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Abstract

Historically, emerging and re-emerging infectious diseases have caused large, deadly, and expensive multi-
national outbreaks. Often outbreak investigations aim to identify who infected whom by reconstructing
the outbreak transmission tree, which visualizes transmission between individuals as a network with nodes
representing individuals and branches representing transmission from person to person. We compiled a
database of 383 published, standardized transmission trees consisting of 16 directly-transmitted diseases
ranging in size from 2 to 286 cases. For each tree and disease we calculated several key statistics, such
as outbreak size, average number of secondary infections, the dispersion parameter, and the number of
superspreaders. We demonstrated the potential utility of the database through short analyses addressing
questions about superspreader epidemiology for a variety of diseases, including COVID-19. First, we compared
the frequency and contribution of superspreaders to onward transmission across diseases. COVID-19 outbreaks
had significantly fewer superspreaders than outbreaks of SARS and MERS and a dispersion parameter between
that of SARS and MERS. Across diseases the presence of more superspreaders was associated with greater
outbreak size. Second, we further examined how early spread impacts tree size. Generally, trees sparked by a
superspreader had larger outbreak sizes than those trees not sparked by a superspreader, and this trend was
significant for COVID-19 trees. Third, we investigated patterns in how superspreaders are infected. Across
trees with more than one superspreader, we found support for the theory that superspreaders generate other
superspreaders, even when controlling for number of secondary infections. In sum, our findings put the role
of superspreading to COVID-19 transmission in perspective with that of SARS and MERS and suggest an
avenue for further research on the generation of superspreaders. These data have been made openly available
to encourage reuse and further scientific inquiry.

Author Summary

Public health investigations often aim to identify who infected whom, or the transmission tree, during
outbreaks of infectious diseases. These investigations tend to be resource intensive but valuable as they
contain epidemiological information, including the average number of infections caused by each individual and
the variation in this number. To date, there remains no standardized format nor comprehensive database of
infectious disease transmission trees. To fill this gap, we standardized and compiled more than 350 published
transmission trees for 16 directly-transmitted diseases into a database that is publicly available. In this paper,
we give an overview of the database construction process, as well as a demonstration of the types of questions
that the database can be used to answer related to superspreader epidemiology. For example, we show that
COVID-19 outbreaks have fewer superspreaders than outbreaks of SARS and MERS. We also find support
for the theory that superspreaders generate other superspreaders. In the future, this database can be used to
answer other outstanding questions in the field of epidemiology.

∗Department of Mathematics, Bowdoin College, Brunswick, ME, USA, taubejc@gmail.com
†Odum School of Ecology, University of Georgia, Athens, GA, USA, paige.miller@uga.edu
‡Odum School of Ecology, University of Georgia, Athens, GA, USA, jdrake@uga.edu

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.11.21249622doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:taubejc@gmail.com
mailto:paige.miller@uga.edu
mailto:jdrake@uga.edu
https://doi.org/10.1101/2021.01.11.21249622
http://creativecommons.org/licenses/by/4.0/


Introduction

In the past 20 years, emerging and re-emerging infectious diseases have caused large, deadly, and expensive
multi-national outbreaks of SARS-CoV (SARS), Zika, Ebola, measles and now SARS-CoV-2 (COVID-19).
From these outbreaks, researchers have learned a great deal about the epidemiology of each disease. For
example, spread of SARS in 2003 was greatly facilitated by superspreaders, individuals that infect an
unusually high number of contacts, especially on airplanes and in health care settings [1,2]. During the present
COVID-19 pandemic, numerous instances of superspreading events in churches, choir practices, exercise
classes, weddings, and other settings have been reported [3]. Understanding the factors leading to excess
transmission by some individuals or in some settings is a major goal of outbreak investigations and may lead
to improved control strategies.

