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Main text: 3728 words 28 

Abstract (125 words) 29 

We fitted a model of SARS-CoV-2 transmission in care homes and the community 30 

to regional surveillance data for England. Among control measures implemented, only 31 

national lockdown brought the reproduction number below 1 consistently; introduced one 32 

week earlier it could have reduced first wave deaths from 36,700 to 15,700 (95%CrI: 8,900–33 

26,800). Improved clinical care reduced the infection fatality ratio from 1.25% (95%CrI: 34 

1.18%–1.33%) to 0.77% (95%CrI: 0.71%–0.84%). The infection fatality ratio was higher 35 

in the elderly residing in care homes (35.9%, 95%CrI: 29.1%–43.4%) than those residing in 36 

the community (10.4%, 95%CrI: 9.1%–11.5%). England is still far from herd immunity, with 37 

regional cumulative infection incidence to 1st December 2020 between 4.8% (95%CrI: 38 

4.4%–5.1%) and 15.4% (95%CrI: 14.9%–15.9%) of the population.  39 

 40 

1 Introduction 41 

England is among the countries worst-affected by the global pandemic of COVID-19, caused 42 

by the novel Betacoronavirus SARS-CoV-2. As of 2nd December 2020, over 51,000 deaths 43 

have been reported nationally, or 91 deaths per 100,000 people (1). The impact of the 44 

epidemic has varied across the country, with regional epidemics differing in their severity 45 

and timing. A key feature in all regions is the burden suffered by older adults living in care 46 

homes, where mortality has been high.  47 

 48 

We use a mathematical model of SARS-CoV-2 transmission to reproduce the first two 49 

waves of the epidemic across England’s seven NHS regions and assess the impact of 50 

interventions implemented by the UK government. We analyse the epidemic from 51 

importation of SARS-CoV-2 into each region to the 2nd December 2020: encompassing the 52 

first national lockdown from March – May, the interventions implemented as COVID-19 53 
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deaths increased again in the autumn, eventually leading to the second national lockdown in 54 

November. 55 

 56 

We built an age-structured stochastic transmission model of SARS-CoV-2, representing care 57 

homes, hospital clinical pathways and the wider community (Materials and Methods). We 58 

developed a Bayesian evidence-synthesis approach to estimate model parameters and to 59 

reconstruct regional epidemics using data from daily recorded deaths, PCR testing, hospital 60 

admissions, hospital bed occupancy, individual patient outcomes, contact surveys, and 61 

serological surveys. We evaluated temporal changes in transmission as new control 62 

measures were implemented and then relaxed, and population immunity accrued. Inclusion 63 

of serological data allowed us to robustly estimate region- and age-specific disease severity, 64 

to compare severity in care home residents to elderly individuals in the community, and 65 

estimate the total epidemic size, by calculating the proportion of individuals infected over 66 

time in each region. Finally, we examined counterfactual epidemic scenarios, varying the 67 

date and duration of the first national lockdown and the effectiveness of restricting care 68 

home visits, to quantify the resulting impact on mortality.  69 

  70 

Our analysis, which synthesises multiple data sources and parametrically accounts for their 71 

biases, provides a comprehensive overview of transmission, hospitalisation, and mortality 72 

patterns of SARS-CoV-2 in the first and second waves (up to 2nd December) in all regions of 73 

England. Our results provide crucial insights for controlling the epidemic in the future, 74 

emphasising the importance of acting fast to save lives. 75 

  76 
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2 Results 77 

2.1 Epidemic trajectory 78 

 79 

We used our evidence-synthesis approach, to infer the COVID-19 epidemic start date in 80 

each NHS England region (Figure 1A), then reconstructed epidemic trajectories for 81 

hospitalisations (Figure S7) and deaths in care homes and hospitals (Figure 1B-H). We 82 

estimated the basic reproduction number, R0, defined as the expected number of onward 83 

infections from an infectious individual in a fully susceptible population to be 2.9 (95% CrI: 84 

2.8-3.1) nationally. Figure 1I shows how the effective reproduction number Rt
eff (the 85 

expected number of onward infections from an individual infected at time t) changed in each 86 

region over time, in relation to government control measures and accrual of population 87 

immunity.  88 

The first COVID-19 death in England occurred on 5th March 2020 (2). Seven days later, in 89 

response to the growing epidemic, the government began to introduce control measures, 90 

initially requiring individuals with a dry persistent cough and/or fever to self-isolate (3). On 91 

23rd March this escalated to a full national lockdown (4, 5). Irrespective of initial differences, 92 

the level of transmission during lockdown was similar across all regions (Figure 1I), 93 

consistent with mobility data showing movement during lockdown reduced to a consistent 94 

level nationally (6).  95 

 96 
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 97 

Figure 1: Trajectory of the England COVID-19 epidemic. A, The inferred epidemic start date in each 98 

NHS England region. B-H, The model fit to reported daily deaths from COVID-19 in care homes and 99 

hospitals for each NHS England region. The points show the daily data, solid lines the median 100 

posterior and the shaded area shows the 95% CrI. I, The mean effective reproduction number within 101 

the general community (i.e. excluding care homes) in each region from March to December. Vertical 102 

lines and labels represent dates of key policy changes, defining the breaking points of the underlying 103 

piecewise linear transmission rate. Dashed horizontal line depicts reproduction number of 1. 104 

 105 

The epidemic in London began 15 days before (95% CrI: 28 days before, 3 days after) the 106 

rest of the country (Figure 1A), meaning the lockdown occurred at a later stage of its 107 

epidemic. London experienced a mortality of 88.5 (95% CrI: 79.9–95.3) per 100,000 during 108 

the first wave, compared to the national average of 70.7 (95% CrI: 64.6–77.1), despite 109 
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having a younger population and a smaller care home population than other regions (296 vs 110 

603 per 100,000 nationally). 111 

 112 

A key feature of the first epidemic wave in England, in common with other European 113 

countries, was the high death toll within care homes, which accounted for 22.6% laboratory-114 

confirmed COVID-19 deaths in England as of 1st August 2020. Although community 115 

transmission rates fell during lockdown, transmission within care homes continued to rise, 116 

with infection risk peaking in care home residents, between 26th March in London and 12th 117 

April in North East and Yorkshire (Figure 2A). Deaths in care homes peaked on average 13 118 

days later than hospital deaths (Figure 1B-H).  119 

 120 

 121 

 122 

 123 
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 124 

Figure 2: A, Inferred daily SARS-CoV-2 infections in England care home residents (right axis) and the 125 

wider community (left axis). B-H, Comparison of modelled (shaded bands) and observed (solid line) 126 

proportion of PCR tests that are positive, under pillar-2 testing (community swab testing for symptomatic 127 

individuals) in >25 year olds. Shaded bands depict 95% CrI, 50% CrI and median model outputs. 128 

 129 

The first lockdown in England continued until 11th May, when people unable to work remotely 130 

were permitted to resume their jobs. Over the summer restrictions were successively eased, 131 

with non-essential shops, pubs and restaurants opening, followed by the government’s ‘Eat 132 

Out to Help Out’ restaurant subsidy scheme in August (7). This led to a steady increase in 133 

transmission, with Rt
eff rising above 1 in all regions by mid-August (Figure 1I). 134 

 135 
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Increasing PCR test positivity marked the beginning of a second epidemic wave (Figure 2B-136 

H, S6). The accompanying introduction of non-pharmaceutical interventions (NPIs) began 137 

with the “Rule of Six” (limiting social gatherings to 6 persons maximum) on 14th September 138 

(8), followed by the localised tiered restrictions on 14th October (9). These measures limited 139 

transmission in most regions but were not sufficient to reduce Rt
eff below 1 (Figure 1I). 140 

Consequently, on 31st October, the government announced a second national lockdown, 141 

which lasted from 5th November to 1st December (10). 142 

 143 

Restrictions during the second lockdown were less stringent than the first, with schools and 144 

some workplaces remaining open. This was reflected in Rt
eff estimates of 0.83 (95% CrI: 145 

0.81–0.85) at the start of the second lockdown, compared to Rt
eff = 0.54 (95% CrI: 0.50–146 

0.59) at the start of the first. We estimate that without the population immunity accrued 147 

during the first wave, contact rates during the second lockdown would have resulted in a 148 

reproduction number of Rt = 0.95 (95% CrI: 0.93–0.98). Hence, population immunity helped 149 

to reduce transmission further below the critical threshold of Rt
eff = 1. 150 

 151 

2.2 Severity and hospitalisation 152 

 153 

COVID-19 manifests a broad spectrum of severity, from asymptomatic infection to life-154 

threatening illness requiring intensive care. We estimated age-patterns of clinical 155 

progression in people admitted to hospital using individual-level data from 17,702 patients 156 

admitted between 18th March and 31st May 2020 (inclusive) in the COVID-19 Hospitalisation 157 

in England Surveillance System (CHESS, (11)) (Materials and Methods). We derived 158 

estimates of the time spent in each stage of the hospital pathway (including general wards, 159 

ICU and post-ICU stepdown care), as well as age-stratified probabilities of progression 160 

through that pathway (Figure 3 and Figure S8). We accounted for differing length of stays 161 

given different outcomes; there were marked differences in average length of ICU stay for 162 
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those who died in ICU, those who later died in stepdown care and those who were 163 

discharged following stepdown care (Figure 3F). Among patients over 65, we found the 164 

probability of admission to ICU decreased with increasing age. Severity of COVID-19 165 

increases with age, but for older patients and those with most severe illness, the benefit of 166 

ICU admission, ventilation and the corresponding prognosis may not be better than with 167 

oxygen therapy in a general ward (12). Thus, older and more severely infected patients may 168 

be directed to care on a general ward rather than admitted to ICU. 169 

 170 

We used estimates of clinical progression to parametrise the transmission model, enabling 171 

us to infer temporal and regional differences in disease severity, informed by local 172 

demography, observed daily hospital admissions, bed occupancy and deaths. We measured 173 

severity of disease by the infection fatality ratio (IFR) and the infection hospitalisation ratio 174 

(IHR).  175 

 176 

 177 
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178 

Figure 3: Age-dependent probabilities of progression through hospital pathways. A, Probability of 179 

admission to ICU. B, Probability of death in a general ward. C, Probability of death in ICU. D, 180 

Probability of death in stepdown care. E, Probability of death through all hospital pathways. Black 181 

circles and vertical segments show posterior mean and 95% credible intervals of splines fitted to data, 182 

blue circles and vertical segments show raw mean values and 95% confidence intervals (exact 183 

binomial) for each 5-year age group. F, Average length of stay in each ward (posterior mean and 95% 184 

credible intervals). 185 

 186 

The severity of disease increased with age in all regions with the steepest increase above 187 

65 years (Figure 4A-C), in line with observations worldwide (5). Regional estimates of age-188 

aggregated disease severity depend on the population age distribution, which is similar in 189 

most regions of the country, except London, where the median age is 34.6 years (vs 39.5 190 

years nationally). At the start of the first wave, London experienced an IFR (respectively 191 

IHR) of 0.91% (95% CrI: 0.82%–1.00%) (resp. 3.02%; 95% CrI: 2.82%–3.19%) compared to 192 

the national average of 1.25% (95% CrI: 1.18%–1.33%) (resp. 3.52%; 95% CrI: 3.29%–193 

3.72%) (Figure 4D-E).  194 
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 195 

Figure 4: Relative severity of disease by age group and region. A, and B, Variation in the Infection 196 

fatality ratio (IFR) and Infection Hospitalisation Ratio (IHR) by age group in each region. Ages 80+ 197 

were modelled as a single risk group, care home residents are not included. C, The England IFR and 198 

IHR by age group and in care home residents (estimates denoted CHR at the right-hand side of the 199 

panel). National severity estimates are produced by aggregating regional estimates based on 200 

infection incidence. D, The regional IHR, aggregated over age and risk group by infection incidence. 201 

Plots a-d use parameter estimates, and incidence weightings calculated as of 1st December 2020. E, 202 

The England IFR over time, coloured dots show regional estimates of IFR at the start of the epidemic 203 

and on 1st December 2020 (clusters each correspond to one time-point, LON: London). In plots C-E 204 

Shaded bands depict 95% CrI and interquartile ranges, points depict medians. 205 

Regional variation in the population age distribution did not fully account for differences in 206 

severity, with London still experiencing lower mortality when stratified by age (Figure 4A-B). 207 

The oldest age group (80+) in London had an IFR of 6.1% (95% CrI: 5.2%–6.8%) compared 208 

to 12.7% (95% CrI: 10.8%–14.3%) in the North West. 209 

 210 
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We estimated temporal trends in the IFR for England, by weighting regional estimates by 211 

incidence and population demographics. At the start of the first wave, the national IFR was 212 

1.25% (95% CrI: 1.18%–1.33%) (Figure 4E), consistent with earlier reports from serology 213 

data alone (13). The national IFR initially appeared to increase, as transmission widened 214 

from London to regions with older populations and greater disease severity. Over the first 215 

wave, the proportion of hospital admissions resulting in death decreased, due to 216 

improvements in clinical management and alleviation of capacity constraints (14), leading to 217 

a national IFR of 0.77% (95% CrI: 0.71%–0.84%) by the end of the first wave. The 218 

magnitude of the relative reduction in IFR over time varied between regions, from 36.5% 219 

(95% CrI: 26.5%–47.5%) in the North West to 64.6% (95% CrI: 58.6%–68.8%) in London. 220 

 221 

The IFR was greater among care home residents (35.9%, 95% CrI: 29.1%–43.4%) than in 222 

the 80+ in the community (10.4%, 95% CrI: 9.1%–11.5%, Figure 4C). Many care home 223 

residents did not transfer into hospital, and instead died in the facilities where they lived, so 224 

conversely the IHR was lower in care home residents (19.1%, 95% CrI: 11.5%–26.8%) than 225 

in those aged 80+ in the community (51.1%, 95% CrI: 47.6%–54.3%). We present national 226 

estimates of severity at the end of the second wave, stratified by age and care home 227 

residency in Table S9. 228 

 229 

2.3 Epidemic size 230 

 231 

Data from repeated serological surveys of blood donors aged 15-65 informed our estimation 232 

of the total regional epidemic size (Figure 5A-G), accounting for imperfect sensitivity and 233 

specificity of serological tests (Materials and Methods) (15). The cumulative proportion of the 234 

population ever infected with SARS-CoV-2 ranged from 4.8% (95% CrI: 4.4%–5.1%) in the 235 

South West to 15.4% (95% CrI: 14.9%–15.9%) in London (Figure 5H). Predicted 236 

seropositivity was initially greater than cumulative incidence, due to imperfect test specificity. 237 
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The increase in seropositivity lagged cumulative infections by two weeks, reflecting the time 238 

from infection to seroconversion.  239 

 240 

 241 

Figure 5: Cumulative incidence and seropositivity by region. A-G, Comparison of the estimated 242 

proportion of the population testing seropositive with observations from serological surveys. Vertical 243 

grey shaded bands show serological survey timings, black points the observed seroprevalence (bars: 244 

