to approximately GDP per capita per HALY in high income countries, which is about 

US$55,000 for Australia; for WTP greater than $15,000 per HALY, aggressive elimination is optimal in 

64% of simulations above a willingness to pay of $15,000 per HALY, followed by moderate elimination in 

35% of simulations.   

From a partial societal perspective (i.e. now treating costs as that in the health system plus GDP (which 

largely means GDP, alone because it is orders of magnitude greater than the health expenditure 

impacts)), moderate elimination is optimal for half the simulations regardless of WTP in the $0 to 

$500,000 per HALY range, and aggressive elimination is optimal a quarter of the time.  There is, 

however, a 10% to 15% probability of either tight or loose suppression being optimal, highlighting the 

uncertainty in estimates. 

Sensitivity analyses 
Results for the sensitivity analyses are shown in Supplementary Table 5, all conducted (including the 

baseline) using the median number of infections from the ABM propagated through the PMSLT as one 

‘expected or median value’ run. (Monte Carlo simulation not feasible for sensitivity analyses due to long 

model run times.) Varying the discount rate to 0% and 6% altered HALYs and costs predictably and did 

not alter relativities between the policies.  Also shown in Supplementary Table 5 is which policy is 

optimal (i.e. highest net monetary benefit) for the one median value run: from a health system 
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perspective aggressive elimination is optimal above a WTP of $15,000 per HALY regardless of the 

discount rate, and moderate elimination is always optimal from a partial societal perspective.   

Lessening the intervention duration to 6 months (i.e. as though the pandemic was over at six months 

due to early provision of vaccination), or lengthening it to 18 months duration, unsurprisingly decreased 

and increased the health losses and GDP losses.  It also resulted in loose suppression displacing 

moderate elimination as optimal from a partial societal perspective for a 6-month intervention duration 

(Supplementary Table 5 and Supplementary Figure 1Error! Reference source not found.).   

Including RTC in the model (in addition to just SARS-CoV-2 infection) saw health gains of about 900 

HALYs for both elimination strategies.  Conversely, including depression and anxiety saw further 

increases the health loss.  Noting the speculative nature of these disease-scenario analyses, the 

combined effect of adding in RTC, depression and anxiety was health gains in the two elimination 

strategies (due to RTC decreases tipping the balance), but little relative impact on the health loss for 

loose suppression (due to SARS-CoV-2 health loss being much larger than any countervailing force of 

RTC). That all said, the optimal strategy from a health system perspective remained one of the 

elimination strategies and from a partial societal perspective was always moderate elimination. 

The contact tracing scenario modelled an improving performance of contact tracing at lower daily 

caseloads.  The accuracy of the actual specification is moot; more important are the patterns.  HALY 

health loss changed little in an absolute sense for the elimination strategies but increased by 1390 and 

1600 for tight and loose suppression.   

Discussion 
This study assesses both the health and economic impacts of (usually counterfactual) COVID-19 policy 

response strategies.  There are several important findings.  First, there is large stochastic variation in 

SARS-CoV-2 infections between runs of the same strategy (Figure 2). Second, there was little difference 

in the median GDP loss across strategies – as elimination strategies use Stage 3 and 4 lockdowns as 

lower thresholds, whereas suppression strategies are forced to use Stage 3 and 4 to keep infections in 

the target range.  Further, the GDP impacts are very uncertain due to stochastic and other sources of 

uncertainty. Comparing across countries, however, Baker et al found some suggestion that GDP loss 

during 2020 as estimated by the IMF has been lower in countries using elimination as opposed to 

suppression strategies.13  Loose suppression in our study had the largest probability (44%) of having the 

highest GDP loss, tight suppression had a 33% probability and aggressive elimination still had a 19% 
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probability of the highest GDP loss.  Third, the strategy with the highest net monetary benefit (and 

hence ‘optimal’ on cost-effectiveness grounds) strategy was aggressive elimination from a health system 

perspective and moderate elimination from a partial societal perspective; importantly, the two 

elimination strategies were the two most optimal strategies at usual WTP thresholds.  Fourth, reducing 

the intervention duration from 12 to six months (approximating most people vaccinated in six months) 

saw loose suppression displace moderate elimination as optimal from a partial societal perspective – 

offering some support for countries that have high rates currently (e.g. UK, USA, Spain, France) to ‘ride it 

out’ with short lock-downs to keep infection rates in check until the vaccine arrives (rather than use long 

lock-downs to drive rates very low as with tight suppression).  

