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Abstract
The announcement of efficacious vaccine candidates against SARS-CoV-2 has been met with worldwide
acclaim and relief. Many countries already have detailed plans for vaccine targeting based on minimising
severe illness, death and healthcare burdens. Normally, relatively simple relationships between epidemiolog-
ical parameters, vaccine efficacy and vaccine uptake predict the success of any immunisation programme.
However, the dynamics of vaccination against SARS-CoV-2 is made more complex by age-dependent factors,
changing levels of infection and the potential relaxation of non-pharmaceutical interventions (NPIs) as the
perceived risk declines. In this study we use an age-structured mathematical model, matched to a range of
epidemiological data, to consider the interaction between the UK vaccination programme and future relax-
ation (or removal) of NPIs. Our predictions highlight the population-level risks of early relaxation leading
to a pronounced wave of infections, and the individual-level risk relative to vaccine status. While the novel
vaccines against SARS-CoV-2 offer a potential exit strategy for this outbreak, this is highly contingent on
the transmission blocking action of the vaccine and the population uptake, both of which need to be carefully
monitored as vaccine programmes are rolled out in the UK and other countries.

1 Introduction 1

The outbreak of SARS-CoV-2 that began in Wuhan, China, in late 2019 has dramatically shaped life in 2

2020 as a world-wide pandemic emerged [1]. In the UK, the first cases were identified on 31st January 3

2020 [2], with February and March witnessing an exponential rise in cases[3]. The first lockdown began 4

on 23rd March and reversed the growth in infection, although important health metrics such as hospital 5

occupancy and deaths continued to increase for several days[4]. The steady, but spatially heterogeneous, 6

decline continued until August 2020 when a relaxation of controls and increased mixing as a result of this 7

precipitated a second wave and, subsequently, a second lock-down in November 2020. By early December 8

2020, the UK had suffered over 60,000 deaths and 225,000 hospital admissions due to COVID-19; and yet it 9

is estimated that less than 20% of the population have been exposed to the virus [5] suggesting the outbreak 10

is far from complete. Mass vaccination, and hence protection, of the population offers a potentially rapid 11

exit strategy. 12

Within a year, over 50 companies have developed the first vaccines against any coronavirus. In early 13

December 2020, one of these (Pfizer/BioNTech’s BNT162b2[6]) was approved for use in the UK, with 14

several others in late Phase 3 trials showing promising preliminary efficacy data. As of 12th December 15

2020, the UK has ordered 357 million doses of vaccines from 7 different developers: 100 million doses of 16

University of Oxford/AstraZeneca vaccine[7]; 40 million doses of BioNTech/Pfizer vaccine; 7 million doses 17

of Moderna vaccine; 60 million doses of Novavax vaccine; 60 million doses of Valneva vaccine; 60 million 18

doses of GSK/Sanofi Pasteur vaccine; and 30 million doses of Janssen vaccine [8]. This is far in excess of 19

any possible demand from the UK population, but mitigates for potential delays or failures from any single 20

manufacturer. One continuing unknown with the potential vaccines is the degree to which they impact 21

onward transmission (rather than simply preventing symptomatic infection); this is a key uncertainty that 22

is investigated throughout this paper. 23

Vaccination against SARS-CoV-2 provides multiple unique challenges that are not encountered by other 24

vaccination programmes. Most of the intuition about vaccination programmes is based on childhood vaccines 25

where the aim is simply to achieve high uptake in each birth cohort and associated boosters. To date the 26

seasonal influenza programme represented the largest annual delivery of vaccination in the UK [9], but 27

seasonal influenza immunisation is pro-active (beginning before many cases arise), the ‘flu’ season is of 28

relatively short duration and R for seasonal influenza is lower than for SARS-CoV-2 owing to both greater 29

population immunity and a lower basic reproduction ratio [10]. In contrast, for SARS-CoV-2 there is a race 30
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between infection and vaccination - vaccination rates are limited by supply and logistics, whereas infection 31

can grow exponentially. However, the infection rate can be reduced by a range of non-pharmaceutical 32

interventions whilst a vaccine can be targeted to where it will have the most impact[11]. The future of 33