95% exact confidence intervals), blue and purple lines show estimated proportion of the population 245 

infected and seropositive respectively (shaded bands the 95% CrI, 50% CrI and median). H, 246 

Comparison by region of the estimated cumulative attack rate in care home residents vs in the 80+ 247 

age group in the community (median, 95% CrI). The final epidemic size in each England NHS region 248 

I) in total and J) in care home residents.  249 

 250 

Seropositivity notably declined following the first wave in some regions (Figure 5A-G). This 251 

may reflect antibody waning (16), or temporal trends in the composition of the surveyed 252 

population. Lockdown restrictions made attending blood donation centres difficult for all 253 

except key workers, who were more likely to have been infected (17), and may therefore be 254 

overrepresented in the sample of blood donors during the two lockdowns. 255 
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The proportion of care home residents ever infected with SARS-CoV-2 was 13.7% (95% CrI: 256 

10.7%–16.7%), much higher than the 4.2% (95% CrI: 4.0%–4.4%) estimated in >80-year 257 

olds living in the community. This difference was consistently observed across all regions 258 

(Figure 5H). Regional differences in care home attack rates mirrored the patterns seen in the 259 

general community, with regions with larger community epidemics also experiencing larger 260 

care home epidemics (Figure 5I,J). 261 

 262 

2.4 Impact of non-pharmaceutical interventions (NPIs) 263 

We explored counterfactual intervention scenarios and examined the potential impact on 264 

mortality of initiating the first national lockdown one week earlier or later; ending that 265 

lockdown two weeks earlier or later; and 50% more or less restricted care home visits 266 

throughout the epidemic (Figure 6).   267 

 268 

Figure 6: Counterfactual analysis of the impact on mortality aggregated across NHS England 269 

regions of A, D, initiating lockdown one week earlier / later, B, E Relaxing lockdown two 270 

weeks earlier / later, and C, F 50% more / less restricted care home visits. Panels A, B, D 271 

and E all present counterfactual outcomes for daily deaths in England but have different y-272 

axis scales to better highlight differences between the observed data and each alternative 273 

lockdown scenario. 274 
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 275 

The timing of the initial national lockdown was crucial in determining the eventual epidemic 276 

size in England. Locking down a week earlier could have reduced the first wave death toll 277 

(up to 1st July 2020) from 36,700 to 15,700 (95% CrI: 8,900–26,800) while delaying 278 

lockdown by a week would have increased the deaths to 102,600 (95% CrI: 66,400–279 

154,800) (Figure 6A, D). The impact varied by region, with regions with less established 280 

epidemics at the time of the first lockdown more sensitive to the timing of the intervention 281 

(Figure S10). Locking down a week later may have increased deaths, with large variability 282 

by region, from 105% in London to 274% in the Midlands but with very large uncertainty 283 

(Figure S9). Initiating a lockdown to interrupt the exponential growth phase of an epidemic 284 

has a much greater impact on reducing total mortality than extending an existing lockdown. 285 

Due to this asymmetry, relaxing the lockdown measures two weeks earlier (respectively 286 

later), could have increased deaths by 9,300 (95% CrI: 700–17,000) (respectively prevented 287 

9,800 (95% CrI: 7,400–12,100) deaths) prior to 2nd December (Figure 6B, D). 288 

 289 

We also explored counterfactual scenarios varying the level of visit restriction in care homes 290 

and estimated that reducing contact between the general population and care home 291 

residents by 50% could have reduced care home deaths by 44% (95% CrI: 17%–64%) 292 

(Figure 6C).  293 

 294 

3 Discussion 295 

 296 

We present a comprehensive overview of SARS-CoV-2 transmission, hospitalisation, 297 

mortality and intervention impact in the first two epidemic waves across all regions of 298 

England between March and December 2020. We successfully reproduce the transmission 299 

dynamics of the two epidemic waves, in terms of cases, PCR prevalence, seroprevalence, 300 

hospitalised cases (general wards and ICU), and deaths in hospitals and in care homes. 301 
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 302 

We estimate intense transmission in care homes even during the first national lockdown 303 

when Rt
eff in the community was well below one in all regions (Figure 2) (18–20). Combined 304 

with our counterfactual analysis of restricting visits (Figure 6) this suggests that reducing 305 

infection levels in care home residents is challenging. This highlights the difficulty of 306 

protecting care home residents from COVID-19: due to the necessarily close contact 307 

between staff and residents within a care home, once a care home outbreak has begun it is 308 

very difficult to reduce transmission, which overrides any impact of reducing the number of 309 

introductions (21, 22).  310 

 311 

We find that, consistent with existing literature (23), disease severity increases with age. 312 

Assessment of severity is complicated by the broad clinical spectrum of COVID-19 (24–26) 313 

hence, recent published estimates are still based on data from early in the pandemic (27). 314 

Here we provide updated severity estimates based on multiple contemporary data streams. 315 

We estimate considerable regional heterogeneity in severity, broadly consistent in the 316 

general population and in care homes for IFR and IHR. London experienced the lowest 317 

severity even after adjusting for its younger population. The estimated two-fold reduction 318 

over time in IFR (Figure 4) cannot be explained solely by the introduction of dexamethasone 319 

which reduces mortality amongst ICU patients (28), but rather a combination of factors 320 

including improvements in clinical management, greater experience in treating patients in 321 

ICU, and alleviation of capacity constraints (14, 29). 322 

 323 

Our analysis shows large regional variation in burden, especially in the first wave. This is 324 

likely due to the pattern of seeding and the timing of lockdown relative to how advanced 325 

each region’s epidemic was (Figure 1A). Our counterfactual scenarios of initiating the first 326 

national lockdown one week earlier or later highlight the importance of early interventions to 327 

reduce overall mortality (Figure 6).  328 
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 329 

The extent and duration of infection-induced immunity to SARS-CoV-2 and its relationship to 330 

seropositivity remains unclear. Related seasonal coronaviruses induce immunity that wanes 331 

in one or two years (30), though antibody titres following SARS-CoV-1 infection appear to 332 

decay more slowly (31). Our estimated cumulative incidence over time (Figure 5), strongly 333 

supports the hypothesis that the epidemic decline after the first national lockdown was due 334 

to NPIs, with immunity playing a minimal role (32). Population-level immunity was insufficient 335 

to prevent a second wave of infection in any region (Figure 1), illustrated by the increase in 336 

reported cases and deaths which prompted the second national lockdown (33).  337 

 338 

With the authorisation of the first SARS-CoV-2 vaccines in December 2020, we are now 339 

entering a new phase in the control of the COVID-19 pandemic. However, our estimates of 340 

current population immunity are low, with regional cumulative attack rates ranging from 4.8% 341 

to 15.4%, therefore any vaccination campaign will need to achieve high coverage and high 342 

levels of protection in vaccinated individuals to allow NPIs to be lifted without a resurgence 343 

of transmission. While vaccinating the most vulnerable age and risk groups will considerably 344 

reduce the burden of COVID-19, a large proportion of younger age groups may also need to 345 

be vaccinated to reach the immunity threshold for control. Our high estimates of 346 

transmission in care homes imply that vaccine uptake there will need to be especially high, 347 

particularly if vaccine efficacy is lower amongst older age groups. 348 

 349 

We make a number of simplifying assumptions in our analysis. First, due to the 350 

compartmental nature of our model, we do not explicitly model individual care homes, rather 351 

the regional care home sector as a whole. However, as care home workers may work across 352 

multiple facilities leading to within and between care home transmission, we do not expect 353 

the simplification to substantially affect our conclusions. Similarly, we do not model individual 354 

households or transmission within and between them. When assessing the impact of NPIs 355 
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on transmission we therefore capture population averages, rather than the contribution of 356 

household and non-household contacts. Second, hospital-acquired infections may have 357 

contributed to overall transmission, especially around the peak of the epidemic, and to 358 

persistence of infection in England over the summer months (34, 35). Our model does not 359 

explicitly represent nosocomial transmission; therefore such effects will be encompassed 360 

within our regional Rt
eff estimates. Third, each data stream was subject to competing biases, 361 

which we statistically accounted for as far as possible (supplement section 1.1.2). A key 362 

strength of our evidence-synthesis approach is that we do not rely on any single data 363 

source, combining multiple perspectives to provide a robust overall picture of the epidemic. 364 

Finally, we model the epidemics in each NHS region in England independently without 365 

accounting for spatial effects across regional boundaries, or spatial heterogeneity within 366 

regions. This spatial scale was determined by the data and reflects limited movement 367 

between regions due to travel restrictions but does allow for movement within regions.  368 

 369 

Our analysis provides a comprehensive overview of transmission, hospitalisation, and 370 

mortality patterns of COVID-19 in the first and second waves of the epidemic in all regions of 371 

England, one of the countries worst-affected by the pandemic. Integration of multiple data 372 

streams into a single cohesive modelling framework, enables us to disentangle transmission 373 

and severity from features of the surveillance system and provide robust estimates of the 374 

epidemiological characteristics of the COVID-19 epidemic in England. As nationwide 375 

vaccination programmes are rolled out, our results will help to inform how NPIs are applied 376 

in the future.  377 

  378 
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 45 

1 Materials and Methods 46 

Understanding the transmission of SARS-CoV-2 is challenging. The available data are 47 
subject to competing biases, such as dependence on case definition for testing and 48 
reporting, as well as being influenced by capacity and logistical constraints. These factors 49 
are further complicated by the nature of SARS-CoV-2 transmission, whereby a substantial 50 
proportion of infected individuals develop very mild symptoms, or remain asymptomatic, but 51 
are nonetheless able to infect others (1). In this section, we describe the data used in our 52 
analyses, give details on the dynamic transmission model, and present the methods used for 53 
fitting the model to the various data sources, accounting for the inherent biases in those 54 
data.  55 

 56 

1.1 Data sources 57 

Here we detail the datasets used to calibrate the model to the regional epidemics. We fitted 58 
our model to time series data spanning 16th March 2020 to 2nd December 2020 (inclusive), 59 
using the data available to us on 14th December 2020, by which point the effect of 60 
remaining reporting lags would be minimal. 61 

 62 

1.1.1 Hospital admissions and bed occupancy 63 

We use healthcare data for each NHS region from the UK Government Dashboard 64 
(supplementary data files: data_rtm.csv, columns: phe_admissions, phe_occupied, 65 
phe_patients) (2).    66 

For admissions data, we use the daily number of confirmed COVID-19 patients admitted to 67 
hospital, which includes people admitted to hospital who tested positive for COVID-19 in the 68 
14 days prior to admission and inpatients who tested positive in hospital after admission, 69 
with the latter being reported as admitted on the day prior to their diagnosis.  70 

For ICU bed occupancy, we use the daily number of (confirmed) COVID-19 patients in beds 71 
which are capable of delivering mechanical ventilation. 72 

For the occupancy in general (i.e. non-ICU) hospital beds, we use the daily number of 73 
confirmed COVID-19 patients in hospital beds with ICU occupancy subtracted. 74 

1.1.2 Deaths 75 

We use the number of deaths by date of death for people who had a positive COVID-19 test 76 
result and died within 28 days of their first positive test provided Public Health England. 77 
These can be found on (2). We also use the number among these deaths occurring in 78 
hospital (as reported by NHS England) and consider the remainder to have occurred in care 79 
homes. While non-hospital deaths may include deaths in other settings, such as in private 80 
residences, comparison with ONS data suggests that care home deaths from COVID-19 81 
may also have been under-reported. As such we consider non-hospital deaths to be an 82 
appropriate proxy for care home deaths, and do not expect the margin for under or over- 83 
ascertainment to affect our conclusions. These data were provided by PHE and the data we 84 
have been using is provided as a supplementary file (supplementary data file: data_rtm.csv, 85 
columns: death2, death3) to allow reproducibility of our analysis. 86 
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1.1.3 Pillar 2 testing 87 

We use pillar 2 testing data (see supplementary data files), which covers PCR testing for the 88 
general population (as compared with pillar 1 testing, which mainly occurred in hospitals). 89 
Since such testing was not available to the whole population for much of the spring wave of 90 
the pandemic, we only use this data from June 1st onwards. 91 

We use the daily number of positives and negative tests by specimen date. Each individual 92 
who tested positive was only counted once in the number of positives, on the specimen date 93 
of their first positive test. Multiple negatives were allowed per individual, but the negatives of 94 
all individuals who ever tested positive had been removed. We only consider PCR tests and 95 
thus exclude lateral flow tests, which have been introduced recently in trials of population 96 
mass testing. We also only use pillar 2 data for those aged 25 or over, to avoid bias resulting 97 
from increased testing of university students around the reopening of universities 98 
(supplementary data file: data_rtm.csv, columns: pillar2_negatives_non_lft_over25, 99 
pillar2_positives_over25). 100 

1.1.4 Serology surveys 101 

Serological survey data come from antibody testing by Public Health England of samples 102 
from healthy adult blood donors, supplied by NHS Blood and Transplant (NHSBT) 103 
(supplementary data file: data_serology.csv). 104 

1.1.5 REACT-1 prevalence survey 105 

We use the daily number of positives and negatives by specimen date from the first 7 rounds 106 
of the REACT-1 (Real-time Assessment of Community Transmission) infection prevalence 107 
survey (supplementary data file: data_rtm.csv, columns: react_positive, react_samples) (3). 108 
Note that results published in REACT preprints use data aggregated using the administrative 109 
regions of England, whereas for the purposes of this study the data has been aggregated 110 
using NHS regions. Additionally, small changes can occur in the aggregated datasets that 111 
were published in real time because of participant withdrawals and additional data cleaning.  112 

1.1.6 Summary of the data used for calibration 113 

Table S 1 details the datasets used to calibrate the model to the regional epidemics. 114 

Table S 1: Data sources and definitions. 115 
Data type Description Source Reference 

Hospital deaths Daily number of COVID-19 deaths 
reported by NHS England within 28 
days of a positive result 

PHE 

 

See data supplement. 
These data underlie what 
is released on (2) 

Care home deaths Daily number of COVID-19 deaths not 
reported by NHS England within 28 
days of a positive result 

PHE See data supplement. 
These data underlie what 
is released on (2) 

ICU occupancy Daily number of confirmed COVID-19 
patients in ICU 

Gov.uk Dashboard (2) 

General bed occupancy Daily number of confirmed COVID-19 
patients in non-ICU beds  

Gov.uk Dashboard (2) 

Admissions Daily number of confirmed COVID-19 
patients admitted to hospital 

Gov.uk Dashboard (2) 

Pillar 2 testing Daily number of positive and negative 
PCR test results  

PHE See data supplement. 
These data underlie what 
is released on (2) 

REACT-1 testing Daily number of positive and negative 
PCR test results 

REACT (3) 
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Serology Serology survey conducted on blood 
donors aged 15-65 

PHE See data supplement, 
these data are collected 
as part of (4) 

Patient progression in 
hospital 

Number of hospital admissions going 
down each treatment route (e.g. ICU, 
stepdown care) and length of stay in 

each ward. 