Compared to the scant cost-effectiveness literature on COVID-19 policy responses so far 4,5, our study 

offers improvements. First, to the best of our knowledge our study is the only one that uses an ABM to 

simulate dynamic policy regimes that move up and down stages based on triggers of daily case numbers, 

and captures the large stochastic variation in how case numbers evolve.  Other model frameworks use 

rapid approaches 14, decision-tree and Markov or a variation of a dynamic (SIR-style) model which allow 

for only limited consideration of these considerations (e.g. 3). Next, our consideration of both health 

costs and GDP impacts resulting from social policies put into place take us beyond a limited health 

sector perspective.15 A previous Australian analysis has also found that elimination is better for both 

health and economic outcomes 16, but was not as sophisticated as our study in allowing for dynamic 

policy settings, other disease sequalae, and viral reincursion (due to border breaches).  Interestingly, our 

results echo somewhat a US study finding that social distancing is a cost-effective strategy relative to 

herd immunity if an effective therapy or vaccine can be introduced within a reasonable (under 12 

months) time-frame.14  

Our study also forces us to confront the reality that the outcomes of COVID-19 policy responses are very 

uncertain due to both stochastic uncertainty (i.e. chance occurrences of who contacts who, leading to 

highly variable epidemic curves) and uncertain knowledge about the impact of masks, apps, behaviour, 

and other interventions. Whilst stochastic uncertainty will persist despite improved knowledge, there 

are other aspects that may improve with better knowledge.  First, contact tracing is improving as the 

pandemic progresses, which will favour elimination strategies assuming that contact tracing is most 

effective when caseloads are low.  Second, it is strongly suspected (but hard to quantify) that 

unintended consequences of policy responses on non-SARS-CoV-2 health outcomes and long-COVID are 

important.  For example, in plausible sensitivity analyses we used for RTC and depression and anxiety, 
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the net health impact for elimination strategies with low SARS-CoV-2 caseloads can vary markedly in 

percentage terms.   

Whilst the world is ramping up vaccine rollouts, this will take time and future resurgences are likely.  Our 

study suggests that for those countries with an option to pursue or retain elimination (or reclaim 

following an incursion of SARS-CoV-2), that an elimination strategy is optimal from both health and 

partial societal perspectives and typical WTP thresholds per HALY. A priority is to now quantify, through 

updated modelling, the best combination of vaccination strategies and other control policies (eg, 

physical distancing and mask use policies).  
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Table 1: Conceptualisation and specification of the triggers to shift between stages by policy scenario 

1.    Aggressive elimination †  2.    Moderate elimination †  3.    Tight suppression (aiming 

for 1 to 5 cases per million 

population per day)‡   

4.    Loose suppression 

(aiming for 5 to 25 cases per 

million population per day)‡  

First, check for tightening (below rules applied on each day, regardless of Stage currently in)  
If in Stage 3 or lower, and average >7.5 cases 

per day for last 7 days, go to Stage 4  

                Else:  

If in Stage 2 or lower, and average > 1.5 cases 

per day for last 7 days, go to Stage 3  

Else:  

If in Stage 1b or 1, and two or more cases in 

last 14 days, go to Stage 2  

Else:  

If in Stage 1, and any single case, go to Stage 

1b  

Else:  

Stay in same stage.  

If in Stage 3 or lower, and average >30 cases 

per day for last 7 days, go to Stage 4  

Else:  

If in Stage 2 or lower, and average > 6 cases 

per day for last 7 days, go to Stage 3  

Else:  

If in Stage 1b or 1, and five or more cases in 

last 14 days, go to Stage 2  

Else:  

If in Stage 1, and two or more cases in last 14 

days, go to Stage 1b  

Else:  

Stay in same stage  

If >20 per million in last 7 days, 

go to Stage 4.  

Else:  

If > 10 per million in last 7 days, 

go to Stage 3.  

Else:  

If average of >5 per million in last 

7 days, and > 6 days since last 

tightening, tighten 1 stage   

Else:  

Stay in same stage  

If >100 per million per day in last 

7 days, go to Stage 4.  

Else:  

If > 50 per million per day in last 

7 days, go to Stage 3.  