Some outbreak investigations aim to identify who infected whom by reconstructing the outbreak transmission
tree, which visualizes transmission between individuals as networks with nodes representing individuals and
branches representing transmission from person to person. Transmission trees are typically investigated by
case-finding, contact-tracing, and detailed epidemiological interviews followed sometimes by probabilistic
reconstruction [4]. These investigations are costly but necessary because transmission trees contain information
about key epidemiological parameters including the outbreak size, the average number of secondary infections
(or reproduction number, R), and the dispersion parameter (variation in R). These parameters govern the
effectiveness of disease control strategies and can be used to inform models of spread [5, 6]. Additionally,
comparing the statistics of different transmission trees can lead to insights about how transmission differs
across the contexts of pathogen, time, and place. We compiled and standardized transmission trees from
a wide variety of sources for general use by the research community. Using the database, we test several
hypotheses addressing aspects of superspreader epidemiology.

In 2005, Lloyd-Smith and colleagues [6] proposed a definition for superspreading based on variation in the
offspring distribution (e.g. the number of infections caused by each infected individual). According to this
proposal, superspreaders are cases causing more secondary infections than the 99th percentile of a Poisson(R0)
distribution. In their analysis, superspreading was especially important for understanding the offspring
distribution of SARS and measles. With these findings in mind, we used the database to examine three
hypotheses about the frequency of superspreading in COVID-19 outbreaks relative to other diseases.

1. We hypothesized that there would be a positive relationship between number of superspreaders and
tree size.

2. We hypothesized that COVID-19, as a coronavirus, would have a similar dispersion parameter to that
of SARS and MERS, but lower than that of other diseases not typically associated with superspreading,
such as influenza.

3. We hypothesized that superspreaders would have directly and indirectly caused a larger cumulative
proportion of cases in outbreaks of COVID-19, SARS, and MERS than diseases where superspreading
is less common, such as influenza and measles.

Lloyd-Smith and colleagues [6] also posited that diseases that have larger variation in offspring distributions
(i.e. lower dispersion parameters) have a greater chance of extinction which increases further as R0 declines
toward 1. However, early superspreading events may prevent extinction by increasing the size from which the
outbreak grows and making infection propagation more likely [7]. Additionally, the probability of detecting
an outbreak may be higher if there is a superspreading event, because public health officials are more likely to
investigate a cluster than an isolated case. For these reasons, in our second analysis we test two hypotheses
relating tree size and early spread.

4. We hypothesized that trees sparked by superspreaders would be larger than trees not sparked by
superspreaders.

5. We hypothesized that the proportion of cases in the first generation would be positively associated with
standardized tree size.

While it is clear that superspreading helps explain the propagation patterns of several infectious diseases [6],
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how superspreaders themselves are generated (i.e., who spreads to superspreaders) is poorly understood. A
new hypothesis for COVID-19 suggests that superspreaders may generate new superspreaders via a mechanism
based on initial viral dosage [8] if superspreaders are individuals with unusually high viral shedding because
they themselves were exposed to other individuals with high viral shedding. Another explanation for
superspreaders generating new superspreaders could be that superspreaders engage in riskier behavior and
are more likely to infect others with similar behavior. For example, superspreaders and their contacts may
be more likely to attend large gatherings or less likely to take precautionary measures to mitigate spread
(e.g. masks) than the general public. These proposed mechanisms suggest that generation of superspreaders
is not random, but correlated with characteristics of the superspreader’s infector or tied to the context of
transmission. We investigate these patterns of superspreader generation in our third analysis.

6. We hypothesized that superspreaders would be more likely to infect other superspreaders, controlling
for number of secondary infections.

Here, we document the construction of OutbreakTrees and demonstrate the potential utility of this database
by investigating three features of superspreading epidemiology: frequency, timing, and generation.

Results & Discussion

Database summary statistics

Currently, OutbreakTrees includes 383 trees describing 16 directly-transmitted infectious diseases (see
Fig 1 for examples), most of which are caused by viruses (Fig 2). COVID-19 outbreaks comprise 256, or
approximately 67%, of the trees in the database. Trees range in size from 2 to 286 individuals. This database
contains data for outbreaks that took place in the years 1946 through 2020. The most common node attributes
for trees include context of transmission (work, school, family, etc.), date of onset, sex, and age (Table 1).

Table 1: List of most common attributes for individuals in trees.