CHESS (5) 

1.1.7 Other data sources 116 

1.1.7.1 Patient progression in hospital 117 

The COVID-19 Hospitalisation in England Surveillance System (CHESS) data consists of a 118 
line list of daily individual patient-level data on COVID-19 infection in persons requiring 119 
hospitalisation, including demographic and clinical information on severity and outcomes. 120 
We use the individual dates of progression through hospital wards, from admission to 121 
eventual death or discharge, to produce age-stratified estimates of hospital progression 122 
parameters to be passed to the wider transmission model (see Section 1.9.2 and 123 
(supplementary data file: support_progression.csv, support_severity.csv). 124 

1.1.7.2 Demographic data  125 

We use data from the Office for National Statistics (ONS (6)) to get the number of individuals 126 
in each of the 17 age-groups, i.e. 16 five-year age bands (0-4, 5-9, …, 75-79) and an 80+ 127 
group. We get the number of care-home beds in England from (7) giving us the number of 128 
care-home beds for each NHS regions. We then got an estimate of the total population of 129 
care-home residents in the UK from (8) that we scaled down to the England population size, 130 
combined with the estimate of the total number of beds in England, we derived a value of the 131 
total occupancy of care-homes of 74.2%. We assumed that the occupancy is the same in all 132 
the NHS regions. Care-home residents are subtracted from the 4 oldest age group (5% from 133 
age 65-69, 5% age 70-74, 15% age 75-79 and 75% age 80+ (9)). We then assume a 1:1 134 
ratio of care-home residents to care-home workers and assume that the care-home workers 135 
population is homogeneously distributed among the 25-65 population in the region. 136 

The contact matrix between the 17 age-groups is based on the POLYMOD contact survey. 137 
See parameterisation for more details (10).   138 

  139 

1.2 Evidence synthesis 140 

Figure S 1 shows the functional relationships between data sources, modelled outputs and 141 
parameters in our study. 142 
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 143 
Figure S 1: Graph showing the functional relationships between data sources (rectangles), modelled outputs (ovals) and parameters (hexagons). 144 
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1.3 Model description  145 

We developed a stochastic compartmental transmission-dynamic model incorporating 146 
hospital care pathways to reconstruct the course of the COVID-19 epidemic in the seven 147 
NHS regions of England (Figure S 2). All analyses were done by regions, and then 148 
aggregated somehow if needed (e.g. for national IFR, or cumulative incidence). In the 149 
following description we do not mention any index denoting the region and thus all notations 150 
refer to the same NHS region. 151 

1.3.1 Stratification of population into groups 152 

We divided each regional population into 19 strata, denoted by the superscript !, 17 strata 153 
representing age groups within the general population, and two separate risk groups 154 
comprising care home workers (CHW) and care home residents (CHR). The 17 age groups 155 
consisted of 16 five-year age bands (0-4, 5-9, …, 75-79) and an 80+ group. The total size of 156 
the care home worker and resident groups were calculated assuming that 74.2% of available 157 
care home beds are occupied and there is a 1:1 carer to resident ratio (11). The care home 158 
workers were then split equally between all 8 age categories in the range 25 – 64-year-old 159 
and removed from the corresponding age categories in the general population. Despite the 160 
care-home workers being removed from all age categories in the range 25 – 64-year-old, 161 
they care-home workers are assumed to constitute one single group in our model for 162 
simplicity. The care home residents were drawn from the 65+ year old general population, 163 
such that 5% were aged 65-69, 5% aged 70-74, 15% aged 75-79 and 75% aged 80+ (9) and 164 
similarly removed from the corresponding age groups in the general population. Again, 165 
similarly to care-home workers they do constitute a single group in our model. We thus 166 
do not capture specific transmission dynamics within each care home, but rather an average 167 
mixing between residents and workers in the regional care home sector as a whole. 168 
 169 

1.3.2 Progression of infection and hospitalisation 170 

Prior to the importation of COVID-19, all individuals were assumed equally susceptible to 171 
infection ("). Upon infection, individuals pass through a latent period (#) before becoming 172 
infectious. A proportion ($!) of infectious individuals develop symptoms (%!) while the rest 173 
remain asymptomatic (%"). All asymptomatic individuals are assumed to recover naturally. 174 
Those with symptoms may also recover naturally (&), however a proportion ($#$ , age/care 175 
home-dependant as indicated by the i superscript) develop severe disease requiring 176 
hospitalisation. Of these, a proportion ($%!

$ ) die at home without receiving hospital care. In 177 
practice this proportion is set to zero except among care home residents. Of the patients 178 
who are admitted to hospital, a proportion ($∗(()) have their COVID-19 diagnoses confirmed 179 
prior to admission, while the remainder may be diagnosed during their inpatient stay. All 180 
hospital compartments are divided between suspected (but not yet confirmed) and 181 
confirmed diagnoses (indicated by superscript 	∗). A proportion ($'!($ (()) of new hospital 182 
admissions are triaged (%+,)*+) before admission to the intensive care unit (%+,), where a 183 
fraction ($'!(!

$ (()) die; those who do not die get out of ICU to a ward (-) where a proportion 184 
($,!
$ (()) die, while the remainder recover, following an inpatient care stepdown period. 185 

Inpatients not triaged to the ICU are assigned to general hospital beds (.), where a 186 
proportion ($#!

$ (()) die, while the remainder recover. Recovered individuals are assumed to 187 
be immune to reinfection for at least the duration of the simulation. 188 

In addition, there are two parallel flows which we use for fitting to testing data: (i) for PCR 189 
positivity and (ii) for seropositivity. Upon infection, an individual enters the PCR flow in a pre-190 
positivity compartment (/-!."#$) before moving into the PCR positivity compartment (/-!."%&) 191 
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and then ultimately into the PCR negativity compartment (/-!.'$(). Meanwhile, individuals 192 
move into the seropositivity flow upon becoming infectious, entering first into a pre-193 
seropositivity compartment (//+*0"#$). A proportion of individuals ($/+*0"%&) then seroconvert 194 
and move into the seropositivity compartment (//+*0"%&), while the remainder move into the 195 
seronegativity compartment (//+*0'$(). 196 

We calibrated the duration distributions for each hospital compartment, and the age-stratified 197 
probabilities of moving between compartments, using the analysis of individual-level patient 198 
data (presented below in Section 1.9.2). The required Erlang distributional form was 199 
achieved within the constraints of the modelling framework by splitting each model 200 
compartment into 0 sequential sub-compartments (Table S 2). 201 

 202 

203 
Figure S 2: Model structure flow diagram with rates of transition between infection states. Variable 204 
names defined in text.   205 
  206 



   
 

 8  
 

Table S 2: Description of model compartments and distribution of time spent in each. For each named 207 
compartment, we give the associated duration. Due to the Markovian structure these are model 208 
Erlang-like distributions with !! the number of exponential-like compartments and "! the rate of the 209 
exponential-like compartment. #$%!& gives the mean duration in days spent in the corresponding 210 
compartment. The structure and duration of each stage was assumed to be the same for unconfirmed 211 
and confirmed cases in hospital (see Figure S2). For length of stays related to hospital pathways, 212 
more detail is given in section 1.9.2. 213 

Compartment Description 

 

Duration  

1!~Erlang	(;! , =!)  

(days) 

?@τ"B = ;!/=!  

Source 

E   ;!  =!  (95% CI)  

F  Susceptible to infection Determined by transmission dynamics 

G  Latent infection 2 0.44 4.6 (0.6, 12.8) Lauer et al.(12) 

H#  Asymptomatic infection 1 0.48 2.1 (0.1, 7.7) Bi et al.(13) 

H$  Symptomatic infection 1 0.25 4.0 (0.1, 14.8)  Docherty et al.(14) 

I%  Severe illness leading to 
death in the general 
population 

2 0.40 5.0 Bernabeu-Wittel et 
al. (15) 

J&  Hospitalised on general 
ward leading to recovery 

1 0.09 10.7 (0.3, 39.4) Fitted to CHESS 

J%  Hospitalised on general 
ward leading to death 

2 0.19 10.3 (1.3, 28.8) Fitted to CHESS 

HKL'()  Triage to ICU 1 0.40 2.5 (0.1, 9.2) Fitted to CHESS 

H*$+!"   Hospitalised in ICU, 
leading to recovery 

1 0.06 15.6 (0.4, 57.6) Fitted to CHESS 

H*$+!# 	  Hospitalised in ICU, 
leading to death in step-
down following ICU 

1 0.14 7.0 (0.2, 25.7) Fitted to CHESS 

H*$+#  Hospitalised in ICU, 
leading to death 

2 0.17 11.8 (1.4, 32.9) Fitted to CHESS 

M&  Stepdown recovery 
period after leaving ICU 

2 0.16 12.2 (1.5, 34.0) Fitted to CHESS 

M% Stepdown period before 
death after leaving ICU 

1 0.12 8.1 (0.2, 29.7) Fitted to CHESS 

N  Recovered  - - - - 

O'(),$& Pre-PCR positive 1 0.33 3.0 (0.1, 11.1) Omar et al. (16) 

- O'-.,$& True PCR positive 1 0.06 17.5 (0.4, 64.5) 

O/)0,$& True PCR negative - - - 

O'().)(-  Pre-seroconversion 1 0.08 

 

13.0 (0.3, 48.0) Benny et al. (17) 

O'-..)(-  True seropositive - -  - 

O/)0.)(-  True seronegative - -  - 

Values of fitted parameters are set out in Table S 5. 214 

 215 

1.3.3 Progression of infection and hospitalisation 216 

The force of infection, 1$((), for individuals in group ! ∈ {[0,5), … , [75,80), [80 +), +.-, +.&}	 217 

depends on time-varying social mixing between age groups and prevalence in all age/care 218 
home groups:  219 
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1$(() =>?$,P(()ΠP(()
P

 (1) 

220 

where ?$,P(() is the (symmetric) time-varying person-to-person transmission rate from group 221 
j to group i, and ΠP(() is the number of infectious individuals in group j, given by: 222 

Π!(+) = 	 ."
!(+) + .#

!(+) (2) 

 223 

Broadly, to parameterise ?$,P((), we informed mixing in the general population, and between 224 
the general population and care home workers using POLYMOD (10) via the R package 225 
socialmixr using age-structured regional demography (18).  226 

Transmission between different age groups (!, A) ∈ {[0,5), … , [75,80), [80 +)}Q was 227 
parameterised as follows:  228 

?$,P(() = B(()C$,P (3) 

Here C$,P is the (symmetric) person-to-person contact rate between age group i and j, derived 229 
from pre-pandemic data (10). B(() is the time-varying transmission rate Dhich encompasses 230 
both changes over time in transmission efficiency (e.g. due to temperature) and temporal 231 
changes in the overall level of contacts in the population (due to changes in policy and 232 
behaviours). 233 

We assumed B(() to be piecewise linear: 234 

B(() = E

BR,																																																	
($ − (
($ − ($SR

B$SR +
( − ($SR
($ − ($SR

B$ 	,	

	BRT,																																																			

		if		( ≤ (R																																													
if		($SR < ( ≤ ($ , ! = 2,… ,13
if	( > (RT																																																	

 (4) 

 235 

with 12 change points OU	corresponding to major announcements and changes in COVID-19 236 
related policy, as detailed in Table S 3.  237 
 238 
  239 
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Table S 3: Changepoints for 3(+) 240 
Changepoint Value of V(W) at changepoint Date Description 

W1 	 X1	 16/03/20	 PM makes speech advising working from 
home, against non-essential travel (19) 

W2  X2 23/03/20 PM announces lockdown 1 (20) 

W3 X3 25/03/20 Lockdown 1 into full effect (21) 

W4  X4 11/05/20 Initial easing of lockdown 1 (22) 

W5 X5 15/06/20 Non-essential shops can re-open (23) 

W6 X6 04/07/20 Restaurants, pubs etc can re-open (24) 

W7 X7 03/08/20 “Eat out to help out” scheme starts (25) 

W8 X8 01/09/20 Schools and universities re-open (26)  

W9  X9 14/09/20 “Rule of six” introduced (27) 

W1:  X1: 14/10/20 Tiered system introduced (28) 

W11	  X11	 31/10/20 Lockdown 2 announced (29) 

W12  X12 05/11/20 Lockdown 2 starts (29) 

 241 
 242 

The contact matrix C$,P between different age groups (!, A) ∈ {[0,5), … , [75,80), [80 +)}Q is 243 
derived from the POLYMOD survey (10) for the United Kingdom using the socialmixr 244 
package (18,30), scaling by the local population demography to yield the required person-to-245 
person daily contact rate matrix.  246 

We defined parameters representing transmission rates within care homes (between and 247 
among workers and residents), which were assumed to be constant over time. Parameter 248 
?!#, represents the person-to-person transmission rate among care home workers and 249 
between care home workers and residents; ?!#. represents the person-to-person 250 
transmission rate among care home residents. Hence, 251 

?!#,,!#,(() = ?!#,,!#.(() = ?!#, (5) 

?!#.,!#.(() = ?!#. (6)	

Transmission between the general population and care home workers was assumed to be 252 
similar to that within the general population, accounting for the average age of care home 253 
workers, with, for ! ∈ {[0,5), … , [75,80), [80 +)}, 254 

?$,!#,(() = B(()C$,!#, (7) 

where C$,!#, is the mean of C$,[QZ,T[), C$,[T[,TZ), … , C$,[\[,\Z) (i.e. of the age groups that the care 255 
home workers are drawn from). 256 

Transmission between the general population and care home residents was assumed to be 257 
similar to that between the general population and the 80+ age group, adjusted by a 258 
reduction factor (P, which was estimated), such that, for ! ∈ {[0,5), … , [75,80), [80 +)}, 259 

?$,!#.(() = 	PB(()C$,][^ (8) 

These represent contact between visitors from the general community and care home 260 
residents. This might involve a slightly different age profile than the age profile of the contact 261 
made by people in the 80+ age group. 262 
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1.3.4 Age-varying and time-varying infection progression probabilities 263 

Various probabilities of clinical progression within the model are assumed to vary across age 264 
groups to account for severity of infection varying with age, and some are assumed to vary 265 
in time in order to model improvements in clinical outcomes, such as those achieved through 266 
the use of dexamethasone (31). 267 

Two probabilities are age-varying but not time-varying, the probability of admission to 268 
hospital for symptomatic cases, and the probability of death for severe symptomatic cases in 269 
care homes. These were modelled as follows: 270 

 271 

8$%   =	9$% 8$&'(  (9)	

8)!%  = 9)!% 8)!
&'(  (10)	

 272 

where for probability $_$ , $_`ab is the maximum across all groups and Q_$  is the age scaling 273 
such that Q_$ = 1 for the group corresponding to the maximum, against which all other 274 
groups are scaled. 275 

As well as varying with age, four probabilities also vary with time: the probability of 276 
admission to ICU for hospitalised cases, the probability of death in ICU, the probability of 277 
death for hospitalised cases not admitted to ICU, and the probability of death in hospital after 278 
discharge from ICU: 279 

 280 

8*#+% (+)  = 9*#+% 8*#+&'(ℎ(=*#+ , +) (11)	

8*#+!% (+)  = 9*#+!% 8*#+!
&'( ℎ(=,, +) (12)	

8$!% (+)  = 9$!% 8$!
&'(ℎ(=,, +) (13)	

8-!
% (+)  = 9-!

