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Abstract 

Introduction: We hypothesized that an interpretable gradient boosting machine (GBM) model 

considering comorbidities, P-wave and echocardiographic measurements, can better predict 

mortality and cerebrovascular events in mitral regurgitation (MR).  

Methods: Patients from a tertiary center were analyzed. The GBM model was used as an 

interpretable statistical approach to identify the leading indicators of high-risk patients with 

either outcome of CVAs and all-cause mortality. 

Results: A total of 706 patients were included. GBM analysis showed that age, systolic blood 

pressure, diastolic blood pressure, plasma albumin levels, mean P-wave duration (PWD), MR 

regurgitant volume, left ventricular ejection fraction (LVEF), left atrial dimension at end-systole 

(LADs), velocity-time integral (VTI) and effective regurgitant orifice were significant predictors 

of TIA/stroke. Age, sodium, urea and albumin levels, platelet count, mean PWD, LVEF, LADs, 

left ventricular dimension at end systole (LVDs) and VTI were significant predictors of all-cause 

mortality. The GBM demonstrates the best predictive performance in terms of precision, 

sensitivity c-statistic and F1-score compared to logistic regression, decision tree, random forest, 

support vector machine, and artificial neural networks. 

Conclusion: Gradient boosting model incorporating clinical data from different investigative 

modalities significantly improves risk prediction performance and identify key indicators for 

outcome prediction in MR.  
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Introduction 

Mitral regurgitation (MR), defined as a retrograde flow through the mitral valve during 

ventricular systole, is one of the most prevalent valvular heart disease worldwide with an 

estimated incidence of 1.7%[1-3]. The combination of aortic stenosis and MR accounts for three 

in four cases of valvular disease with an age-dependent increase in incidence of greater than 6% 

amongst those above the age of 65[3, 4]. Due to the chronic volume overload under MR, the left 

ventricular function deteriorates under remodeling, which ultimately leads to pulmonary 

hypertension and heart failure[5, 6]. The mechanisms underlying MR can organic, often 

degenerative, valvular defects, or functional problems secondary to left ventricular dysfunction 

[7]. Over the recent years, a variety of prognostic markers has been identified to improve the risk 

stratification in MR. Clinically, Besides from left ventricular ejection fraction, there is increasing 

evidence supporting the use of other electrocardiographic markers in outcome prediction, such as 

left ventricular end systolic diameter, peak mitral inflow velocity, and left atrial size [8-10]. 

Furthermore, P-wave indices, such as P-wave area and P-wave terminal force, were found to 

reflect left atrial remodeling and MR severity, hence may yield useful prognostic insights [11, 

12]. In terms of laboratory markers, raised serum brain natriuretic peptide was found to 

associated with higher risk of cardiac event[13, 14]. The increase in inflammatory biomarkers, 

such as high-sensitivity C-reactive protein and raised neutrophil-to-lymphocyte ratio, were found 

to be associated with the adverse outcomes of MR, such as heart failure [15, 16].  

Currently, there is yet a multi-parametric approach in the risk stratification of MR. 

Recently, we reported that risk stratification of MR can be significant improved with the use of a 

multi-task Gaussian process learning model which outperformed logistic regression [17]. In this 

study, we extend previous analyses by assessing the comparative performance of several 
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machine learning models, such as Decision Tree (DT), Random Forest (RF), Support Vector 

Machine (SVM), Artificial Neural Network (ANN), and Gradient Boosting Machine (GBM). 

 

Methods 

Study population and baseline characteristics 

This study was approved by the New Territory East Cluster- Prince of Wales Hospital 

(NTEC-PWH) Ethics Committee. The anonymized dataset on this study has already been made 

available in an online repository [18, 19]. This study include Han Chinese patients referred for 

echocardiography and subsequently diagnosed with MR during the period between 1st March 

2005 and 30th October 2018. Comprehensive medical data were accessed from the healthcare 

database (Clinical Management System, CMS) that is linked to a territory-wide Clinical Data 

Analysis and Reporting System (CDARS) with unique reference identifier for each patient. Our 

team and other teams have previously used this system for epidemiological studies [20-22]. 