COVID-19 control is therefore dependent, in a complex non-linear way, on the initial prevalence of infection, 34

the level of non-pharmaceutical interventions (NPIs) and therefore the rate of growth or decay, the speed with 35

which the vaccine can be rolled out, the targeting and uptake of the vaccine and the vaccine characteristics. 36

The uncertainties and interactions between these components necessitates the use of mathematical models 37

to explore scenarios. 38

Here, we present an age-structured mathematical model, matched to a range of epidemiological data, to 39

forecast the dynamics of COVID-19 into 2021 and beyond based on multiple combinations of scenarios. 40

These model results provide likely bounds on the expected number of deaths and hospitalisations and hence 41

provide important policy insights into the interaction between continued non-pharmaceutical interventions 42

and the forthcoming vaccination programme. We focus on the risk-structured delivery programme for the 43

UK and the potential risks of relaxing NPIs; we also consider the individual risks and how these are mitigated 44

by vaccination. 45

2 The mathematical model and vaccination assumptions 46

We adapt an existing age and regionally structured model of SARS-COV-2 dynamics that has been matched 47

to UK data [12, 13] to include the consequences of vaccination [11]. The model captures the historic trends of 48

infection, hospitalisation and deaths in the UK, including the scale of the first and second waves. Including 49

vaccination into this model shows how prioritising the oldest age-groups leads to the greatest reduction in 50

deaths [11]. Here we increase the realism of the vaccination dynamics, including the timing of vaccine roll 51

out across the population and the need to administer two doses. One key issue that the model cannot 52

address is the level of non-pharmaceutical interventions (NPIs) that will be imposed in the future and the 53

level of support (and therefore adherence to NPIs) from the general population. We have optimistically 54

assumed that controls in the short-term are sufficient to keep the reproductive number (R) just below one; 55

we then relax controls at various times throughout 2021 to investigate the level of protection generated by 56

vaccination. All results represent the mean of multiple simulations which explore the inferred epidemiological 57

parameter space determined by matching to a range of epidemiological time series; credible intervals for the 58

predictions are shown in the Supporting Information (Section S2). 59

Vaccination schedules for the UK are still not determined over long time scales, although the immediate 60

priority order has been defined [11, 14]. We implement a three phase programme that approximates a plau- 61

sible (but optimistic) roll-out of SARS-CoV-2 vaccination in the UK (Figure 1a), following in each stage 62

the identified priority ordering: 63

Phase 1a Pfizer/BioNTech vaccine alone for the first 4M doses (= 2M persons) with roll-out from 8th 64

December and lasting approximately one month. We assumed vaccine efficacy to be 90%. 65

Phase 1b A mixture of vaccines are deployed until everyone aged over 50 and those with comorbidities 66

classifying them as high risk have been targeted. This takes approximately 3 more months starting from 67

1st January, and we assumed the mean vaccine efficacy to be 80%. 68

Phase 2 Vaccines are offered to remaining adults below the age of 50 and above the age of 18, taking 69

approximately three and a half more months with completion occurring by late July. For this phase we 70

again assumed the mean vaccine efficacy to be 80%. 71

72

Throughout we assume 95% uptake in care homes and 75% elsewhere, with vaccination randomly distributed 73

across the population. These may be optimistic assumptions; uptake could be lower in younger age-groups 74

due to a belief that COVID-19 infection is likely to have mild symptoms and therefore vaccination does 75

not have a major individual health benefit. In practice, vaccination is also likely to be highly correlated 76

within households and socio-demographic groups [15], which will weaken the population-scale impact of any 77

transmission blocking by the vaccine. 78

We use a 2-dose model to simulate the impact of vaccination in both reducing disease and in reducing onward 79

transmission. We assume that delivery of the second dose is prioritised over new first doses (Figure 1a). In 80