% 8-!
&'(ℎ(=,, +) (14)	

 281 

where here for probability $_$ , $_`abgives the maximum initial value across groups and 282 
ℎ(S, () = 1 before April 1st, ℎ(S, () = S < 1 after June 1st, with a linear reduction in between. 283 

 284 

Care home residents with severe disease leading to death are assumed to remain in 285 
compartment Tc for 5 days on average before dying (modelled with 0I) = 2 and UI) = 0.4), 286 
95% range 0.6-13.9 days broadly consistent with durations in (15) and with duration about 287 
half the length observed in hospital streams (see Figure S 5). 288 

 289 

For care home workers, the age scaling Q_!#, is taken as the mean of the age scalings Q_$  290 
for ! ∈ {[25,30), [30,35), … , [60,65)}. For care home residents, we assume that Q_!#. =291 
	Q_

[][^), with the exception of the probability of individual with severe disease requiring 292 
hospitalisation dying at home (without receiving hospital care), where we assume Q%!

!#. = 1 293 
and Q%!

$ = 0 for all other groups, to effectively allow death outside hospital only for care 294 
home residents. 295 
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1.4 Reproduction number YW and effective reproduction number YW
dee 296 

We calculated the reproduction number over time, &f, and effective reproduction number 297 
over time, &f

+gg, using next generation matrix methods (32). The reproduction numbers are 298 
calculated for the general population, i.e. excluding care home workers and residents. We 299 
define &f as the average number of secondary infections a case infected at time t would 300 
generate in a large entirely susceptible population, and &f

+gg as the average number of 301 
secondary infections generated by a case infected at time t would accounting for the finite 302 
population size and potential immunity in the population.  303 

To compute the next generation matrix, we calculated the mean duration of infectiousness 304 
Δ', as  305 

Δ' = (1 − $!)[\τ'*^ + $![\τ'+^ (15)	

 306 

where parameter and model compartment notations are defined in Table S 2 - Table S 8. 307 
For this calculation, the expected durations of stay in compartments were adjusted to 308 
account for the discrete-time nature of the model, via calculating the expected number of 309 
time-steps (of length _() spent in a given compartment. Note that if in continuous-time a 310 
compartment duration is `~Erlang	(0, U), then the corresponding discrete-time mean 311 
duration is: 312 

 
#[`] =

0	_(
(1 − iShif)

 

  

(16)	

 The next generation matrix was calculated as, for (!, A) ∈ {[0,5), … , [75,80), [80 +)}Q, 313 

 314 

NGM$P(() = 	?$P(()Δ'm$ (17) 

 315 

where m$ is the total population of group ! and &f is taken to be the dominant eigenvalue of 316 
NGM((), while the effective next generation matrix was calculated as: 317 

 318 

NGM$P
+gg(() = 	?$P(()Δ'"$(() (18) 

with &f
+gg taken to be the dominant eigenvalue of NGM+gg((). 319 

 320 

1.5 Infection severity 321 

Posterior estimates of severity, namely the infection hospitalisation and infection fatality 322 
ratios, were calculated in each group ! as follows:  323 

 324 

IHR$  = $!$#$ (1 − $%!
$ )  (19)	
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IFR$(t)  
= $!$#$ s$%!

$ + t1 − $j,
$ u v$'!($ (() w$'!(!

$ (() + t1 − $'!(!
$ (()u$,!

$ (()x +

t1 − $'!($ (()u$#!
$ (()yz   

(20)	

 325 

Note that for simplicity the notation we use do refer explicitly to the NHS region of interest. 326 
We calculated age-aggregated estimates for each region by weighting the age-specific 327 
severity estimates by the cumulative incidence in that age group. Aggregate estimates for 328 
England were then calculated by weighting the region-specific estimates by the regional 329 
attack rates. 330 

 331 

1.6 Compartmental model equations  332 

To clearly illustrate the model dynamics, we describe a deterministic version of the model in 333 
differential equations (22)-(57), followed by the stochastic implementation used in the 334 
analysis. Each compartment is stratified by mixing category ! ∈335 
{[0,5), … , [75,80), [80 +), +.-, +.&}. Full definitions of compartments and model parameters 336 
are set out in Table S 2 - Table S 8. 337 

 338 

?@%(+)/?+  = −C%(+)@%(+) (21)	

?D%,/(+)/?+  = C%(+)@%(+) − "0D%,/(+)  (22)	

?D%,1(+)/?+  = "0D%,/(+) − "0D%,1(+)  (23)	

?."% (+)/?+  = (1 − 8#)"0D%,1(+) − ""."% (+)  (24)	

?.#% (+)/?+  = 8#"0D%,1(+) −	"#.#% (+) (25)	

?E,%,/(+)/?+ = 8$% 8)!% "#.#% (+) − ")!E,
%,/(+)  (26)	

?E,%,1(+)/?+  = ")!E,
%,/(+) − ")!E,

%,1(+)  (27)	

?.FG234% (+)/?+  = 8$% H1 − 8)!% IH1 − 8∗(+)I	8*#+% (+)	"#.#% (+) − J"*#+"#$ + "+K .FG234% (+) (28)	

?.FG234∗% (+)/?+  = 8$% H1 − 8)!% I8∗(+)	8*#+% (+)"#.#% (+) − "*#+"#$.FG234∗% (+) + "+.FG234% (+) (29)	

?.FG-&
% (+)/?+  = H1 − 8*#+!% (+)IH1 − 8-!

% (+)I"*#+"#$.FG234% (+) − J"*#+'&
+ "+K .FG-&

% (+)  (30)	

?.FG-&∗
% (+)/?+  = H1 − 8*#+!% (+)IH1 − 8-!

% (+)I"*#+"#$.FG234∗% (+) − "*#+'&
.FG-&∗

% (+) + "+.FG-&
% (+)  (31)	

?.FG-!
% (+)/?+  = H1 − 8*#+!% (+)I8-!

% (+)"*#+"#$.FG234% (+) − J"*#+'!
+ "+K .FG-!

% (+)  (32)	

?.FG-!∗
% (+)/?+  = H1 − 8*#+!% (+)I8-!

% (+)"*#+"#$.FG234∗% (+) − "*#+'!
.FG-!∗

% (+) + "+.FG-!
% (+)  (33)	

?.FG,%,/(+)/?+  = 8*#+!% (+)"*#+"#$.FG234% (+) − H"*#+! + "+I.FG,
%,/(+)  (34)	

?.FG,%,1(+)/?+ 	 = "*#+!.FG,
%,/(+) − H"*#+! + "+I.FG,

%,1(+)  (35)	

?.FG,∗
%,/(+)/?+  = 8*#+!% (+)"*#+"#$.FG234∗% (+) − "*#+!.FG,∗

%,/(+) + "+.FG,%,/(+)  (36)	

?.FG,∗
%,1(+)/?+  = "*#+!.FG,∗

%,/(+) − "*#+!.FG,∗
%,1(+) + "+.FG,%,1(+)  (37)	
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?L6%,/(+)/?+  = "*#+'&
.FG-&

% (+) − H"-& + "+IL6
%,/(+)  (38)	

?L6%,1(+)/?+  = "-&L6
%,/(+) − H"-& + "+IL6

%,1(+)  (39)	

?L6∗
%,/(+)/?+  = "*#+'&

.FG-&∗
% (+) − "-&L6∗

%,/(+) + "+L6%,/(+)  (40)	

?L6∗
%,1(+)/?+  = "-&L6∗

%,/(+) − "-&L6∗
%,1(+) + "+L6%,1(+) (41)	

?L,
%(+)/?+  = "*#+'!

.FG-!
% (+) − H"-! + "+IL,

%(+)  (42)	

?L,∗
% (+)/?+  = "*#+'!

.FG-!∗
% (+) − "-!L,∗

% (+) + "+L,
%(+)  (43)	

?M6% (+)/?+  = 8$% H1 − 8)!% IH1 − 8∗(+)IH1 − 8*#+% (+)IH1 − 8$!% (+)I"#.#% (+) −	H"$& + "+IM6% (+)  (44)	

?M6∗% (+)/?+  = 8$% H1 − 8)!% I8∗(+)H1 − 8*#+% (+)IH1 − 8$!% (+)I	"#.#% (+) + "+M6% (+) −	"$&M6∗% (+)  (45)	

?M,%,/(+)/?+  = 8$% H1 − 8)!% IH1 − 8∗(+)IH1 − 8*#+% (+)I8$!% (+)"#.#% (+) −	H"$! + "+IM,
%,/(+)  (46)	

?M,%,1(+)/?+  = "$!M,
%,/(+) − H"$! + "+IM,

%,1(+)  (47)	

?M,∗
%,/(+)/?+  = 8$% H1 − 8)!% I8∗(+)H1 − 8*#+% (+)I8$!% (+)	"#.#% (+) + "+M,%,/(+) −	"$!M,∗

%,/(+)  (48)	

?M,∗
%,1(+)/?+  = "$!M,∗

%,/(+) − "$!M,∗
%,1(+) + "+M,%,1(+) (49)	

?N%(+)/?+  = ""."%(+)+	H1 − 8$% I"#.#% (+) + "$& JM6% (+) + M6∗% (+)K + "-& JL6
%(+) +L6∗

% (+)K (50)	

?O7438"#$% (+)/?+  = "0D%,1(+) − "7438"#$O7438"#$% (+)		 (51)	

?O7438"()% (+)/?+  = 87438"()"7438"#$O9#6"#$% (+)  (52)	

?O7438*$+% (+)/?+  = J1 − 87438"()K "7438"#$O9#6"#$% (+)  (53)	

?O9#6"#$% (+)/?+  = C%(+)@%(+) − "9#6"#$O9#6"#$% (+)	 (54)	

?O9#6"()% (+)/?+  = "9#6"#$O9#6"#$% (+) − "9#6"()O9#6"()% (+)  (55)	

?O9#6*$+% (+)/?+  = "9#6"()O9#6"()% (+)  (56)	

 339 

We used the tau-leap method (33) to create a stochastic, time-discretised version of the 340 
model described in equations (58-162), taking four update steps per day. The process was 341 
initialised with ten asymptomatic infectious individuals aged 15-19 on the epidemic start date 342 
([, a parameter we estimate. For each time step, the model iterated through the procedure 343 
described below. In the following, we introduce a small abuse of notation: for transitions 344 
involving multiple onward compartments (e.g transition from compartment # to 345 
compartments %" or %!), for conciseness, we write  346 

H?0,*,% , ?0,*-% I  ~	Multinom	HD%,1(+), Y0,*,% , Y0,*-% 		I   

instead of 347 

H?0,*,% , ?0,*-% , ?:8&8;4% 	I  ~	Multinom	HD%,1(+), Y0,*,% , Y0,*-% , 1 − ∑ Y0,(%(∈{*,,*.} 	I   

where ?:8&8;4%  is a dummy variable counting the number of individuals remaining in compartment 348 
D%,1. 349 

Using this convention, transition variables are drawn from the following distributions, with 350 
probabilities defined below: 351 
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 352 

??,0%   ~	Binom	 J@%(+), 1 − \@A/(C)EC	K  (57)	

?0,0%   ~	Binom	(D%,/(+), 1 − \@F0EC)						    (58)	

(Y0,*,% , Y0,*-% )  = H(1 − 8#)(1 − \@F0EC), 8#(1 − \@F0EC)I (59)	

H?0,*,% , ?0,*-% I  ~	Multinom	HD%,1(+), Y0,*,% , Y0,*-% 		I   (60)	

?*,,6%   ~	Binom	H."% (+), 1 − \@F,ECI  (61)	

Y*-,)!%   = 8$% 8)!% (1 − \@F-EC) (62)	

Y*-,6%   = H1 − 8$% I(1 − \@F-EC)  (63)	

Y*-,*#+"#$%   = 8$% H1 − 8)!% IH1 − 8∗(+)I	8*#+% (+)(1 − \@	F-EC)  (64)	

Y*-,*#+"#$∗
%   = 8$% H1 − 8)!% I8∗(+)	8*#+% (+)(1 − \@	F-EC)  (65)	

Y*-,$&%   = 8$% H1 − 8)!% IH1 − 8∗(+)I J1 − 8*#+% (+)K J1 − 8$!% (+)K (1 − \@F-EC)  (66)	

Y*-,$&∗ 	
%   = 8$% H1 − 8)!% I8∗(+) J1 − 8*#+% (+)K J1 − 8$!% (+)K (1 − \@F-EC)  (67)	

Y*-,$!%   = 8$% H1 − 8)!% IH1 − 8∗(+)I J1 − 8*#+% (+)K 8$!% (+)(1 − \@F-EC)  (68)	

Y*-,$!∗
%   = 8$% H1 − 8)!% I8∗(+) J1 − 8*#+% (+)K 8$!% (+)(1 − \@F-EC)  (69)	

J?*-,)!% , … , ?*-,$!∗
% K		  ~	MultinomJ.#% (+), Y*-,)!% , … , Y*-,$!∗

% 	K  (70)	

?)!,)!%   ~	Binom	HE,%,/(+), 1 − \@F1!ECI  (71)	

?)!,,%   ~	Binom	HE,%,1(+), 1 − \@F1!ECI  (72)	

Y*#+"#$,*#+'&
%  = J1 − 8*#+!% (+)K J1 − 8-!

% (+)K H1 − \@F2-3"#$ECI\@F3EC (73)	

Y*#+"#$,*#+'&∗
%  = J1 − 8*#+!% (+)K J1 − 8-!

% (+)K H1 − \@F2-3"#$ECI(1 − \@F3EC) (74)	

Y*#+"#$,*#+'!
%  = J1 − 8*#+!% (+)K 8-!

% (+)H1 − \@F2-3"#$ECI\@F3EC (75)	

Y*#+"#$,*#+'!∗
%  = J1 − 8*#+!% (+)K 8-!

% (+)H1 − \@F2-3"#$ECI(1 − \@F3EC) (76)	

Y*#+"#$,*#+!%  = 8*#+!% (+)H1 − \@F2-3"#$ECI\@F3EC (77)	

Y*#+"#$,*#+!∗
%  = 8*#+!% (+)H1 − \@F2-3"#$ECI(1 − \@F3EC) (78)	

Y*#+"#$,*#+"#$∗
%  = \@F2-3"#$EC(1 − \@F3EC) (79)	

J?*#+"#$,*#+'&
% , … , ?*#+"#$,*#+"#$∗% K	  ~	Multinom	 J.FG234% (+), Y*#+"#$,*#+'&

% , … , Y*#+"#$,*#+"#$∗% K  (80)	

Y*#+"#$∗ ,*#+'&∗
%  = H1 − 8*#+!% (+)IH1 − 8-!