Clinical details including patient age, gender, blood pressure, smoking status, hypertension, 

diabetes mellitus, hypercholesterolemia, ischemic heart disease were extracted with the system. 

These characteristics and comorbidities were manually checked using CMS records to avoid 

under-coding. Automated hematological analyzer performed complete blood counts. 

Biochemical data including sodium, potassium, creatinine, urea, and albumin levels were also 

extracted. Neutrophil-to-lymphocyte ratio (NLR) was given by the ratio of peripheral neutrophil 

count/mm3 to peripheral lymphocyte count/mm3. The prognostic nutritional index (PNI) was 

calculated by 10 × serum albumin value (g/dl)�+�0.005 × peripheral lymphocyte count/mm3. 

Echocardiographic data was also obtained. Primary outcome is all-cause mortality, and 

secondary outcome is incident transient ischemic attack (TIA)/stroke. 
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Electrocardiographic measurements 

We extracted P-wave measurements of patients in sinus rhythm at baseline determined by 

electrocardiography and calculated the mean P-wave duration (PWD) from the leads V1, II, III 

and aVF. In addition, lead V1 was used to determine the amplitude of the P-wave for each 

included patient. Leads V1 to V6 as well as II, III and aVF were used to determine the P-wave 

morphology. P-wave duration (PWD) ≥ 120 ms in the absence and presence of biphasic P-waves 

in the inferior leads were used to indicate partial inter-atrial block (IAB) status and advanced 

IAB status of the patients. P-wave dispersion was determined according to the calculated 

maximum difference in PWD between the leads V1, II, III and aVF. P-wave terminal force in V1 

(PTFV1) was determined as the area subtended by the terminal negative component of a biphasic 

P-wave in lead V1, and the area was calculated by the multiplication of the duration and 

waveform depth [23]. Abnormal PTFV1 was defined if it was > 40 ms.mV. 

 

Variable network analysis 

One interesting exploration of the correlations between variables are the patterns of 

variable clustering, which then forms a variable network that can be visualized. In a variable 

network, each point represents a variable and each path represents a correlation between the two 

variables that it joins. The width and transparency of the path represent the strength of the 

correlation (wider and less transparent = stronger correlation). The positioning of variables can 

be handled by multidimensional scaling of the absolute values of the correlations. Variables that 

are more highly correlated appear closer together and are joined by stronger paths. Paths can also 
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be colored by their sign (e.g., blue for positive and red for negative). The proximity of the points 

is determined using multidimensional clustering [24]. In this study, we first obtain the correlation 

matrix by calculating correlation coefficient of each variable pair, and then visualize the 

correlation matrix in a network diagram. In the diagram, each variable is represented by a node, 

and the connection between each pair of two nodes are shown by a colored path if the correlation 

reaches a threshold. The calculation and visualization are conducted by using the packages 

igraph and corrr in RStudio (Version 1.1.456). 

 

Interpretable gradient boosting learning approach 

Gradient boosting machine (GBM) [25], a state-of-the-art machine learning method, was 

used to identify a set of key leading indicators that may help predict TIA/stroke and all-cause 

mortality. The idea behind boosting is that each sequential model builds a simple weak learner 

model to slightly improve the remaining errors. At each iteration, a new weak tree learner is 

trained with respect to the error the whole ensemble learnt so far. More details about GBM can 

be found in [25] and [26]. 

 

Outcomes and statistical analysis 

The primary outcome is all cause mortality, and secondary outcome is TIA/stroke. 

Evaluation metrics including precision, recall, and F1-score of using gradient boosting machine 

model were calculated and compared to benchmark models of logistic regression (LR), decision 

tree (DT), and the random forest model (RF). DT reveals from observational variables 