the absence of detailed vaccine specific information, we also assume a stepped efficacy over time following 81

the first dose, which scales with the assumed final vaccine efficacy (VE): from the first dose to day 7, zero 82

efficacy; from day 7 to second dose on day 28, 50% VE; from day 28 to day 35, 50% VE; from day 35 83

onwards, 100% VE (Supplementary Material). Vaccine efficacy against disease is assumed to be high (in 84

keeping with preliminary reports): 90% during the earliest phase, dropping to 80% when multiple vaccines 85
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Figure 1: Scheduling and impact of vaccine uptake. a) The assumed up-take over time showing the propor-
tion in each age-group that have received two doses of vaccine by the total number of doses (lower x-axis)
or a given date (upper x-axis). b) The impact of the vaccination programme, defined by the number of
administered doses, on the reproductive ratio R in the absence of all non-pharmaceutical interventions.
Four different assumptions are made about the ability of the vaccine to block transmission: no transmission
blocking (−0% transmission, orange line with solid circle markers); low transmission blocking (−25% trans-
mission, purple line with triangle markers); moderate transmission blocking (−50% transmission, yellow line
with square markers); high transmission blocking (−75% transmission, green line with diamond markers).

are in use. The role of vaccines in blocking transmission is less clear so we consider a range of transmission 86

efficacy from 0% to 75%, which we assume operates by preventing primary infection. We note that the 87

disease efficacy takes into account both infection blocking and the reduction of severe symptoms if infection 88

does occur (Supporting Information, Section S1.1). 89

While efficacy against disease is of major early benefit in protecting individuals against severe disease, it is 90

the transmission blocking potential of the vaccine that leads to a reduction in the intrinsic growth rate and 91

the reproduction number, R. Figure 1b shows the reproduction number R, on release of non-pharmaceutical 92

interventions, as the vaccine programme progresses for four different assumptions of transmission efficacy. 93

For zero transmission efficacy (orange line), R ≈ 2.2 a reduction from the observed growth in the first wave 94

due to the slight depletion in susceptibles from natural infection; whereas when transmission efficacy is 95

high (75% transmission blocking, green line), vaccination can generate a substantial decline in the repro- 96

ductive number, although still insufficient to drive R below 1 for our default assumptions about vaccine 97

uptake. 98

3 Predictions under vaccination and changing NPIs 99

We simulate the infection dynamics from February 2020, matching to the observed pattern of cases, hos- 100

pitalisations and deaths, and then predict the impact of vaccination on daily deaths until the end of 2021 101

(Figure 2). Unsurprisingly, in the absence of vaccination (blue line) we observe the largest waves of infection 102

with the most deaths, which are reduced by increasing levels of transmission efficacy. Early, modest relax- 103

ation of NPIs (Figure 2a), matched to the levels observed in early September when R was between 1.2 and 104

1.4 across different English regions and devolved nations, leads to subsequent waves of infection even under 105

the most efficacious assumptions (green line shows a vaccine that blocks 75% of infection). Later relaxation 106

of NPIs (April 2021 in Figure 2b) provides a greater opportunity for some level of herd-immunity to have 107

accrued if the vaccine is moderately effective at blocking infection. 108

We consider the total number of deaths predicted by the model (Figure 2c), which equates to the areas 109

under the curve in the preceding graphs. This provides an opportunity to consider sensitivity to vaccine 110

uptake. The central bar represents 75% uptake in the general population (as shown in Figure 1 and the 111

rest of Figure 2), whereas the lower limits of each box correspond to more optimistic up-take, corresponding 112

to an increased 85% uptake in those above 50 years old, and the upper limits represent a more pessimistic 113

scenario with 65% uptake in this older age-group and 45% uptake in the remaining population. The main 114

panel shows the predicted mortality from the start of 2021 for different dates at which NPI are partially 115

relaxed (to the level observed in early September 2020). Even maintaining these levels of NPI control and 116

having a highly efficacious vaccine (green bars), we estimate over ten thousand deaths are likely to occur 117

due to the slow decline in cases from its current high level; early relaxation of control measures or low 118

transmission efficacy can lead to a pronounced subsequent wave of infection. 119

If we wish to completely lift all restrictions once both phases of the vaccination campaign is complete, then 120
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(c)