% (+)IH1 − \@F2-3"#$ECI (81)	

Y*#+"#$∗ ,*#+'!∗
%  = J1 − 8*#+!% (+)K 8-!

% (+)H1 − \@F2-3"#$ECI (82)	

Y*#+"#$∗ ,*#+!∗
%  = 8*#+!% (+)H1 − \@F2-3"#$ECI (83)	

J?*#+"#$∗ ,*#+'&∗
% , … , ?*#+"#$∗ ,*#+!∗

% 	K	  ~	Multinom	 J.FG234∗% (+), Y*#+"#$∗ ,*#+'&∗
% , … , Y*#+"#$∗ ,*#+!∗

% K  (84)	
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Y$!,$!%  =	H1 − \@F4!ECI\@F3EC (85)	

Y$!,$!∗
%,/,/  =	\@F4!EC(1 − \@F3EC) (86)	

Y$!,$!∗
%,/,1  =	H1 − \@F4!ECI(1 − \@F3EC) (87)	

J?$!,$!% , ?$!,$!∗
%,/,/ , ?$!,$!∗

%,/,1 K  ~	Multinom	 JM,%,/(+), Y$!,$!% , Y$!,$!∗
%,/,/ , Y$!,$!∗

%,/,1 K (88)	

?$!∗ ,$!∗
%   ~	Binom	HM,∗

%,/(+), 1 − \@F4!ECI (89)	

J?$!,,% , ?$!,$!∗
%,1,1 K ~	Multinom	 JM,%,1(+), 1 − \@F4!EC , \@F4!EC(1 − \@F3EC)K  (90)	

?$!∗ ,,
%   ~	Binom	HM,∗

%,1(+), 1 − \@F4!ECI  (91)	

J?$&,6% , ?$&,$&∗
% K  ~	Multinom	 JM6% (+), 1 − \@F4&56 , \@F4&56(1 − \@F3EC)K  (92)	

?$&∗ ,6
%   ~	Binom	HM6∗% (+), 1 − \@F4&56I  (93)	

Y*#+'& ,-&
%  =	J1 − \@F2-3'&ECK \@F3EC (94)	

Y*#+'& ,*#+'&∗
%  =	\@F2-3'&EC(1 − \@F3EC) (95)	

Y*#+'& ,-&∗
%  =	J1 − \@F2-3'&ECK (1 − \@F3EC) (96)	

J?*#+'& ,-&
% , …	, ?*#+'& ,-&∗

% K  ~	Multinom	 J.FG-&
% (+), Y*#+'& ,-&

% 	, … , Y*#+'& ,-&∗
% 	K  (97)	

?*#+'&∗ ,-&∗
%   ~	Binom	 J.FG-&∗

% (+), 1 − \@F2-3'&56K  (98)	

Y*#+'! ,-!
%  =	J1 − \@F2-3'!ECK \@F3EC (99)	

Y*#+'! ,*#+'!∗
%  =	\@F2-3'!EC(1 − \@F3EC) (100)	

Y*#+'! ,-!∗
%  =	J1 − \@F2-3'!ECK (1 − \@F3EC) (101)	

J?*#+'! ,-!
% , …	, ?*#+'! ,-!∗

% K 	 ~	Multinom	 J.FG-!
% (+), Y*#+'! ,-!

% 	, … , Y*#+'! ,-!∗
% 	K  (102)	

?*#+'!∗ ,-!∗
%   ~	Binom	 J.FG-!∗

% (+), 1 − \@F2-3'!ECK  (103)	

Y*#+!,*#+!%  =	H1 − \@F2-3!ECI\@F3EC (104)	

Y*#+!,*#+!∗
%,/,/  =	\@F2-3!EC(1 − \@F3EC) (105)	

Y*#+!,*#+!∗
%,/,1  =	H1 − \@F2-3!ECI(1 − \@F3EC) (106)	

J?*#+!,*#+!% , ?*#+!,*#+!∗
%,/,/ , ?*#+!,*#+!∗

%,/,1 K  ~	Multinom	 J.FG,%,/(+), Y*#+!,*#+!% , Y*#+!,*#+!∗
%,/,/ , Y*#+!,*#+!∗

%,/,1 K (107)	

?*#+!∗ ,*#+!∗
%   ~	Binom	H.FG,∗

%,/(+), 1 − \@F2-3!ECI  (108)	

J?*#+!,,% , ?*#+!,*#+!∗
%,1,1 K ~	Multinom	 J.FG,%,1(+), 1 − \@F2-3!EC , \@F2-3!EC(1 − \@F3EC)K  (109)	

?*#+!∗ ,,
%   ~	Binom	H.FG,∗

%,1(+), 1 − \@F2-3!ECI  (110)	

Y-&,-&
%  =	H1 − \@F'&ECI\@F3EC (111)	

Y-&,-&∗
%,/,/  =	\@F'&EC(1 − \@F3EC) (112)	

Y-&,-&∗
%,/,1  =	H1 − \@F'&ECI(1 − \@F3EC) (113)	
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J?-&,-&
% , ?-&,-&∗

%,/,/ , ?-&,-&∗
%,/,1 K  ~	Multinom	 JL6%,/(+), Y-&,-&

% , Y-&,-&∗
%,/,/ , Y-&,-&∗

%,/,1 K  (114)	

?-&∗ ,-&∗
%   ~	Binom	HL6∗

%,/(+), 1 − \@F'&ECI  (115)	

J?-&,6
% , ?-&,-&∗

%,1,1 K ~	Multinom	 JL6%,1(+), 1 − \@F'&EC , \@F'&EC(1 − \@F3EC)K  (116)	

?-&∗ ,6
%   ~	Binom	HL6∗

%,1(+), 1 − \@F'&ECI  (117)	

J?-!,,
% , ?-!,-!∗

% K  ~	Multinom	 JL,
%(+), 1 − \@F'!EC , \@F'!EC(1 − \@F3EC)K  (118)	

?-!∗ ,,
%   ~	Binom	HL,∗

% (+), 1 − \@F'!56I  (119)	

J?-!,,
% , ?-!,-!∗

% K ~	Multinom	 JL,
%(+), 1 − \@F'!EC , \@F'!EC(1 − \@F3EC)K (120)	

YH)$#("#$ ,H)$#("()
%  =	87438"()H1 − \

@F)$#("#$ECI (121)	

YH)$#("#$ ,H)$#(*$+
%  =	J1 − 87438"()K H1 − \

@F)$#("#$ECI (122)	

J?H)$#("#$ ,H)$#("()
% , ?H)$#("#$ ,H)$#(*$+

% K ~	Multinom	 JO7438"#$% (+), YH)$#("#$ ,H)$#("()
% , YH)$#("#$ ,H)$#(*$+

% K (123)	

?H7-&"#$ ,H7-&"()
%   ~	Binom	 JO9#6"#$% (+), 1 − \@F7-&"#$ECK  (124)	

?H7-&"() ,H7-&*$+
%   ~	Binom	 JO9#6"()% (+), 1 − \@F7-&"()ECK  (125)	

  	

 353 

Model compartments were then updated as follows: 354 

 355 

@%(+ + ?+)  ≔	@%(+) − ??,0%   (126)	

D%,/(+ + ?+)  ≔	D%,/(+) + ??,0% − ?0,0%   (127)	

D%,1(+ + ?+)  ≔	D%,1(+) + ?0,0% − ?0,*,% − ?0,*-%   (128)	

."% (+ + ?+)  ≔ ."%(+) + ?0,*,% − ?*,,6% 	  (129)	

.#% (+ + ?+)  
≔ .#% (+) + ?0,*-% − ?*-,)!% − ?*-,6% − ?*-,*#+"#$% − ?*-,*#+"#$∗

% − ?*-,$&% − ?*-,$&∗ 	
% −

?*-,$!% − ?*-,$!∗
%     

(130)	

E,%,/(+ + ?+)  ≔	E,%,/(+) + ?*-,)!% − ?)!,)!%   (131)	

E,%,1(+ + ?+)  ≔	E,%,1(+) + ?)!,)!% − ?)!,,%   (132)	

.FG234% (+ + ?+)  
≔ .FG234% (+) + ?*-,*#+"#$% − ?*#+"#$,*#+'&

% − ?*#+"#$,*#+'!
% − ?*#+"#$,*#+!% −

?*#+"#$,*#+"#$∗
% − ?*#+"#$,*#+'&∗

% − ?*#+"#$,*#+'!∗
% − ?*#+"#$,*#+!∗

%   
(133)	

.FG234∗% (+ + ?+)  ≔ .FG234∗% (+) + ?*-,*#+"#$∗
% − ?*#+"#$,*#+'!∗

% − ?*#+"#$∗ ,*#+'&∗
% − ?*#+"#$∗ ,*#+!∗

%   (134)	

.FG-&
% (+ + ?+)  ≔ .FG-&

% (+) + ?*#+"#$,*#+'&
% − ?*#+'& ,-&

% − ?*#+'& ,*#+'&∗
% − ?*#+'& ,-&∗

%   (135)	

.FG-&∗
% (+ + ?+)  ≔ .FG-&∗

% (+) + ?*#+"#$∗ ,*#+'&∗
% + ?*#+'& ,*#+'&∗

% +?*#+"#$,*#+'&∗
% − ?*#+'&∗ ,-&∗

%   (136)	

.FG-!
% (+ + ?+)  ≔ .FG-!

% (+) + ?*#+"#$,*#+'!
% − ?*#+'! ,-!

% − ?*#+'! ,*#+'!∗
% − ?*#+'! ,-!∗

%   (137)	
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.FG-!∗
% (+ + ?+)  

≔ .FG-!∗
% (+) + ?*#+"#$∗ ,*#+'!∗

% + ?*#+'! ,*#+'!∗
% +?*#+"#$,*#+'!∗

% −
?*#+'!∗ ,-!∗
%   

(138)	

.FG,%,/(+ + ?+)  ≔ .FG,%,/(+) + ?*#+"#$,*#+!% − ?*#+!,*#+!% − ?*#+!,*#+!∗
%,/,/ − ?*#+!,*#+!∗

%,/,1  (139)	

.FG,%,1(+ + ?+)  ≔ .FG,%,1(+) + ?*#+!,*#+!% − ?*#+!,,% − ?*#+!,*#+!∗
%,1,1  (140)	

.FG,∗
%,/(+ + ?+)  ≔ .FG,∗

%,/(+) + ?*#+"#$∗ ,*#+!∗
% + ?*#+!,*#+!∗

%,/,/ + ?*#+"#$,*#+!∗
% − ?*#+!∗ ,*#+!∗

%  (141)	

.FG,∗
%,1(+ + ?+)  ≔ .FG,∗

%,1(+) + ?*#+!∗ ,*#+!∗
% + ?*#+!,*#+!∗

%,/,1 + ?*#+!,*#+!∗
%,1,1 − ?*#+!∗ ,,

%  (142)	

L6%,/(+ + ?+)  ≔L6%,/(+) + ?*#+'& ,-&
% − ?-&,-&

% −	?-&,-&∗
%,/,/  −	?-&,-&∗

%,/,1  (143)	

L6%,1(+ + ?+)  ≔L6%,1(+) + ?-&,-&
% − ?-&,6

% −	?-&,-&∗
%,1,1   (144)	

L6∗
%,/(+ + ?+)  ≔L6∗

%,/(+) + ?*#+'&∗ ,-&∗
% +	?-&,-&∗

%,/,/ +?*#+'& ,-&∗
% − ?-&∗ ,-&∗

%  (145)	

L6∗
%,1(+ + ?+)  ≔L6∗

%,1(+) + ?-&∗ ,-&∗
% + ?-&,-&∗

%,1,1 	+	?-&,-&∗
%,/,1 −	?-&∗ ,6

%  (146)	

L,
%(+ + ?+)  ≔L,

%(+) + ?*#+'! ,-!
% − ?-!,,

% −	?-!,-!∗
%   (147)	

L,∗
% (+ + ?+)  ≔L,∗

% (+) + ?*#+'!∗ ,-!∗
% + ?-!,-!∗

% 	+?*#+'! ,-!∗
% −	?-!∗ ,,

%  (148)	

M,%,/(+ + ?+)  ≔	M,%,/(+) + ?*-,$!% − ?$!,$!% − ?$!	 ,$!∗
%,/,/ − ?$!	 ,$!∗

%,/,1   (149)	

M,%,1(+ + ?+)  ≔	M,%,1(+) + ?$!,$!% − ?$!	 ,,
% − ?$!	 ,$!∗

%,1,1   (150)	

M,∗
%,/(+ + ?+)  ≔	M,∗

%,/(+) + ?*-,$!∗
% + ?$!	 ,$!∗

%,/,/ − ?$!∗ ,$!∗
%   (151)	

M,∗
%,1(+ + ?+)  ≔	M,∗

%,1(+) + ?$!∗ ,$!∗
% + ?$!	 ,$!∗

%,1,1 + ?$!	 ,$!∗
%,/,1 − ?$!∗	 ,,

%   (152)	

M6% (+ + ?+)  ≔	M6% (+) + ?*-,$&% − ?$&,6% − ?$&	 ,$&∗
%  	 (153)	

M6∗% (+ + ?+)  ≔	M6∗% (+) + ?*-,$&∗
% + ?$&	 ,$&∗

% − ?$&∗ ,6
%   (154)	

N%(+ + ?+) ≔	N%(+) + ?*,,6% + ?*-,6% + ?$&,6% + ?$&∗ ,6
% + ?-&,6

% + ?-&∗ ,6
%   (155)	

O7438"#$% (+ + ?+)  ≔ O7438"#$% (+) + ?0,*,% + ?0,*-% − ?H)$#("#$ ,H)$#("()
% − ?H)$#("#$ ,H)$#(*$+

% 	 (156)	

O7438"()% (+ + ?+)  ≔ O7438"()% (+) + ?H)$#("#$ ,H)$#("()
%   (157)	

O7438*$+% (+ + ?+)  ≔ O7438*$+% (+) + ?H)$#("#$ ,H)$#(*$+
%  (158)	

O9#6"#$% (+ + ?+)  ≔ O9#6"#$% (+) + ??,0% − ?H7-&"#$ ,H7-&"()
%  (159)	

O9#6"()% (+ + ?+)  ≔ O9#6"()% (+) + ?H7-&"#$ ,H7-&"()
% − ?H7-&"() ,H7-&*$+

%   (160)	

O9#6*$+% (+ + ?+)  ≔ O9#6*$+% (+) + ?H7-&"() ,H7-&*$+
%  (161)	

 356 

1.7 Observation process 357 

To describe the epidemic in each NHS region, we fitted our model to time series data on 358 
hospital admissions, hospital ward occupancy (both in general beds and in ICU beds), 359 
deaths in hospitals, deaths in care homes, population serological surveys and PCR testing 360 
data (section 1.1 and Table S 1).  361 
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1.7.1 Notation for distributions used in this section  362 

If { ∼ NegBinom(?, Å), then { follows a negative binomial distribution with mean ? and 363 
shape Å, such that 364 