Attribute Database Code Number of Trees
Transmission context cont 301
Symptom Onset onset 137
Sex sex 86
Age age 69
Location loc 56
Quarantine Status quar 36
Occupation occp 34
Survival surv 20

Superspreading events across diseases (Hypotheses 1-3)

Consistent with our first hypothesis, larger trees were associated with more superspreaders (Fig 3A). Though
outbreaks of COVID-19 contained fewer superspreaders than outbreaks of SARS (P=0.00043) and MERS
(P=0.000036) (Wilcoxon test with Bonferroni-Holm correction, S3 Fig), COVID-19 had a median dispersion
parameter (k = 0.1) (Fig 3B) between that of SARS and MERS, supporting our second hypothesis, and in
line with some previous estimates ([12] but see [13, 14, 15, 16, 17]) which give a range of estimates across these
coronaviruses). Lastly, addressing our third hypothesis, superspreaders were found to directly or indirectly
account for all cases in at least 50% of tuberculosis, SARS, rubella, MERS, Ebola, and COVID-19 outbreaks
(Fig 3C). The lowest median percentages of 0 were observed in chickenpox, hepatitis A, and norovirus trees.

Taken together, these results indicate that COVID-19 is able to reach large numbers of individuals with
relatively few superspreaders (compared with SARS and MERS) that account for a large proportion of onward
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Figure 1: We compiled infectious disease transmission trees from the literature along with reported attribute
information. Shown here are example trees in the database. (A) Ebola spread in different contexts [9]. (B)
Measles spread in different locations [10]. (C) COVID-19 spread among age classes [11]. Primary sources for
transmission trees are available in OutbreakTrees and listed in the Supplemental Material. OutbreakTrees
may be accessed online at OutbreakTrees.ecology.uga.edu
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Figure 2: Characteristics of transmission trees in OutbreakTrees. (A) Tree size varies from 2 to 286 with a
median of 3 and most trees represent outbreaks taking place in the past 20 years. (B) The largest trees are
from H1N1 and SARS outbreaks while the highest proportion of trees in the database are from outbreaks of
COVID-19, followed by adenovirus and Ebola. Tree size axes in both plots are shown on a log10 scale to
better illustrate variation in medium-sized trees.
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Figure 3: The importance of superspreading across diseases measured in three ways. (A) Larger outbreaks
tend to have more superspreaders. Points are jittered vertically and y-axis is on a log10 scale for visual aid.
(B) Dispersion parameter (k) of a negative binomial distribution fit to the offspring distribution of trees by
disease. Vertical line and value printed in each facet shows the median k for each disease. (C) Cumulative
proportion of cases directly or indirectly attributed to superspreaders in a tree by disease. Only trees with 8
or more cases were used in these analyses with other cutoffs shown in S1 Fig and S2 Fig.
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transmission. These results, combined with a dispersion parameter in between that of SARS and MERS, put
the role of superspreading in COVID-19 trees into perspective: superspreaders contribute substantially to
onward transmission of COVID-19 but in a way that seems distinct from SARS and MERS. In particular, the
high downstream effects of COVID-19 cases caused by relatively few superspreaders could reflect important
sampling differences in COVID-19 trees such as superspreading disproportionately increasing detection relative
to other diseases. We investigate patterns associated with early spread in the next section.

Tree size and early spreading events (Hypotheses 4-5)

In our database, the proportion of trees sparked by superspreaders varied by disease; half of MERS trees
(5/10) and nearly half of Ebola (11/23) and Nipah (7/17) trees were sparked by superspreaders. Less than
one-third of measles (3/11), COVID-19 (40/256), influenza (1/5), and adenovirus (1/25) trees were initiated
by superspreaders. None of the 8 norovirus trees or 10 hepatitis A trees were sparked by superspreaders (Fig
4A). Consistent with our fourth hypothesis, in general, trees sparked by superspreaders were slightly larger
than those not sparked by superspreaders (Fig 4A), but there was only a significant difference for COVID-19
trees (P=9.37 · 10−23, Kruskal-Wallis tests with Bonferroni-Holm corrections). Lack of significance for the
other diseases could be due to small sample size. Fig 4B shows partial support for our fifth hypothesis; the
proportion of cases in the first generation was significantly positively related to standardized tree size for
COVID-19, Ebola, hepatitis A, and Nipah trees based on a linear regression.