(represented in the branches) to target value (represented in the leaves), and was used for 
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cardiovascular disease diagnosis, such as in-hospital mortality [27], congestive heart failure [28] 

etc. RF, first proposed by Breiman [29], is an ensemble approach for building predictive models 

where a forest is formed using a series of decision trees that act as “weak” learners. As individual 

trees, they are poor predictors, but can produce a robust prediction in aggregate form. Owing to 

its simple nature, lack of strong assumptions, and general high prediction performance, RF has 

been successfully used in many medical applications including prediction of severe asthma 

exacerbations [30], hospital readmissions in heart failure [31], non-invasive classification of 

pulmonary hypertension [32], etc. However, it should be noted that GBM is typically used with 

decision trees of a fixed size as base learners. RF combines results at the end of the process (by 

averaging or "majority rules") while GBM combines results along the process. RF builds each 

tree independently while GBM builds one tree at a time. GBM as an additive model works in a 

forward stage-wise manner, introducing a weak learner to improve the shortcomings of existing 

weak learners. In addition, we also include black-box-like machine learning approaches of 

support vector machine (SVM) and artificial neural network (ANN) as baseline models for risk 

stratification.  Statistical analysis was conducted using Stata (Version MP 13.0) and RStudio 

(Version 1.1.456). Experiments are simulated on a 15-inch MacBook Pro with 2.2 GHz Intel 

Core i7 Processor and 16 GB RAM. 

 

Results 

Baseline characteristics and network visualization of variables 

 A cohort of patients diagnosed with mitral regurgitation at a single tertiary centre (n=706; 

57% male; median age: 66 [57-75] years old) was included in this study. Their clinical and 

laboratory parameters at baseline are shown in Table 1, stratified by cerebrovascular event 
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outcome (top) or mortality outcome (bottom). The principles of the GBM model are illustrated in 

Figure 1, where we build an ensemble of shallow and weak successive tree-based learners, then 

sequentially combine a set of weak learners to deliver improved prediction accuracy. The 

network of variables constructed by the correlations between variables are shown in Figure 2, 

yielding patterns of variable clustering and the correlation strength of variable pairs. For 

instance, a cluster is formed by the highly correlated variable pairs of LVEF and LVESD, 

LVEDD and LVESD, LVDD and LVESD, and LVEDD and LVDD. Variables that are more 

highly correlated appear closer together and are joined by stronger paths. Blue and red colours 

denotes positive and red correlation, respectively. Strong correlations are observed between sex, 

urea, creatinine, regurgitant volume, and MR severity, LVDs. 

 

Performance comparisons for risk stratification in mitral regurgitation 

 We compare the performance of using LR, DT, RF, SVM, ANN, GBM to predict i) 

TIA/stroke and ii) all-cause mortality. All the models were trained with 80% of patients and 

tested with five-fold cross-validation approach using the remaining 20% patients. The 

computation results were evaluated using the following metrics of recall, precision, F1-score and 

area under ROC curve (AUC) (Table 2). With cross-validation approach, the GBM model 

significantly produced better risk prediction performance compared with other baseline models 

in predicting both cerebrovascular events and all-cause mortality. As the important 

hyperparameters in the GBM model, the number of trees and the tree depth were tuned to be 500 

and 5, respectively. The hyper-parameter tuning process was essential to improve the predictive 

performance of GBM model. For the SVM model, the radial kernel parameters gamma and cost 

of constraints violation were tuned to 0.01, and 10, respectively. For the ANN model, the number 
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of units in the hidden layer was set to 4, and the decay was set to 0.05. The observations about 

model performance are consistent with previous studies that GBM exhibited better predictions 

than SVM and mixture discriminant analysis in non-medical research domains [33, 34].  

 

Key predictors of adverse outcomes with GBM model 

 The GBM model calculates the importance (predictive strength) of variables to predict 

TIA/stroke (Figure 3, top) and all-cause mortality (Figure 3, bottom) in MR. The top ten most 

important variables for risk stratification of TIA/stroke and all-cause mortality are listed in Table 

3. Average PWD, albumin, MR regurgitant volume, left ventricular ejection fraction (LVEF), 

left atrial dimension at end systole (LADs), velocity-time integral (VTI) and effective regurgitant 

orifice (ERO) play critical roles in predicting TIA/stroke, in descending order of importance. For 

all-cause mortality, urea, LVEF, platelet count, LADs, VTI, albumin, age, sodium, average PWD 

and LVDs are the most powerful predictors. Clearly, the optimum set of variables for predicting 

each outcome is different. For instance, average PWD is the most important predictor in the 

TIA/stroke model, while it is less important in the all-cause mortality model. By contrast, age 

was the most important predictive factor for all-cause mortality. In addition, we can find that 

variables that are highly correlated with those that show high predictive power may not show 

similar strong predictive strength.  