 365 

Ç({ = É) = 	
Γ(Å + É)
É! Γ(Å)

w
Å

Å +?
x
k
w

?
Å +?

x
l
 (162) 

 366 

where Γ(Ü) is the gamma function. The variance of { is ?+ `-

k
. 367 

If á ∼ BetaBinom(à,â, ä), then á follows a beta-binomial distribution with size à, mean 368 
probability â and overdispersion parameter ä, such that 369 

 370 

Ç(á = ã) = 	 w
à
ã
x
B(ã + å, à − ã + ç)

B(å, ç)
 (163) 

 371 

where å = â wRSm
m
x, ç = (1 − â) wRSm

m
x and B(å, ç) is the beta function. The mean of á is àâ 372 

and the variance is àâ(1 − â)[1 + (à − 1)ä]. 373 

  374 

1.7.2 Hospital admissions and new diagnoses in hospital  375 

We represented the daily number of confirmed COVID-19 hospital admissions and new 376 
diagnoses for existing hospitalised cases, {ai`((),	as the observed realisations of an 377 
underlying hidden Markov process, éai`((), defined as: 378 

 379 

éai`(()  
≔ ∑ #∑ $.!,01 +	∑ $0,0∗1

0∈34#
	 ,.56%&'	 ,.56(# 	,.56() ,8)9 ) +0∈34#

∗ ,4)
∗ ,.56%&'∗ 9 $4)	 ,4)∗	

1,:,: + $4)	 ,4)∗	
1,:,; +1

$4)	 ,4)∗	
1,;,; + $.56)	 ,.56)∗	

1,:,: + $.56)	 ,.56)∗	
1,:,; + $.56)	 ,.56)∗	

1,;,; + $8#
	 ,8#∗

	1,:,: + $8#
	 ,8#∗

	1,:,; +
$8#

	 ,8#∗
	1,;,; +$.56%&'	 ,.56(#∗

1 +$.56%&'	 ,.56()∗
1 +$.56%&'	 ,.56)∗

1 +$.56()∗ ,8)∗
1 +$.56(#∗ ,8#∗

1 (  
(164) 

 380 

Which was related to the data via a reporting distribution: 381 

 382 

{ai`(()  ∼ NegBinom(éai`((), Åai`)  (165) 

 383 

We allow for overdispersion in the observation process to account for noise in the underlying 384 
data streams, for example due to day-of-week effects on data collection. We adopt Å = 2 for 385 
all NHSE data streams, so that they contribute equal weight to the overall likelihood. 386 
 387 

1.7.3 Hospital bed occupancy by confirmed COVID-19 cases 388 

The model predicted general hospital bed occupancy by confirmed COVID-19 cases, 389 
éq0/)(() as: 390 
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_I872(+)  ≔	∑ `.$&∗
% (+) + .$!∗

% (+) + .*#+"#$∗% (+) + .-!∗
% (+) + .-&∗

% (+)a% 			 (166) 

Which was related to the observed daily general bed-occupancy via a reporting distribution: 391 

{ℎKLM(()  ∼ NegBinomtéℎKLM((), ÅℎKLMu  (167) 

with Åq0/) = 2 as above. 392 

 393 

Similarly, the model predicted ICU bed occupancy by confirmed COVID-19 cases, é'!((() 394 
as: 395 

_*#+(+)  ≔	∑ b.*#+'&∗
% (+) + .*#+'!∗

% (+) + .*#+!∗
% (+)c% 			 (168) 

Which was related to the observed daily ICU bed-occupancy via a reporting distribution: 396 

 397 

{NOP(()  ∼ NegBinom(éNOP((), ÅNOP)  (169) 

 398 

with Å'!( = 2. 399 

1.7.4 Hospital and care homes COVID-19 deaths 400 

The reported number of daily COVID-19 deaths in hospitals, {q0/)!(() was considered as 401 
the observed realisation of an underlying hidden Markov process, éq0/)!((), defined as: 402 

_ℎstu<(+)  ≔	∑ J?$!	 ,,
% + ?$!∗ ,,

% + ?*#+!	 ,,
% + ?*#+!∗ ,,

% +?-!	 ,,
% + ?-!∗ ,,

% K% 			 (170) 

 403 

Which was related to the data via a reporting distribution: 404 

{q0/)!(()  ∼ NegBinom	téq0/)!((), Åq0/)!u  (171) 

with Åq0/)! = 2. 405 

Similarly, we represented the reported number of daily COVID-19 deaths in care homes, 406 
{%!((), as the observed realisations of an underlying hidden Markov process, é%!((), defined 407 
as: 408 

_v<(+)  ≔	?v<,,
#$6 			 (172) 

Which was related to the data via a reporting distribution: 409 

{%!(()  ∼ NegBinom	té%!((), Å%!u  (173) 

with Å%! = 2. 410 

 411 

1.7.5 Serosurveys 412 

We model serological testing of all individuals aged 15-65, and define the resulting number 413 
of seropositive and seronegative individuals (were all individuals aged 15-65 to be tested), 414 
as:  415 
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é/+*0"%&(()  ≔ ∑ O7438"()% (+)[RS,RT)
%U[/T,1S)   (174) 

 416 

é/+*0'$((()  ≔ J∑ d%[RS,RT)
%U[/T,1S) K − étwxs=>?(+)  (175) 

We compared the observed number of seropositive results, {/+*0"%&((), with that predicted by 417 
our model, allowing for i) the sample size of each serological survey, {/+*0"%&(() and ii) 418 
imperfect sensitivity ($/+*0&$'&) and specificity ($/+*0&"$@)	of the serological assay: 419 

{/+*0"%&(()  ∼ Binom	 w{/+*0A$&A((), â/+*0"%&(()x  (176) 
Where: 420 

â/+*0"%&(()	 : =
$/+*0&$'& 	é/+*0"%&(() 	+ w1 − $/+*0&"$@ 	x é/+*0'$((()

é/+*0"%&(() 	+ é/+*0'$((()
 

(177) 
 421 

1.7.6 PCR testing 422 

As described in the data section (1.1), we fitted the model to PCR testing data from two 423 
separate sources: 424 

• pillar 2: the government testing programme, which recommends that individuals with 425 
COVID-19 symptoms are tested (34),  426 

• the REACT-1 study, which aims to quantify the prevalence of SARS-CoV-2 in a 427 
random sample of the England population on an ongoing basis (35).  428 

 429 

We only use Pillar 2 PCR test results for individuals aged 25 and over (we assume this 430 
includes all care home workers and residents). We assume that individuals who get tested 431 
through Pillar 2 PCR testing are either newly symptomatic SARS-CoV-2 cases (who will test 432 
positive): 433 

é-Q"%&(()  ≔> _y,'+
$

!#,

$z[QZ,T[)
		

(178) 

 434 

or non-SARS-CoV-2 cases who have symptoms consistent with COVID-19 (who will test 435 
negative): 436 

é-Q'$((()  ≔	${! vt∑ m$!#,
$z[QZ,T[) u − é-Q"%&(()y	 

(179) 

 437 

where ${! is the probability of non SARS-CoV-2 cases having symptoms consistent with 438 
COVID-19 leading them to seek a PCR test.  439 

 440 

We compared the observed number of positive PCR tests, {-Q"%&(()	with that predicted by 441 
our model, accounting for the number of PCR tests conducted each day under pillar 2, 442 
{-QA$&A((), by calculating the probability of a positive PCR result (assuming perfect sensitivity 443 
and specificity of the PCR test): 444 
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â-Q"%&(() ∶= vé-Q"%&(()y / vé-Q"%&(() 	+ é-Q'$((()y 
(180) 

 445 
People may seek PCR tests for many reasons and thus the pillar 2 data are subject to 446 
competing biases. We therefore allowed for an over-dispersion parameter ä-QA$&A, which we 447 
fitted separately for each region in the modelling framework: 448 

{-Q"%&(()  ∼ BetaBinom	 w{-QA$&A((), â-Q"%&(+), ä-QA$&Ax  
(181) 

 449 

We incorporated the REACT-1 PCR testing data into the likelihood analogously to the 450 
serology data, by considering the model-predicted number of PCR-positives é.R"%&(() and 451 
PCR-negatives é.R'$(((), were all individuals aged over five and not resident in a care home 452 
to be tested:  453 

 454 

é.R"%&(()  ≔	∑ O9#6"()% (+)%U[T,/S),…,[WSX),#$- 		 (182) 

é.R'$((()  ≔	∑ d%(+) − é|1=>?(()%U[T,/S),…,[WSX),#$- 	 (183) 

 455 

We compared the daily number of positive results observed in REACT-1, {.R"%&((), given the 456 
number of people tested on that day, {.RA$&A((), to our model predictions, by calculating the 457 
probability of a positive result, assuming perfect sensitivity and specificity of the REACT-1 458 
assay: 459 

â.R"%&(()  : = wé.R"%&(()	x / vé.R"%&(() 	+ é.R'$((()y 
(184) 

 460 

{.R"%&(()  ∼ Binom	 w{.RA$&A((), â.R"%&(()x  
(185) 

 461 

The overall likelihood function was then calculated as the product of the likelihoods of the 462 
individual observations. 463 

 464 

1.8 Bayesian inference and model fitting 465 

A closed-form expression of the likelihood of the observed data given the model and its 466 
parameters was not analytically tractable, so we used particle filtering methods to obtain an 467 
unbiased estimate of the likelihood which can be efficiently sampled from (36). Where 468 
appropriate, we used estimates from the literature to set model parameters at fixed values. 469 
We limited the parameters being inferred to just those with particular epidemiological 470 
interest, or with large uncertainty in existing literature. 471 

 472 

The model was fitted independently to each NHS region. For each NHS region, we aimed to 473 
infer the values of 26 model parameters:  474 

• the local epidemic start-date, ([;  475 
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• thirteen transmission rates at different time points BR, … , BRQ; 476 

• three parameters governing transmission to and within care homes 477 
?!#, , ?!#. , P; 478 

• the probability of symptomatic individuals developing serious disease 479 
requiring hospitalisation, $#`ab, for the group with the largest probability; 480 

• the probability of a care home resident dying in a care home if they have 481 
severe disease requiring hospitalisation, $%!

!#.; 482 

• the probability, at the start of the pandemic, of a patient being admitted to ICU 483 
after hospitalisation, $'!(`ab, for the group with the largest probability; 484 

• the probabilities, at the start of the pandemic, of dying in a hospital general 485 
ward, $#!

`ab , in the ICU, $'!(!
`ab , and in a stepdown ward following ICU, $,!

`ab, 486 
for the groups with the largest probability; 487 

• the multiplier for hospital mortality after improvement in care, S#; 488 

• the multiplier for probability of admission to ICU after improvement in care, 489 
S'!(; 490 

• the daily proportion 8Y# , of the population seeking to get tested for an infection 491 
of SARS-Cov-2 following COVID-19 like symptoms and the overdispersion of 492 
the corresponding observation distribution ä-QA$&A.  493 

 494 

We used particle Monte Carlo Markov Chain (pMCMC) methods (37), implementing a 495 
particle marginal Metropolis-Hastings algorithm with a bootstrap particle filter (38) with 96 496 
particles (for sufficient variance in likelihood and a convenient multiple of number of 497 
available CPU cores for efficiency), to obtain a sample from the posterior distribution of the 498 
model parameters given the observed data. If the expected values of count distributions are 499 
zero when observed values are non-zero, this results in particles of zero weight, which can 500 
lead to the particle filter estimating the marginal likelihood to be 0. Therefore, to get a small 501 
but non-zero weight for each particle at every observation, within our particle filter likelihood 502 
we add a small amount of noise (exponentially distributed with mean 10S\) to count values 503 
from the model. 504 
 505 
Within our particle filter we add small amounts of exponentially-distributed noise (with mean 506 
10S\) to model outputs prior to calculating likelihood weights to avoid particles of zero 507 
weight, instead resulting in small but non-zero weights. 508 
We implemented our model and parameter inference in an R package, sircovid (39), 509 
available at https://mrc-ide.github.io/sircovid, which uses two further R packages, dust to run 510 
the model in efficient compiled code and mcstate to implement the pMCMC sampler using 511 
Metropolis-Hastings sampling (40). 512 

At each iteration, the sampler proposes an update to the joint distribution of parameters. 513 
These proposals are generated from multivariate Gaussian densities centred on the current 514 
parameter values, and with a covariance structure chosen to facilitate efficient mixing of the 515 
Markov chain. We specified reflecting boundaries for the proposal kernel to ensure that the 516 
proposed parameters are both epidemiologically and mathematically plausible and retain 517 
symmetry in the proposals. 518 

For each regional fit, eight parallel chains of the pMCMC were run for 11,000 iterations, with 519 
the first 1,000 discarded as burn-in, and a 1/80 thinning. We assessed convergence visually. 520 
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  521 

1.9 Prior distributions and parameter calibration 522 

1.9.1 Risk of hospital admission  523 

In our Bayesian inference framework, we estimate $#`ab, the probability of hospital 524 
admission for symptomatic cases in the group (across all ages and CHW and CHR) with the 525 
largest probability of hospital admission. However, we fix the relative probability of hospital 526 
admission for the other age groups, Q#$ , defined so that $#$ =	$#`ab	Q#$ , with Q#$ = 1 in the 527 
group with largest probability of hospital admission. 528 

In this section we explain how the values of Q#$  were chosen. We used two sources of 529 
information, an individual-level and an aggregated dataset. On the one hand, the COVID-19 530 
Hospitalisation in England Surveillance System (CHESS) is a daily, confidential line list 531 
containing highly detailed information on patients admitted to hospital with confirmed 532 
COVID-19 (see following section 1.9.2 for further details). On the other hand, the 533 
Government’s Coronavirus Dashboard is an aggregated, publicly available situation report 534 
updated daily. Amongst other data, it provides updates on the number of daily admissions 535 
and hospital occupancy by devolved nation and, for England, by NHS region. We found the 536 
demography of hospitalisation in CHESS to be biased toward older patients compared to 537 
Dashboard data (Figure S3). We thus undertook a two-step approach to infer the 538 
demographic composition of COVID-19 hospitalisations across England.  539 

Firstly, we derived an initial approximation of Q#$  by dividing the total number of hospital 540 
admissions for age group ! in CHESS over the total number of positive PCR tests (Pillar 2) 541 
for !. Both data sources were censored to include patients admitted to hospital or with a 542 
specimen data (i.e. the date the test was taken), respectively, between March 1 and 543 
December 2, 2020. We ran our full inference framework using this initial approximation 544 
for	Q#$ 	and observed its fit to the demographic composition of admissions from the data. 545 

As a second step, we refined our initial approximations of Q#$  over a series of iterations of 546 
our inference framework, by drawing the modelled ($#$ }0i+~) and observed ($#$ �a/qÄ0a*i) 547 
proportion of admissions for each age group (i.e. admissions in age group ! divided by all 548 
admissions) and using it to derive a re-scaling factor for a new proposal for Q#$  as follows: 549 