Thus, we found limited support for both hypotheses; only COVID-19 trees sparked by superspreaders
were significantly larger than trees not sparked by superspreaders and 4/9 diseases had significant positive
relationships between proportion of cases in the first generation and standardized tree size. The strong
association between proportion of cases in the first generation and standardized tree size for COVID-19 may
be a result of higher proportions of cases in the first generation leading to larger tree sizes, but it could also
be due to limited detection of onward transmission in COVID-19 trees, decreasing the number of observed
generations in a tree. These observations contextualize our finding in the previous analysis, showing that
superspreading in COVID-19 trees is occurring early and igniting large outbreaks [18]. The presence of large,
superspreader sparked trees with few generations suggests diminished detection of subsequent transmission
beyond the first few generations of spread.

Generation of superspreaders (Hypothesis 6)

Across diseases, there were patterns in the characteristics of individuals that infected superspreaders (Fig
5), which we investigated for Hypothesis 6. More than 50% of superspreaders were infected by other
superspreaders in SARS, MERS, influenza, and smallpox trees, whereas COVID-19 superspreaders were
infected by another superspreader only about one third of the time. Furthermore, the ratio of observed
to expected superspreader-superspreader dyads was greater than one in 13 of 18 trees with two or more
superspreaders, indicating that the proportion of superspreaders infected by other superspreaders was greater
than expected by chance. Notably, both COVID-19 trees under consideration had large ratios of observed to
expected superspreader dyads. Though additional information regarding the contexts in which superspreaders
are infected would be required to understand these patterns, these results suggest some non-randomness
in generation of superspreaders providing preliminary support for our sixth hypothesis that superspreaders
infect other superspreaders.

Lastly, we explored the context in which superspreaders were infected when this information was available.
As shown in Fig 6, across diseases, superspreaders were most commonly infected at gatherings (e.g., religious,
fitness classes) or while traveling. Gatherings and travel allow for contact with many individuals for prolonged
duration, potentially facilitating infection with higher viral loads as suggested in [8], although we do not have
data to determine if this correlation is a result of biological (higher viral shedding) or behavioral (higher
contact rate) differences. Regardless, understanding patterns in the generation of superspreaders is an exciting
avenue for future research and our database provides some preliminary data to test new hypotheses.
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Figure 4: Importance of early spreading events to tree size across diseases. (A) The frequency (top right) and
effect of trees sparked by superspreaders on tree size. Red text indicates results of Kruskal-Wallis test with
Bonferroni-Holm correction of differences in tree size by superspreader sparking status (only P-values<0.05
shown). (B) Across diseases there is a positive relationship between standardized tree size and proportion
of cases in the first generation. Standardized tree size, |S|, is calculated by |S| = S1/(G−1) where G is the
number of generations in the tree and S is tree size. Lines show linear regression with results in red text
(only coefficients with P-values<0.05 shown). Note: y-axis on log10 scale. Trees sparked by superspreaders
are represented by triangles, trees not sparked by superspreaders are represented by circles. Points have been
jittered for clarity.
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Figure 5: Characteristics of individuals infecting superspreaders. (A) The proportion of superspreaders
infected by other superspreaders. Numbers above bars indicate the number of superspreaders for which there
was sufficient information about their infector to calculate the proportion. (B) Ratio of observed to expected
superspreader-superspreader dyads in trees with more than one superspreader. The expected number of
dyads is calculated by s(s− 1)/S, where s is the number of superspreaders in the tree and S is tree size.
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Figure 6: Number of superspreaders infected in various transmission contexts. Shared buildings included
worker dormitories and hotels. The category “other” includes a spillover event of MERS to a camel owner.

Limitations of OutbreakTrees

While OutbreakTrees has allowed us to investigate questions about the nature of superspreading, the database
has several limitations. First, trees in the database do not constitute a random nor necessarily representative
sample of directly-transmitted infectious disease outbreaks. For example, we omitted nearly one hundred
reported transmission events and trees due to lack of single infector identification, which undermines the
generalization of our findings. Second, although trees are meant to be complete representations of clusters
(see inclusion criteria), they are typically a subset from a larger chain of transmission events. For example,
Ebola was likely only introduced once in the 2014 outbreak in West Africa, yet we have several separate trees
because the transmission events could not all be connected. These limitations should be kept in mind when
using the database and analyzing results.