 

Partial dependence of key risk stratification variables 

 Partial dependence plots generated by GBM provide additional insights on how the variables 

affect the adverse outcome. The partial dependence plots of the top eight most important 
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variables for the stroke/TIA prediction model is shown in Figure 4. The deciles of the 

distribution of the corresponding variable are shown by the log odds and the hash marks at the 

base of each plot. The partial dependence of each predictor accounts for the average joint effect 

of the other predictors in the model. Average PWD, LVEF, albumin, and age have a 

nonmonotonic partial dependence. They decrease over the middle range and increases nearly at 

the highest values. MR Volume increases sharply before reaching 150 ml, decreases before 350 

ml and then increases again at the end. For SBP, the risk fluctuates before reaching 170 mmHg 

and then abruptly increases at the end, followed by a small decrease. DBP has a roughly 

monotonically decreasing partial dependence followed by a long plateau still the end. Note that 

these plots are not necessarily smooth, since no smoothness constraint was imposed on the 

fitting.   

 The partial dependence plots generated by GBM between the different variables and all-

cause mortality are shown in Figure 5. For both urea and LADs, there is a monotonic increase in 

the risk of mortality as their levels increase. The relationship between LVEF and mortality is 

complex, with mortality increase as LVEF decreases below 52%. Platelet and albumin show 

similar roughly monotonically decreasing partial dependence except an increase in the middle 

range levels. At very low VTI values, VTI decreases sharply with increasing mortality. Finally, 

for average PWD, there appears to be a U-shaped relationship with al-cause mortality. 

 

Discussion 

In this study, we found that an interpretable machine learning method with the 

consideration of baseline comorbidities, laboratory examinations reflecting inflammatory and 

nutritional states, electrocardiographic P-wave as well as echocardiographic measurements can 
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accurately predict cerebrovascular and mortality in MR. Gradient boosting machine (GBM) 

significantly outperformed other approaches of logistic regression (LR), decision tree (DT), 

random forest (RF), support vector machine (SVM) and artificial neural network (ANN). 

 

A gradient boosting machine (GBM) method outperformed other machine learning techniques 

GBM [25], a state-of-the-art machine learning method, was used to identify a set of key 

leading indicators that may help predict TIA/stroke and all-cause mortality. Previously, GBM 

models have been successfully used for MiRNA-disease association prediction [35], blood 

pressure prediction [36], and identification of medication relations with adverse drug events [37]. 

GBM generally showed better predictive performance in a series of model comparisons 

compared to other machine learning algorithms such as SVM and ANN [38]. Another study used 

a territory-wide database to predict stroke outcome and investigated the performance of SVM, 

ANN and also random survival forest [39], but did not compare it to a GBM approach. Another 

study using the United Kingdom General Practice database compared RF, LR, GBM and neural 

networks for first cardiovascular event in patients initially free from cardiovascular diseases [40]. 

GBM slowly but steadily achieves optimization by growing a series of weak decision trees in a 

stage-wise fashion which efficiently utilize the strengths of classification/regression trees and 

boosting. The superior predictive performance of the GBM model against the conventional 

models highlights the power of machine learning techniques in accounting for the intervariable 

nonlinear correlations, whilst maintaining interpretability, in outcome prediction. GBM is 

appropriate for risk stratification in the present study since it can improve the overall predictions 

by capturing the non-linearity in sparsely populated data. Besides from the advantages of quick 
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convergence and accuracy improvement, GBM avoid overfitting since it can stop learning as 

soon as overfitting has been detected, typically by using cross-validation. 