 550 

miD	Q#$ 	= %à!(!åî	Q#$ 	 ∗
$#$ �a/qÄ0a*i
$#$ }0i+~

 (186) 

 551 

This process was repeated to obtain a close approximation to the observed proportion of 552 
admissions by age and region (Figure S3). A key strength of our approach is that we did not 553 
overfitted demography by individual regions. Rather, by assuming Q#$  to be independent of 554 
geographic region, we allowed our inference framework to derive the number of admissions 555 
for each five-year age band ! solely based on Q#$ , the demographic composition of the NHS 556 
region and inferred epidemic parameters, such as &f.  557 
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 558 
Figure S 3: Proportion of admissions by age. a) Comparison of model outputs to data from the 559 
Government’s Coronavirus Dashboard, aggregated to five broad age categories. b) Age spline fitted 560 
(red) to Government’s Coronavirus Dashboard, with age categories disaggregated to five-year bands. 561 
The fitted spline (red) was used as input parameters for the probability of hospitalisation by age.  562 
 563 

1.9.2 Severity and hospital progression 564 

We also performed extensive preliminary analysis to inform the age-structure of progression 565 
parameters within hospital. Data from the COVID-19 Hospitalisation in England Surveillance 566 
System (CHESS) were used to fit a simple model of patient clinical progression in hospital. 567 
The model structure was designed to mirror the within-hospital component of the wider 568 
mechanistic transmission model, but without the complexities arising from unknown 569 
admission dates and with greater detail on trends with age (Figure S 4). 570 

 571 
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 572 
Figure S 4: Directed Acyclic Graph of the hospital pathways fitted to CHESS data, which mirror the 573 
model structure described in Figure S 2, but with all parameters varying with age and not over time. 574 
 575 

CHESS data consists of a line list of daily individual patient-level data on COVID-19 infection 576 
in persons requiring hospitalisation, including demographic and clinical information on 577 
severity and outcomes. Data were filtered to patients admitted between 18th March and 31st 578 
May 2020 (inclusive), with subsequent progression events possible up until 25th Nov 2020. 579 
This gave >5 months for outcomes to complete, and hence justified filtering to patients with 580 
resolved outcomes only. The length of stay in each state was taken as the difference 581 
between the registered dates of entering and leaving each hospital ward. Lengths of stay 582 
were assumed to follow Erlang distributions, as in the wider model, with a distinct mean and 583 
shape parameter for each state. Specifically, the probability of being in state é ∈584 
{$ñi, .� , .. , %+,� , %+,,B

, %+,,!
,-. ,-�} for à ∈ ℕ[ days was taken as the integral over day 585 

à of the Erlang distribution with mean ?_ and shape ò_: 586 

 587 

Pr(in	state	é	for	à	days) = 	 ù
w ò_?_

x
/C
(/CSRi

S/Cf
`C

(ò_ − 1)!
	_(.

Å^R

Å

 (187) 

 588 

For a patient of age å, this was combined with the probability of their path through the 589 
hospital progression model, taken as the product of the individual transition probabilities at 590 
each bifurcation, i.e. values taken from $Ç(å) for á ∈ {%+,,.� , %+,� ,-�}. Transition 591 
probabilities were modelled as functions of age using logistic-transformed cubic splines. 592 
Knots were defined at coordinates [Ü$ , ÉÇ$ ], where Ü$ values were fixed at 593 
{0, 20, 40, 60, 80, 100, 120} and ÉÇ$  were free parameters to be estimated. The complete 594 
spline, ÉÇ(å) for å ∈ 0: 120, was obtained from these knots using standard expressions for 595 
cubic spline interpolation. Finally, transition probabilities were obtained from the raw ÉÇ(å) 596 
values using the logistic transformation: $Ç(å) = 1 (1 + iSlD(a))⁄ . 597 
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In total there were 44 free parameters in the within-hospital progression model: 8 mean 598 
length of stay parameters, 8 length of stay shape parameters and 4 × 7 transition probability 599 
spline nodes (Figure S 4, Table S 4). 600 

 601 
Table S 4: Descriptions of all states and transitions in the simplified hospital progression model fitted 602 
to CHESS data. 603 

State (†) Description 

°¢£  General admission before step-up to ICU 

§c  General ward before death in general ward 

§N  General ward before discharge from general ward 

•¶ßc  ICU before death in ICU 

•¶ßM)
  ICU before step-down and eventual death in step-down care 

•¶ßME
  ICU before step-down and eventual discharge from step-

down care 

®c  Step-down (general) ward before death 

®N  Step-down (general) ward before discharge 

Transition (©) Description 

•¶ß  Admission to ICU from general ward 

§c  Death in general ward 

•¶ßc  Death in ICU 

®c  Death in step-down care 

 604 

All parameters of the hospital progression model were given priors (Table S 5) and 605 
estimated within a Bayesian framework. All length of stay parameters were given uniform 606 
priors over a plausible range of values. For transition probabilities, the first spline node ÉÇR 607 
was given a prior that corresponded to a uniform distribution after logistic transformation, 608 
and subsequent spline nodes were given a multivariate normal prior to apply a smoothing 609 
constraint to the spline. Parameters were estimated jointly via MCMC using the custom 610 
package markovid v1.5.0 (41), which uses the random-walk Metropolis-Hastings algorithm to 611 
draw from the joint posterior distribution. MCMC was run for 1000 burn-in iterations and 612 
100,000 sampling iterations replicated over 10 independent chains. Convergence was 613 
assessed via the Gelman-Rubin diagnostic (all parameters had potential scale reduction 614 
factor <1.1) and sampling sufficiency was assessed by visualising posterior distributions and 615 
by effective sample size (ESS) calculations (all parameters had ESS >100,000). 616 
Table S 5: Priors on all length of stay distributions and transition probability splines. GefghijZ8:C(k, l) 617 
denotes the continuous uniform distribution, and GefghijE%7Z(k, l) the discrete uniform distribution 618 
between k and l (inclusive). 619 

Parameter Description Prior 

™É = Ñ
ÖF
	 Mean of Erlang length of stay 

distribution 
?_	~	UniformÜáàâ(0,20)  
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¨É  Shape parameter of Erlang 
length of stay distribution 

0_	~	UniformäãåÜ(1,10)  

 

≠çÑ  First spline node of 
(transformed) transition 
probability 

Æ(ÉÇR) ∝ 	
+GHD

I

(R^+GHD
I
)-

 , 

for ÉÇ! ∈ (−10, 10) 

≠ç
E  for ∞ ∈ ±: ≤  Subsequent spline nodes of 

(transformed) transition 
probability 

ÉÇ
P 	~	Normal(ÉÇ

PSR, 0.25)  

 620 

Parameter estimates (posterior medians) were passed to the wider mechanistic transmission 621 
model as fixed values (Figure S 5). For transition probabilities, the full age-spline (Figure 3, 622 
main text) was aggregated to 5-year age groups and normalised by the largest value to 623 
define the relative risk with age. The absolute risk in the mechanistic transmission model 624 
was obtained by multiplying the relative risk by region-specific scaling factors that were fitted 625 
as free parameters in the pMCMC. Hence, the preliminary analysis of CHESS data was 626 
used to inform trends of severity with age, but not the absolute probability of progression 627 
through the hospital states, which was informed by the Government’s Coronavirus 628 
Dashboard data. 629 

For the wider mechanistic transmission model, we used Beta distributions for the priors of 630 
the various fitted probabilities regarding hospitalisation. The priors for $'!(`ab,  $#!

`ab , $'!(!
`ab  and 631 

$,!
`ab were all informed by the fitting to CHESS data by taking the median fitted value for the 632 

prior mean, which we halve in the case of $'!(`ab to account for CHESS being biased to more 633 
severe patients. The prior distributions are then calibrated so that the lower bound of the 634 
95% confidence interval is 0.1 lower than the prior mean. For $#`ab and $%!

!#., we assume 635 
prior means of 0.75 and calibrate the prior so that the lower bound of the 95% confidence 636 
interval is 0.2 lower than the mean. For the multipliers for hospital mortality after 637 
improvement in care, S#, and for probability of admission to ICU after improvement in care, 638 
S'!(, we used uninformative ,[0,1] priors. 639 

 640 

 641 

 642 



   
 

 29  
 

643 
Figure S 5: Posterior 95% credible intervals of length of stay mean (left) and shape parameters (right). 644 
 645 

1.9.3 Serosurveys 646 

To keep serology parameters consistent between all regions we used estimates from the 647 
literature to fix the parameters of the seroconversion process. An alternative would have 648 
been to use these estimates as priors within a hierarchical model where some parameters 649 
would be shared between regions, but this would be much more involved computationally. 650 
 651 
As described in section 1.3.2, the time to seroconversion from leaving the #$ compartment is 652 
modelled by an exponential distribution time spent in //+*0"#$

$  with a proportion $/+*0"%& 653 
ultimately seroconverting and moving to //+*0"%&

$  and the remaining staying negative and 654 
moving to //+*0'$(

$ . 655 
 656 
We fixed $/+*0"%& to 0.85 based on the estimate of 85% of infections becoming detectably 657 
seropositive with the EUROIMMUN assay used in the NHSBT serological surveys (42). The 658 
specificity of the serology test $/+*0&"$@ is fixed to 0.99 also from (42). Finally, the sensitivity of 659 
serology test $/+*0&$'& is assumed to be 1 as it is non-distinguishable from the time varying 660 
seroconversion process (Table S7). 661 
 662 

1.9.4 PCR positivity 663 

As for other compartments, we modelled the duration of SARS-CoV-2 PCR-positivity after 664 
symptom onset using an Erlang distribution `~Erlang(0, U), with k successive compartments 665 
and a total mean time spent of è

h
 and variance è

h-
. 666 

We estimated the parameters of this distribution from Omar et al. (16), which reported the 667 
cumulative distribution of duration of PCR positivity in 523 individuals with mild COVID-19 668 
disease in home quarantine in a German region. We performed a survival analysis using a 669 
gamma-accelerated failure time model fitted to their data, from which we estimated the 670 
mean and variance of the time from symptom onset to PCR negativity. This was used to 671 
derive values of k and U shown in Table S 2. 672 

1.9.5 Local start date of the epidemic 673 

The start date of the epidemic for each region is assumed to have a uniform prior on the 674 
dates from 1st January 2020 to 15th March 2020, inclusive – with the latter date 675 
corresponding to the last date before the data begin. 676 
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1.9.6 Time-varying transmission rates 677 

We set priors for the transmission rates BR, … , BRQ to reflect a Gamma distribution for the 678 
reproduction number &f with a reasonable 95% confidence interval a priori. To obtain a prior 679 
for the corresponding Bè, we then scale by a factor of 0.0241 (given other parameter values, 680 
Bè = 0.0241 would correspond approximately to &f = 1). The 95% ranges for &[ we used 681 
are (i) (2.5, 3.5) at the onset of the epidemic (corresponding to BR); and then &f (ii) (0.4, 3.5) 682 
at announcement of the first lockdown (corresponding to BQ); and (iii) (0.4, 3) from the 683 
implementation of the first lockdown onwards (corresponding to BT, … , BRQ ). The values are 684 
consistent with the values of the COMIX study (43). 685 

1.9.7 Transmission within care homes 686 

For the transmission between care home workers and residents, ?!#, , and transmission 687 
among care home residents, ?!#. , we used a prior distributions reflecting that these are 688 
person-to-person infectious contact rates and thus should be scaled according to regional 689 
care home demography. We then used a Gamma distribution with shape 5 and mean [.R

{+JB
 690 

for both of these parameters (recall that we assume there is a 1-to-1 ratio of care home 691 
workers to residents in each region, so m!#, = m!#.). 692 

For the parameter governing the reduction in contacts between the general population and 693 
care home residents, P, we used an uninformative ,[0,1] prior.  694 

1.9.8 Parameters relating to Pillar 2 testing 695 

For both the parameters 8Y# and ä-QA$&A, we used uninformative ,[0,1] priors.696 
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Table S 6: Inferred model parameter notations, prior and posterior distributions. Note that !(#, %) here refers to a Gamma distribution with shape # and scale 697 
% (such that the mean is #%), and '(#, %) refers to a Beta distribution with shape parameters # and % (such that the mean is #/(# + %)). 698 
 699 

 Description Group 
scaling Prior Mean 

(95% CI) 
Posterior 

NW** 
Mean (95% CrI) 

NEY 
 

MID 
 

EE 
 

LON 
 

SW 
 

SE 

!!  
Start date of regional 

outbreak (dd/mm/2020) - 
"[01/01, 15
/03] - 

29-01 
(13/01, 07/02) 

03-02 
(29/01, 09/02) 

24-01 
(12/01, 02/02) 

06-02 
(30/01, 14/02) 

08-01 
(02/01, 20/01) 

12-02 
(09/02, 17/02) 

27-01 
(20/01, 04/02) 

 Transmission rate (pp)           

+(-)  /" - Γ(136,0.0006)   0.07 
(0.06, 0.08) 0.08 (0.06, 0.09) 0.08 (0.07, 0.09) 0.08 (0.07, 0.09) 0.08 (0.08, 0.09) 0.06 (0.06, 0.07) 0.09 (0.08, 0.09) 0.08 (0.07, 0.09) 

 /# - Γ(21.9,0.0026) 0.06  
(0.04, 0.08) 0.09 (0.06, 0.11) 0.08 (0.05, 0.1) 0.07 (0.05, 0.09) 0.06 (0.04, 0.07) 0.04 (0.03, 0.06) 0.07 (0.04, 0.09) 0.05 (0.03, 0.06) 

 /$ - Γ(4.25,0.0079)   0.03  
(0.01, 0.07) 0.01 (0.01, 0.02) 0.02 (0.02, 0.02) 0.01 (0.01, 0.01) 0.02 (0.02, 0.02) 0.01 (0.01, 0.01) 0.02 (0.01, 0.02) 0.01 (0.01, 0.01) 

 /% - Γ(4.25,0.0079) 0.03 
(0.01, 0.07) 0.02 (0.02, 0.02) 0.02 (0.01, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.01, 0.02) 

 /& - Γ(4.25,0.0079) 0.03  
(0.01, 0.07) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.02 (0.01, 0.02) 0.02 (0.02, 0.02) 

 /' - Γ(4.25,0.0079) 0.03 
 (0.01, 0.07) 0.02 (0.02, 0.03) 0.02 (0.01, 0.02) 0.02 (0.01, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 

 /( - Γ(4.25,0.0079) 0.03  
(0.01, 0.07) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 0.03 (0.02, 0.03) 0.02 (0.02, 0.03) 0.02 (0.02, 0.03) 

 /) - Γ(4.25,0.0079) 0.03  
(0.01, 0.07) 0.05 (0.04, 0.05) 0.04 (0.04, 0.05) 0.05 (0.04, 0.05) 0.04 (0.03, 0.04) 0.04 (0.04, 0.05) 0.03 (0.02, 0.04) 0.04 (0.03, 0.05) 