Intended users & future directions

We envision this database to be used by teachers and scientists. Secondary instruction in mathematics might
use OutbreakTrees to discuss exponential or geometric growth, concepts outlined in the Common Core
State Standards for high school mathematics [19]. College statistics instructors could use the dispersion
parameter to discuss the negative binomial distribution in introductory statistics courses. These are simple
examples and this list could be easily expanded. With so much current interest in infectious diseases, we
believe students would be excited by these topics. In addition to teachers, researchers can use the data
in OutbreakTrees to study a variety of topics. The data could be used to further explore theory about
superspreaders generating new superspreaders, to learn more about how and when outbreaks fade out, or to
calculate key statistics to inform public health policy. Trees that have more detail about symptom onset and
contact between individuals could be used to test or refine probabilistic reconstruction methods.

OutbreakTrees is maintained at OutbreakTrees.ecology.uga.edu where users can visualize and download
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transmission trees. We will maintain it by entering new trees as they become available and we invite scientists
or public health practitioners to submit new trees. In the future, we plan to expand the database to include
outbreaks of sexually transmitted infections, transmission trees of animal infectious diseases, and larger trees
reconstructed by phylogenetic methods.

Conclusions

In summary, we developed an open-access database of infectious disease transmission trees, called
OutbreakTrees, for research and teaching. We illustrated how this database can be used to explore questions
surrounding superspreader epidemiology, and we calculated a number of important parameters for COVID-19.
In particular, we estimated the dispersion parameter from transmission trees and the value for COVID-19
was in between that of SARS and MERS. Additionally, COVID-19 data supported our hypothesis that
transmission trees sparked by superspreaders would be larger than those not sparked by superspreaders.
Finally, our analysis provided support for the theory that superspreaders generate other superspreaders,
even when controlling for number of secondary infections. The development and release of OutbreakTrees
highlights the benefits of data sharing and offers a new resource for epidemiologic research.

Methods

Data

Transmission trees were collected by searching Google Scholar, Scopus, PubMed, and Google Images for
published literature containing graphs of transmission trees or written accounts of transmission events. We
used the following terms to find papers containing transmission tree information: “transmission AND (tree
OR network OR chain) AND (outbreak OR disease)”, “outbreak investigation”, “contact tracing”, “case
report”, and “transmission tree outbreak reconstruction”. We also used the bibliographies of other papers (e.g.
[6]) to find more references. With the emergence of COVID-19, we expanded our search for transmission trees
to include news articles and pre-prints (e.g. medRxiv.org). For COVID-19, many of the trees were identified
with an online database [3]. If trees could not be collected from a public source or if trees did not identify
single infectors for each infectee, we contacted the authors of identified documents for further clarification or
additional information. We additionally compiled readily available node attributes reported in the tree source.
Attributes available for each tree varied but included: age, sex, context of transmission, date of symptom
onset, occupation, quarantine status, survival status, location, hospital, ward of hospital or care facility,
symptomatic status, duration of exposure to infected individual, whether the edge was probabilistically
reconstructed, relationship between individuals, serial interval, immunization status, source of edge (if tree
constructed from two sources), and strain or genome sequence. Articles in languages other than English were
translated using Google Translate software.

Examples of trees contained in OutbreakTrees are shown in Fig 1.

Inclusion criteria

For consistency, we required that a tree meet the following criteria for inclusion in the database:

• Trees must have contained two or more individuals; case studies of isolated infected individuals were
excluded.

• Trees must represent outbreaks of directly transmitted infectious diseases in humans; trees describing
sexually-transmitted, food-borne, vector-borne, or waterborne diseases, as well as diseases in non-humans
(e.g. outbreaks among farm animals [20, 21]) were excluded.

• Trees were constructed through epidemiological or probabilistic methods; trees constructed using only
genomic or phylogenetic methods were excluded.
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• Trees had to report a single infector per infectee (i.e., trees that had multiple possible infectors for
any case were excluded). However, if tree topology was unaffected by randomly assigning ambiguous
infectors, we included the tree and omitted specific attribute data for the assigned infector.