Else:  

If average of >25 per million per 

day in last 7 days, and > 6 days 

since last tightening, tighten 1 

stage  

Else:  

Stay in same stage  

Second, check for loosening      

If in Stage 4, and average <5 cases per day for 

last 7 days, and > 20 days since last loosening, 

go to Stage 3  

Else:  

If in Stage 3, and average < 1 case per day for 

last 7 days, and > 20 days since last loosening, 

go to Stage 2  

Else:  

If in Stage 2, and zero cases for last 7 days, and 

> 20 days since last loosening, go to Stage 1b  

Else:  

If in Stage 1b, and zero cases for last 28 days 

and > 20 days since last loosening, go to Stage 

1  

Else:  

Stay in same stage  

If in Stage 4, and average <20 cases per day for 

last 7 days, and > 20 days since last loosening, 

go to Stage 3  

Else:  

If in Stage 3, and average < 5 cases per day for 

last 7 days, and > 20 days since last loosening, 

go to Stage 2  

Else:  

If in Stage 2, and <1 case per day for last 7 

days, and > 20 days since last loosening, go to 

Stage 1b  

Else:  

If in Stage 1b, and zero cases for last 7 days 

and > 20 days since last loosening, go to Stage 

1  

Else:  

Stay in same stage  

If average of <2.5 per million in 

last 7 days, and > 20 days since 

last loosening, loosen 1 stage  

Else:  

Stay in same stage  

If average of <12.5 per million per 

day in last 7 days, and > 20 days 

since last loosening, loosen 1 

stage  

Else:  

Stay in same stage 

‡ 1 case per million per day equates to an expected 6.4 cases per day in Victoria. A flow diagram of tight suppression is given in Figure 1.  
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Table 2: Outputs from ABM, and estimated GDP loss, for ‘best’ scenario: 12 months intervention or ABM time horizon (i.e. assumed 
vaccination available in 12 months); 1% probability per day of incursion of infected person into Victoria in elimination strategies 

  Strategy 
a) Aggressive 
elimination 

b) Moderate 
elimination 

c) Tight Suppression d) Loose suppression 

 SARS-CoV-2 
cases (90% 
UI) 
  
  

 In first month 1,330 (1,040 – 1,580) 1,350 (1,110 – 1,600) 1,260 (1,020 – 1,500) 1,260 (1,090 – 1,540) 

 Month 2-6 incl 173 (49 – 557) 229 (50 – 642) 4,570 (943 – 13,300) 23,200 (119 – 37,700) 

 Month 7-12 incl  18 (0 – 54) 34 (0 – 104) 5,640 (1,070 – 21,600) 35,100 (6,160 – 48,900 

Month 13-18 incl 13 (0 – 55) 31 (0 – 93) 4,160 (17 – 19,600) 9,940 (128 – 71,800) 

Up to 12 months  1,530 (1,150 – 2,030) 1,650 (1,240 – 2,110) 11,700 (6,520 – 32,200) 55,900 (28,700 – 82,300) 

Up to 18 months for scenario 1,540 (1,150 – 2,050) 1,680 (1,280 – 2,180) 17,900 (6,970 – 41,700) 77,100 (35,900 – 129,000) 

        

Percentage 
(90% UI) of 
days in each 
level 

1a 21.7% (2.1% - 53.9%) 31.7% (6.6% - 64.4%) 15.1% (5.3% - 39.7%) 16.3% (5.0% - 40.9%) 

1b 16.3% (8.1% - 25.6%) 11.9% (5.8% - 22.8%) 13.9% (10.3% - 18.7%) 14.4% (11.2% - 32.6%) 

2 12.1% (5.8% - 19.7%) 13.8% (5.8% - 21.9%) 12.8% (11.7% - 21.4%) 11.7% (11.5% - 19.7%) 

3 18.3% (8.1% - 27.2%) 16.4% (8.1% - 26.7%) 15.7% (13.3% - 25.0%) 14.7% (12.2% - 20.8%) 

4 30.3% (18.0% - 41.2%) 27.5% (15.8% - 33.7%) 34.3% (20.0% - 49.5%) 36.1% (22.4% - 46.2%) 

        

Estimated 
GDP loss 
(90% UI) 

 In first month 7.9 (5.8 – 10.8) 7.9 (5.8 – 10.8) 7.9 (5.8 – 10.8) 7.9 (5.8 – 10.8) 

 Month 2-6 incl 22.6 (15.8 – 36.7) 21.1 (14.0 – 33.6) 19.3 (12.1 – 26.6) 17.5 (11.1 – 25.2) 

 Month 7-12 incl  15.6 (7.4 – 25.6) 13.3 (7.0 – 22.8) 23.2 (11.4 – 37.7) 25.3 (11.6 – 34.8) 

Month 13-18 incl 15.4 (7.9 – 25.8) 14.6 (7.7 – 22.5) 21.3 (7.7 – 32.4) 17.4 (7.4 – 33.1) 

Up to 12 months  46.5 (31.9 – 67.6) 41.7 (29.0 – 63.6) 50.9 (35.2 – 70.2) 50.2 (35.1 – 72.5) 