 /* - Γ(4.25,0.0079) 0.03  
(0.01, 0.07) 0.04 (0.04, 0.05) 0.04 (0.04, 0.04) 0.04 (0.03, 0.04) 0.04 (0.03, 0.04) 0.04 (0.03, 0.04) 0.04 (0.04, 0.05) 0.03 (0.03, 0.04) 

 /"+ - Γ(4.25,0.0079) 0.03 
(0.01, 0.07) 0.03 (0.03, 0.03) 0.03 (0.03, 0.04) 0.04 (0.04, 0.04) 0.04 (0.03, 0.04) 0.04 (0.04, 0.04) 0.04 (0.03, 0.04) 0.04 (0.04, 0.04) 

 /"" - Γ(4.25,0.0079) 0.03 
(0.01, 0.07) 0.02 (0.02, 0.02) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 0.03 (0.03, 0.03) 

 /"# - Γ(4.25,0.0079) 0.03  
(0.01, 0.07) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 0.03 (0.03, 0.03) 0.02 (0.02, 0.02) 0.02 (0.02, 0.03) 

7 
Relative reduction in 

contacts between CHR 
and the general 

population 

- "[0,1]  0.5  
(0.03, 0.98) 0.43 (0.03, 0.95) 0.75 (0.51, 0.98) 0.77 (0.37, 0.97) 0.79 (0.51, 0.96) 0.28 (0.03, 0.49) 0.82 (0.74, 0.91) 0.89 (0.77, 0.99) 

8,-.  
Transmission rate 

between care home 
residents and staff 

- Regional 
Prior  

Γ(5, 4.3 × 10/()  
2.2 × 10/' (7.0 ×
10/(, 4.4 × 10/') 

Γ(5, 3.7 × 10/()  
1.8 × 10/' (5.9 ×
10/(, 3.7 × 10/') 

Γ(5, 2.9 × 10/()  
1.5 × 10/' (4.7 ×
10/(, 2.9 × 10/') 

Γ(5, 5.2 × 10/()  
2.6 × 10/' (8.4 ×
10/(, 5.3 × 10/') 

Γ(5, 7.6 × 10/()  
3.8 × 10/' (1.2 ×
10/', 7.8 × 10/') 

Γ(5, 4.9 × 10/()  
2.5 × 10/' (8.0 ×
10/(, 5.0 × 10/') 

Γ(5, 3.1 × 10/()  
1.6 × 10/' (5.1 ×
10/(, 3.2 × 10/') 

 Posterior:  
2.1e-06 

(1.4e-06, 2.7e-
06) 

1.7e-06 
(1.3e-06, 2.2e-

06) 

1.5e-06 
(1.1e-06, 1.9e-

06) 

2.7e-06 
(2.1e-06, 3.1e-

06) 

3.8e-06 
(3.1e-06, 4.7e-

06) 

1.8e-06 
(1.3e-06, 2.2e-

06) 

1.5e-06 
(1.1e-06, 1.8e-

06) 
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8,-0  
Transmission rate 
among care home 

residents 

- 
Regional 

Prior  
Γ(5, 4.3 × 10/()  
2.2 × 10/' (7.0 ×
10/(, 4.4 × 10/') 

Γ(5, 3.7 × 10/()  
1.8 × 10/' (5.9 ×
10/(, 3.7 × 10/') 

Γ(5, 2.9 × 10/()  
1.5 × 10/' (4.7 ×
10/(, 2.9 × 10/') 

Γ(5, 5.2 × 10/()  
2.6 × 10/' (8.4 ×
10/(, 5.3 × 10/') 

Γ(5, 7.6 × 10/()  
3.8 × 10/' (1.2 ×
10/', 7.8 × 10/') 

Γ(5, 4.9 × 10/()  
2.5 × 10/' (8.0 ×
10/(, 5.0 × 10/') 

Γ(5, 3.1 × 10/()  
1.6 × 10/' (5.1 ×
10/(, 3.2 × 10/') 

 Posterior:  2.2e-06 
(1e-06, 3.4e-06) 

2.5e-06 (1.4e-
06, 3.6e-06) 

1.6e-06 (7e-07, 
2.4e-06) 

3.4e-06 (2.1e-
06, 4.3e-06) 

2.8e-06 (5e-07, 
4.8e-06) 

4.2e-06 (3.8e-
06, 4.6e-06) 

3.3e-06 (2.9e-
06, 3.6e-06) 

;-123  
Probability of 

hospitalisation if 
symptomatic 

<45   B(15.8, 5.28)  0.75 (0.55, 0.91) 0.87 (0.8, 0.92) 0.9 (0.85, 0.94) 0.89 (0.83, 0.95) 0.78 (0.73, 0.84) 0.85 (0.79, 0.9) 0.86 (0.81, 0.93) 0.73 (0.68, 0.79) 

;6!123  
Probability of death in 
care home if requiring 

hospitalisation 
<7"5   B(15.8, 5.28)  0.75 (0.55, 0.91) 0.66 (0.37, 0.85) 0.77 (0.64, 0.88) 0.53 (0.41, 0.69) 0.58 (0.52, 0.63) 0.66 (0.5, 0.91) 0.64 (0.6, 0.69) 0.36 (0.32, 0.43) 

;8,9123  
Probability of triage to 

ICU for new hospital 
admissions 

<:;<5   B(13.9, 43.9)  0.24 (0.14, 0.36) 0.15 (0.11, 0.18) 0.15 (0.11, 0.18) 0.17 (0.13, 0.21) 0.25 (0.21, 0.31) 0.31 (0.26, 0.37) 0.12 (0.11, 0.13) 0.23 (0.2, 0.25) 

;-!123  
Initial probability of 

death for general 
inpatients  

<4"5   B(42.1, 50.1)  0.46 (0.36, 0.56) 0.42 (0.35, 0.5) 0.46 (0.39, 0.53) 0.43 (0.38, 0.47) 0.47 (0.44, 0.51) 0.37 (0.32, 0.46) 0.5 (0.47, 0.53) 0.41 (0.35, 0.46) 

;8,9!123   Initial probability of 
death for ICU inpatients 

<:;<"5   B(60.2, 29.3)  0.67 (0.57, 0.77) 0.66 (0.6, 0.72) 0.71 (0.66, 0.77) 0.69 (0.58, 0.77) 0.69 (0.62, 0.75) 0.61 (0.51, 0.69) 0.71 (0.64, 0.77) 0.63 (0.54, 0.75) 

;.!
123  

Initial probability of 
death for stepdown 

inpatients 
<="
5   B(28.7, 52.1)  0.35 (0.25, 0.46) 0.35 (0.25, 0.46) 0.35 (0.3, 0.4) 0.36 (0.3, 0.5) 0.37 (0.3, 0.43) 0.34 (0.24, 0.43) 0.51 (0.44, 0.59) 0.37 (0.29, 0.45) 

>8,9  
ICU admission multiplier 

after improvement in 
care 

- "[0,1] 0.5 (0.03, 0.98) 0.79 (0.59, 0.93) 0.76 (0.62, 0.93) 0.72 (0.56, 0.94) 0.51 (0.37, 0.64) 0.62 (0.51, 0.75) 0.83 (0.73, 0.99) 0.44 (0.3, 0.54) 

>>  
Hospital mortality 

multiplier after 
improvement in care 

- "[0,1] 0.5 (0.03, 0.98) 0.58 (0.45, 0.69) 0.47 (0.41, 0.53) 0.49 (0.42, 0.61) 0.47 (0.42, 0.56) 0.32 (0.27, 0.38) 0.35 (0.28, 0.43) 0.53 (0.44, 0.63) 

;?, 
Prevalence of non-

COVID symptomatic 
leading to test 

- "[0,1] 0.5 (0.03, 0.98) 0.0031 (0.0029, 
0.0033) 

0.0022 (0.0021, 
0.0024) 

0.0025 (0.0023, 
0.0027) 

0.0028 (0.0026, 
0.0031) 

0.0028 (0.0027, 
0.003) 

0.0019 (0.0018, 
0.002) 

0.003 (0.0028, 
0.0031) 

!?@!"#! ,	  Overdispersion of PCR 
positivity 

- "[0,1] 0.5 (0.03, 0.98) 0.0052 (0.0042, 
0.0062) 

0.0076 (0.0064, 
0.0086) 

0.0072 (0.0058, 
0.0088) 

0.0033 (0.0029, 
0.0037) 

0.0026 (0.0021, 
0.0031) 

0.0091 (0.0079, 
0.0103) 

0.0032 (0.0027, 
0.0037) 

Age-specific scaling factors for each parameter are set out in Table S 8.** Region codes: NW = North West, NEY = North East and Yorkshire, MID = Midlands, EE = East of England, LON = London, 700 
SW = South West, SE = South East. N.B. when the prior is region specific the prior is shown in the same columns as the posterior distributions 701 
 702 

  703 
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Table S 7: Fixed model parameters (age / care home scaling factors are shown separately in Table S 8).  704 
Parameter Description Value Source 

;,  Probability of developing 
symptoms after 
becoming infectious 

0.6 Lavezzo et al. (44) 

;∗ Probability of arriving at 
hospital with a confirmed 
diagnosis 

0.25 NHS (45) 

A/B9 Mean time to 
confirmation of diagnosis 
within hospital (days) 

2 days CHESS (5) 

;ABCD#$% Probability of 
seroconversion 

0.85 Brazeau et al. (42)  

A/BABCD#$% 	 Mean time to 
seroconversion from 
infectiousness (days) 

13 Benny et al. (17)  

;ABCD%#&' 	  Specificity of serology 
test 

0.99 Brazeau et al. (42) 

;ABCD%&(% 	  Sensitivity of serology 
test 

1 Assumption as non-
distinguishable from time varying 
seroconversion 

 705 

  706 
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Table S 8: Age / care-home scaling factors 707 
   Age / care home -stratified scaling to probability of: 

 

Hospitalisation  

if symptomatic (C4) 

Triage to ICU 
(C:;<) 

Death for general 
inpatients (C4") 

Death in ICU 
(C:;<") 

Death in stepdown 
(C=") 

Death in the 
community (C7") 

Population group <45  <:;<5  <4"5  <:;<"	5  <=5 F <7"5  

Age       

[0, 5) 0.039 0.243 0.039 0.282 0.091 0 

[5, 10) 0.001 0.289 0.037 0.286 0.083 0 

[10, 15) 0.006 0.338 0.035 0.291 0.077 0 

[15, 20) 0.009 0.389 0.035 0.299 0.074 0 

[20, 25) 0.026 0.443 0.036 0.310 0.074 0 

[25, 30) 0.040 0.503 0.039 0.328 0.076 0 

[30, 35) 0.042 0.570 0.045 0.353 0.080 0 

[35, 40) 0.045 0.653 0.055 0.390 0.086 0 

[40, 45) 0.050 0.756 0.074 0.446 0.093 0 

[45, 50) 0.074 0.866 0.107 0.520 0.102 0 

[50, 55) 0.138 0.954 0.157 0.604 0.117 0 

[55, 60) 0.198 1.000 0.238 0.705 0.148 0 

[60, 65) 0.247 0.972 0.353 0.806 0.211 0 

[65, 70) 0.414 0.854 0.502 0.899 0.332 0 

[70, 75) 0.638 0.645 0.675 0.969 0.526 0 

[75, 80) 1.000 0.402 0.832 1.000 0.753 0 

80+ 0.873 0.107 1.000 0.918 1.000 0 

Care home       

CHW 0.104 0.784 0.134 0.519 0.114 0 

CHR 0.873 0.107 1.000 0.918 1.000 1 

 708 
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2 Supplementary Results 709 

 710 

2.1 Model fitting  711 

 712 
Figure S 6: Model fits by region to PCR positivity for individuals aged >25 years (top row) and PCR 713 
positivity from the REACT-1 study (bottom row). The points show the data and bars the 95% CI. The 714 
solid line the median model fit and the shaded area the 95% CrI. 715 

 716 

 717 
Figure S 7: Model fits to daily hospital deaths (top row), daily care home deaths (second row), ICU 718 
bed occupancy (third row), general bed occupancy (fourth row), all hospital beds (fifth row), and all 719 
daily admissions (bottom row) by region (columns). The points show the data, the solid line the 720 
median model fit and the shaded area the 95% CrI. 721 

  722 
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2.2 Severity estimates 723 

 724 
Figure S 8: Fits to CHESS data broken down into one-year age bands. Blue ribbons show the 95% 725 
CrI of the fitted spline, black circles and vertical segments give the raw mean and 95% CI from the 726 
data (exact binomial). 727 

 728 
Table S 9: Age-stratified estimates of disease severity (*to 2sf, ^to 3dp) 729 

 Age stratified estimate of:  

Age group Proportion of infections 
who were hospitalised* 

Proportion of infections who 
died^ 

[0, 5) 3.0% (2.8%, 3.2%)  0.031% (0.027%, 0.034%) 

[5, 10) 0.26% (0.24%, 0.28%) 0.003% (0.002%, 0.003%) 

[10, 15) 0.084% (0.078%, 0.089%) 0.001% (0.001%, 0.001%) 

[15, 20) 0.042% (0.039%, 0.045%) 0.000% (0.000%, 0.001%) 

[20, 25) 0.080% (0.075%, 0.085%) 0.001% (0.001%, 0.001%) 

[25, 30) 0.26% (0.24%, 0.28%) 0.004% (0.003%, 0.004%) 

[30, 35) 0.40% (0.37%, 0.42%) 0.006% (0.006%, 0.007%) 

[35, 40) 0.63% (0.58%, 0.67%) 0.013% (0.011%, 0.014%) 

[40, 45) 1.2% (1.1%, 1.2%) 0.031% (0.026%, 0.035%) 

[45, 50) 1.9% (1.8%, 2.1%) 0.070% (0.061%, 0.080%) 

[50, 55) 2.3% (2.2%, 2.5%) 0.116% (0.101%, 0.133%) 

[55, 60) 4.0% (3.8%, 4.3%) 0.276% (0.242%, 0.315%) 

[60, 65) 9.6% (8.9%, 10%) 0.867% (0.762%, 0.971%) 

[65, 70) 10% (9.6%, 11%) 1.215% (1.070%, 1.352%) 

[70, 75) 24% (22%, 26 %) 3.512% (3.083%, 3.900%) 

[75, 80) 50% (46%, 53%) 8.430% (7.407%, 9.338%) 

80+ 50% (47%, 54%) 9.696% (8.501%, 10.640%) 

Combined 20% (13%, 27%) 34.132% (28.020%, 41.359%) 

730 
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Supplementary counterfactual analysis 731 

 732 
Figure S 9: Counterfactual intervention scenarios in each England NHS Region: Panel A1-7 impact of 733 
locking down one-week earlier Panel B1-7 impact of locking down one week later; Panel C1-7 impact 734 
of relaxing lockdown restrictions two weeks earlier. Panel D1-7 impact of relaxing lockdown 735 
restrictions two weeks later; Panel E1-7 impact of 50% less contact between care home residents and 736 
the general population; Panel F1-7 impact of 50% more contact between care home residents and the 737 
general population. 738 

  739 
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