MR, a classical example of cardiovascular diseases where several factors interplay in its 

progression, is an ideal model for the application of machine learning. Although no other studies 

were noted to use machine learning in the risk stratification of MR, it has been applied in other 

cardiovascular diseases. For example, DT has been successfully used for both diagnosis [28] and 

prognosis prediction [27, 41]. Random forests, first proposed by Breiman [29], is an ensemble 

approach for building predictive models. RF has been successfully used in many medical 

applications including prediction of severe asthma exacerbations [30], hospital readmissions in 

heart failure [31], non-invasive classification of pulmonary hypertension [32]. Recently, RF was 

shown to demonstrate stronger predictive power in identifying predictors for the heterogeneity in 

response against pharmacotherapy amongst a large cohort of heart failure patients [42]. GBM is 

typically used with decision trees of a fixed size as base learners. RF combines results at the end 

of the process, by averaging or using "majority rules", whereas GBM combines results along the 

process. RF builds each tree independently while GBM builds one tree at a time. GBM as an 

additive model works in a forward stage-wise manner, introducing a weak learner to improve the 

shortcomings of existing weak learners.  

With increasing evidence supporting the superiority of machine learning in predictive 

accuracy, it is increasingly applied in multi-parametric risk stratification models. Jamthikar et al. 

developed a novel model based on RF that incorporates conventional risk factors with predictive 

features from carotid ultrasound image as an inexpensive and effective tool for cardiovascular/ 

stroke risk prediction[43]. Similarly, the WATCH-DM risk score was developed to predict the 

risk of incident heart failure during hospitalization amongst diabetic patients. The RF and DT 
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based multiparametric score, which included clinical, laboratory and electrocardiographic 

variables, demonstrated better discrimination than the best-performing Cox-based model, which 

illustrate the potential in the incorporation of machine learning into clinical practice[44]. 

The prognostic use of markers found by the present study is well supported. Clinical 

predictors, such as age, diastolic and systolic blood pressure, were well established, and justified 

by their relation to the pathogenesis and disease progression of MR[45, 46]. For laboratory 

markers, uric acid has been found to correlate with left ventricular remodeling, MR severity and 

the outcome of heart failure in MR[47]. Serum albumin was reported to be lower in those with 

persistent MR after acute rheumatic fever[48]. Mean platelet volume, which reflects the platelet 

production and function, is associated with MR severity and thromboembolism risk[49, 50]. In 

terms of electrocardiographic markers, reduced LVEF, increased left atrial dimensions and left 

ventricular end diastolic diameter have been found to predict MR severity, which is associated 

with increased in-hospital cardiac death risk and overall mortality[47, 51, 52]. P wave indices 

reflective of left atrial remodeling, such as P wave area and P wave terminal force, was 

predictive of MR severity[11, 12]. In this study, P-wave duration was shown to be one of the 

most important predictors of incident stroke and was incorporated for risk prediction in our 

machine learning models.  

 

Study limitations 

Several limitations should be noted. Firstly, it is limited by its retrospective nature and 

single ethnicity of the patients included. Secondly, data on some widely used clinical prognostic 

markers, such as results on exercise tolerance test, were not available for all patients. Finally, 

only the impact of medical or surgical treatment was not assessed in this study.  
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Conclusion 

 An interpretable machine learning risk stratification model considering multi-modality 

clinical data can better predict cerebrovascular events and mortality in MR. Experiments 

demonstrate the advantage of GBM to significantly improve the overall risk stratification 

performance over baseline models, including LR, DT, RF, SVM, and ANN, in addition to 

provide good model interpretability about the predictive strengths of predictors. Partial 

dependences are also observed, which benefit insightful understanding on the effects of these 

predictive variables upon the adverse outcomes. 
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Figures 

Figure 1. Diagram of sequential learning process of GBM prediction model. 
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Figure 2. Variable correlation and clustering network. Abbreviations: LVH (left ventricular

hypertrophy), SBP (systolic blood pressure), DBP (diastolic blood pressure), HTN

(hypertension), DM (diabetes mellitus), PSMR (Primary or secondary mitral regurgitation),

LVDs (left ventricular dimension at end systole), LVDd (left ventricular dimension at end

diastole), LADs (left atrial dimension at end systole), VTI (velocity-time integral), ERO

(effective regurgitant orifice), MRVol (mitral regurgitation volume), LVEDD (left ventricular

end-diastolic diameter), LVESD (left ventricular end-systolic diameter), LVEF (left ventricular

ejection fraction), NYHA class (New York Heart Association class for heart failure). 
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Figure 3. Variable importance plot for GBM to predict TIA/stroke (top) and all-cause mortality

(bottom).  
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Figure 4. Partial dependence of six most important variables in predicting Stroke/TIA 
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Figure 5. Partial dependence of eight most important variables in predicting all-cause mortality. 
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Table 1. Baseline characteristics stratified by outcome of TIA/stroke (left) and all-cause 

mortality (right). Expressed as median (Q1-Q3) for continuous variables or frequency 

(percentage) for categorical variables. P-values indicate comparisons between the groups. 