• Trees were presented as completed investigations; we excluded trees presented as still under ongoing
investigation at the time of reporting.

Data entry

Trees were manually encoded as data.tree [22] objects using relevant information from each source and
converted to igraph [23] objects for manipulation and accession. Any assumptions made in entering the tree
are listed with the tree in the database (e.g. if an infector is assumed due to nodes obscuring branches, or a
case of an ambiguous infector assignment). All scripts to compile trees and analyze data are available at
http://github.com/DrakeLab/taube-transmission-trees and tree sources are listed in S1 File.

Data analysis

We demonstrated how OutbreakTrees can be used to address questions about the role of superspreading in
infectious disease transmission through three different analyses.

Superspreading events across diseases

To evaluate how common superspreading is among different diseases we measured the importance of su-
perspreading across trees and diseases in three ways: by determining for each tree (1) the number of
superspreaders based on the definition of Lloyd-Smith et al. [6], (2) the dispersion parameter (k), and
(3) the cumulative proportion of cases directly and indirectly caused by superspreaders. The dispersion
parameter was calculated in R using the fitdistr function in the MASS package assuming secondary infections
followed a negative binomial distribution. There were 9 trees for which we could not calculate a dispersion
parameter using this method; all had an offspring distribution of {1, 1, 2} which was not optimizable. Small
dispersion parameters indicate more heterogeneous offspring distributions with fewer individuals accounting
for the majority of transmission compared with large dispersion parameters. Additionally, we quantified the
cumulative proportion of cases downstream from superspreaders as the number of cases which could trace
their infection back to a superspreader divided by the total number of secondary cases in the tree (i.e. tree
size - 1). This value indicates the contribution of superspreaders as a fraction of all transmission. For this
analysis, we used trees consisting of 8 or more cases because cutoffs for superspreading in smaller trees are
low (e.g. for a tree with 5 cases, someone who infected 4 cases would be a superspreader) and we sought to
compare larger superspreading events. We performed sensitivity analyses for cutoffs of trees with 5 and 10 or
more cases (S1 Fig, S2 Fig).

Tree size and early spreading events

To understand the relationship between early spread and tree size, we analyzed trends in the frequency of trees
sparked by superspreaders, tree size, and size of the first generation of cases. To compare the proportion of
cases in the first generation with tree size among trees with different numbers of generations, we standardized
tree size (S) by the number of generations (G), not including the index case: |S| = S1/(G−1). If the index case
was a superspreader [6], then we considered the tree to be sparked by a superspreader. The first generation
of cases was defined as those cases infected by the index case. The proportion of cases in the first generation
was calculated by dividing the number of cases in the first generation by the total number of cases in the tree.
We limited this analysis to diseases with at least five trees.
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Generation of superspreaders

Next, to understand patterns in the individuals who infected superspreaders and the contexts in which
superspreaders were infected, we investigated three values. First, we assessed the frequency of superspreaders
infected by other superspreaders. We determined the total number of superspreaders infected by another
superspreader for each disease, and divided this count by the total number of superspreaders in all trees for
that disease. We did not include superspreaders that sparked a tree due to lack of sufficient information about
their infector. Second, we calculated the ratio of observed to expected superspreader-superspreader dyads.
Superspreader-superspreader dyads occur when one superspreader infects another. Denoting the number of
superspreaders by s and tree size by S, if superspreaders were infected randomly, we would expect s(1− s)/S
superspreader-superspreader dyads per tree. Third, we identified the contexts in which superspreaders
were infected, when reported, and identified any patterns. Contexts were categorized as either gathering,
hospital, household, shared building (worker dormitories or hotel), travel, or other (e.g., spillover from a camel
causing MERS infection). If generation of superspreaders is not random but tied to characteristics of the
infector and transmission contexts, we would expect to see high frequencies of superspreaders infecting other
superspreaders, large ratios of observed to expected superspreader-superspreader dyads, and superspreaders
being infected in contexts that encourage individuals to be in close contact with each other.
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