Up to 18 months for scenario 61.3 (45.5 – 89.6) 56.7 (39.9 – 79.2) 71.7 (46.9 – 93.3) 67.5 (44.3 – 97.4) 
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Table 3: Estimate incremental health loss (HALYs) loss compared to BAU (i.e. no SARS-CoV-2 pandemic) and additional health expenditure 
(3% discount rate) 

 Strategy 
a) Aggressive 
elimination 

b) Moderate elimination c) Tight Suppression d) Loose suppression 

           

SARS-CoV-2 
deaths 

 1st yr 58 (46, 82) 64 (46, 88) 483 (245, 1,358) 2,249 (1,022, 3,555) 

      

HALYs loss (90% 
UI) 
  
 

 1st yr 38 (29, 50) 41 (30, 54) 156 (98, 364) 672 (337, 954) 

 2nd yr 71 (54, 94) 76 (56, 101) 436 (246, 1,120) 1,990 (1,020, 2,960) 

 Full 20 years  272 (204, 363) 289 (215, 386) 1,950 (1,100, 6,100) 11,900 (4,730, 15,500) 

Rest of lifetime 286 (219, 389) 314 (228, 413) 2,263 (1,180, 6,550) 11,000 (5,030, 16,700) 

       

Net health 
expenditure (in 
$US millions; 90% 
UI) 

 1st yr 2.71 (1.49, 3.82) 2.88 (1.69, 4.61) 24.6 (10.4, 75.3) 117 (50, 214) 

 2nd yr 2.00 (0.994, 2.99) 2.10 (1.12, 3.61) 19.2 (7.19, 59.1) 89.0 (33.1, 169) 

 Full 20 years  -2.54 (-3.95, -1.68) -2.77 (-3.88, -1.79) -18.5 (-51.5, -8.23) -90.2 (-153, -30.6) 

Rest of lifetime -2.99 (-4.45, -2.00) -3.19 (-4.51, -2.22) -22.4 (-60.1, -9.92) -107 (-175, -41.7) 
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Table 4: Differences in  main outputs  between the policies for 12 month intervention period (90% UI of the differences calculated within each 
run, ensuring each within-run comparison is subject only to stochastic variability and PMSLT input parameter uncertainty  

 Strategy 
a) Aggressive 

elimination  
b) Moderate 

elimination 
c) Tight Suppression d) Loose suppression 

Compared to aggressive elimination     

HALYs loss lifetime 0 (ref) 21 (-90 to 129) 1927 (871 to 6249) 10661 (4776 to 16396) 

Net health expenditure lifetime ($US millions) 0 (ref) -0.2 (-1.3 to 0.9) -19.2 (-57.4 to -7.4) -103.2 (-172.8 to -40.2) 

Estimated GDP loss ($US billions) 0 (ref) -5.2 (-18.6 to 11.0) 3.3 (-12.1 to 23.6) 4.3 (-15.9 to 19.4) 

Probability of being largest across policies     

HALYs loss lifetime 0% 0% 7% 93% 

Net health expenditure lifetime 62% 37% 0% 1% 

Estimated GDP loss ($US billions) 19% 4% 33% 44% 

Probability of being smallest across policies     

HALYs loss lifetime 63% 36% 0% 1% 

Net health expenditure lifetime 0% 0% 7% 93% 

Estimated GDP loss  23% 49% 14% 14% 
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Figure 1: Stages and triggers for tight suppression 

 

Stage 4

Stage 3

Stage 2

Stage 1b

Average of <2.5 per million cases per day for 
7 days (and >20 days post last step-down)

Average of <2.5 per million cases per day for 
7 days (and >20 days post last step-down)

Average of <2.5 per million cases per day for 
7 days (and >20 days post last step-down)

Average >5 cases per million per day for 
7 days, and > 6 days since last tightening

Average >5 cases per million per day for 
7 days, and > 6 days since last tightening

Average >5 cases per million per day for 
7 days, and > 6 days since last tightening

Stage 1a

Average of <2.5 per million cases per day for 
7 days (and >20 days post last step-down)

Average >5 cases per million per day for 
7 days, and > 6 days since last tightening

Average >10 cases 
per million per day 

for 7 days, go 
straight to Stage 3

Average >20 cases 
per million per day 

for 7 days, go 
straight to Stage 3
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Figure 2: Daily cases per day for 100 runs of each of the four policy responses (colours of each line demonstrate the stage each run was in by 
day) 
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Figure 3: Cost effectiveness acceptability curves: 

a: health system perspective 

 

b: partial societal perspective 
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