Abbreviations are the same as those defined in the legend for Figure 1.  

Variable No 
TIA/stroke 

TIA/stroke P-value Alive Dead P-value 

Sex 355 
(355/613) 

48 (48/92) 0.292 334 
(334/587) 

69 (69/118) 0.768 

Age 66 (57-74) 69 (57-77) 0.286 64 (56-
72.75) 

7 (66-81) 1.1e-10 *** 

LVH 198 
(198/613) 

31 (31/92) 0.798 187 
(187/587) 

42 (42/118) 0.437 

SBP 128 (113-
144) 

130.5 
(115.75-
147.25) 

0.987 129 (115-
144) 

125 (109.25-
144.5) 

0.0633. 

DBP 73 (65-83) 74 (64-81) 0.088 74 (65-83) 70 (61.25-83.75) 0.389 

Smoking 196 
(196/613) 

28 (28/92) 0.775 177 
(177/587) 

47 (47/118) 0.0383 * 

Hypertension 511 
(511/613) 

79 (79/92) 0.524 483 
(483/587) 

107 (107/118) 0.0224 * 

Diabetes 
mellitus 

134 
(134/613) 

24 (24/92) 0.370 109 
(109/587) 

49 (49/118) 3.91e-08 *** 

High 
Cholesterol 

164 
(164/613) 

22 (22/92) 0.553 141 
(141/587) 

45 (45/118) 0.00159 ** 

IHD 219 
(219/613) 

32 (32/92) 0.869 186 
(186/587) 

65 (65/118) 1.01e-06 *** 

PSMR 377 
(377/613) 

48 (48/92) 0.092 381 
(381/587) 

45 (45/118) 1.87e-08 *** 

Severity 609 
(609/613) 

92 (92/92) 0.759 583 
(583/587) 

117 (117/118) 0.674 

LVDd 5.2 (4.7-
5.8) 

5.2 (4.625-
5.8) 

0.842 5.1 (4.6-
5.8) 

5.4 (4.9-5.9) 0.0335 * 

LVDs 3.5 (3-4.2) 3.5 (3.1-
4.35) 

0.850 3.5 (3-4.1) 4.1 (3.2-4.9) 0.2 

LADs 4.2 (3.5-
4.8) 

4 (3.4-4.6) 0.200 4.1 
(3.4925-
4.7) 

4.6 (3.5-5.15) 0.00356 ** 

VTI 156.8 
(135.4-
181.25) 

161.3 
(145.4-
188) 

0.952 157.4 
(136.175-
181.375) 

160.15 
(136.625-
190.55) 

0.815 

MR volume 157.1 
(63.675-
332.9) 

148.2 
(76.15-
364.2) 

0.185 168.1 
(66.225-
342.75) 

122 (65-311.7) 0.353 
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ERO 0.27 (0.16-
0.435) 

0.25 (0.18-
0.36) 

0.570 0.27 
(0.165-
0.44) 

0.23 (0.13-0.39) 0.575 

MRVol 41.995 
(26.1-
67.015) 

39.2 
(27.75-
59.25) 

0.372 42 (26.8-
67.95) 

37 (24.4-54.1) 0.0667. 

LVEDD 5.2 (4.7-
5.8) 

5.2 (4.65-
5.8) 

0.751 5.1 (4.6-
5.8) 

5.4 (4.9-5.9) 0.411 

LVESD 3.5 (3-4.2) 3.5 (3.1-
4.4) 

0.514 3.49 (3-4.1) 4.1 (3.225-
4.975) 

5.34e-06 *** 

LVEF 59 (50-65) 56.95 
(41.75-
64.05) 

0.0913 60 (52-65) 50 (35-60) 2.6e-08 *** 

Symptomatic 197 
(197/613) 

24 (24/92) 0.244 176 
(176/587) 

45 (45/118) 0.0817. 

NYHA class 610 
(610/613) 

92 (92/92) 0.231 575 
(575/587) 

117 (117/118) 0.0279 * 

Surgery 259 
(259/613) 

35 (35/92) 0.446 260 
(260/587) 

34 (34/118) 0.00183 ** 

Average P-
wave 
duration  

112.3 
(97.625-
124.225) 

107.5 (97-
121.3) 

0.104 109.9 
(96.8-
123.5) 

113.5 (103.25-
123.3) 

0.171 

Lymphocyte 
count 

1.3 (0.8-
1.715) 

1.2 (0.9-
1.6) 

0.753 1.4 (1-1.8) 0.9 (0.7-1.5) 5.69e-07 *** 

Neutrophil 
count 

5.1 (3.8-
7.1) 

5.61 (4-
7.48) 

0.119 5.02 (3.8-
7.2) 

5.5 (4-7.15) 0.23 

Albumin 36.9 (32-
41.4) 

36.1 (30.7-
40.3) 

0.316 37.9 (33.2-
41.7) 

33.4 (28.65-
37.8) 

9.29e-10 *** 

Creatinine 90 (72-
117) 

94.5 
(74.25-
110.5) 

0.755 87 (71-106) 117.5 (87-
190.75) 

3.57e-15 *** 

Platelet 207 (166.5-
263.5) 

202 
(161.25-
256) 

0.599 209 (171-
269) 

197.5 (151.25-
239.25) 

0.0427 * 

Potassium 4 (3.7-4.3) 4.1 (3.775-
4.325) 

0.721 4 (3.7-4.3) 3.95 (3.575-4.3) 0.124 

Sodium 139.6 (137-
141.4) 

139.3 
(137.175-
141.225) 

0.679 139.6 
(137.3-
141.5) 

138.75 (136.05-
140.725) 

0.216 

Urea 4.9 (6.5-
8.47) 

6.47 (4.54-
8.9075) 

0.966 6.15 (4.81-
7.85) 

8.885 (5.175-
17.2825 ) 

<2e-16 *** 
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Table 2. Performance comparison of Logistic Regression (LR), Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gradient 

Boosting Machine (GBM) in predicting TIA/stroke and all-cause mortality with five-fold cross-

validation. The best metrics are shown in bold. 

Adverse outcome Model Recall Precision F1-score AUC 

TIA/stroke LR 0.5581  0.5189  0.5378  0.4128  

DT 0.6302  0.6826  0.6554  0.5528  

RF 0.7327  0.7104  0.7214  0.7202  

SVM 0.7301  0.7211  0.7256  0.7429  

ANN 0.7121  0.7272  0.7196  0.7533  

GBM 0.7909  0.7828  0.7868  0.8084  

All-cause mortality LR 0.5629  0.5241  0.5428  0.4063  

DT 0.6407  0.6862  0.6627  0.5490  

RF 0.7123  0.6735  0.6924  0.7132  

SVM 0.7094  0.7255  0.7174  0.7354  

ANN 0.7196  0.7055  0.7125  0.7702  

GBM 0.7703  0.7961  0.7830  0.7962  
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Table 3. Top ten most important variables for GBM to predict stroke/TIA and all-cause 

mortality.  

Stroke/TIA All-cause mortality 

Variable Importance Variable Importance 

PWD.Average 7.39575638  Urea 13.0174483  

Albumin 6.96337408  LVEF 9.8039849  

MR.volume 6.75244604  Platelet 6.5079659  

LVEF 6.33211352  LADs 6.3070352  

DBP 5.89778068  VTI 4.8609568  

SBP 5.85177609  Albumin 4.5779961  

Age 5.62802293  Age 4.4357176  

LADs 5.18594188  Sodium 4.4212368  

VTI 5.09976485  PWD.Average 4.2446033  

ERO 4.01540682  LVDs 4.0208133  
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