Figure 2: Predicted daily deaths in the UK following the start of an immunisation program and relaxation
or removal of NPIs. Panels (a) and (b) show the effect of relaxing current NPI measures down to those
seen in early September 2020 (R ∼ 1.2 − 1.4) from January or April 2021 respectively. Panel (c) displays
the aggregate effects of partial release of NPI measures at different dates during the vaccination programme
(left) compared with complete release from July 2021 (right); the upper limit, central bar and lower limit of
each box corresponds to pessimistic, default and optimistic assumptions about vaccine uptake. The lower
panels (d) and (e) correspond to a gradual reduction in NPIs until all controls are removed, as illustrated
by the grey area. The default scenario (a,b, d & e) assumes 75% uptake in the general population; the
optimistic scenario has an increased uptake at 85% in those above 50; while the pessimistic scenario has a
decreased 65% uptake in the over 50’s and 45% uptake in the remaining population.
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we predict a substantial outbreak with a large number of associated deaths (Figure 2c right-hand panel). 121

When the vaccine is not transmission blocking removing NPIs trigger an uncontrolled wave of infection in 122

which only those successfully immunised (approximately 80% of 75%) will escape. Optimistic assumptions 123

for both vaccine and uptake can still lead can still lead to 49 thousand deaths; with 13 thousand from 124

January to July, and 36 thousand from July onwards when NPIs are released. 125

The step-wise release of all NPIs (Figure 2c right-hand panel, Supporting Information) modelled so far 126

generates an over-shooting wave of infection; a more gradual release of restrictions mitigates against these 127

effects (Figure 2d & e). A slow release of NPIs (as illustrated in Figure 2e) generates the fewest deaths, which 128

under the most optimistic assumptions we predict around 39 thousand deaths (from January 2021). 129

The precise dynamics and outcomes are contingent on the assumed intrinsic growth rate before the relaxation 130

of NPIs, which here is approximately R = 0.95 – other values for this quantity will change the precise curves 131

but do not change the qualitative conclusions. We see similar behaviour if we examine the number of 132

daily hospitalisations (Supporting Information, Section S2), with a notable third wave predicted if NPIs are 133

relaxed too early or if the vaccine has a limited impact on transmission. 134

4 Impact of vaccination status 135

While we have predominantly focused on the population-level consequences of the vaccination programme, 136

one key question is the likely vaccination status of individuals that are severely ill. We characterise this 137

relationship as a function of the number of doses delivered so far (as part of the mass vaccination programme) 138

and for a consistent 75% vaccine uptake across all age-groups (Figure 3). We display findings assuming 50% 139

transmission efficacy, with similar results obtained for all levels of transmission efficacy. We consider four 140

categories of individual: those who have not yet been offered the vaccine (grey); those who are in an eligible 141

age-group but due to health reasons or personal beliefs remain unvaccinated (yellow); those who had received 142

one dose so far (light blue); and those that have received both doses dark blue). Those individuals that have 143

not been offered the vaccine declines linearly, while those unvaccinated but in eligible age groups and those 144

that have received two doses grow linearly (Figure 3a). The unfolding epidemic (matched to Figure 2a) is 145

then distributed across these four status groups (Figure 3b). For low numbers of doses, deaths are dominated 146

by those who have yet to be offered the vaccine and those that have only received one dose; for moderate 147

numbers of doses (15-40M) deaths are dominated by those that have not been vaccinated but are in the 148

eligible age groups. 149

By plotting the proportion of all deaths associated with each status we observe that around 40% of deaths 150

can be expected in those that have been vaccinated (Figure 3c). We stress that while at the individual- 151

level two doses of vaccine reduces the risk of mortality by 80%, because vulnerable vaccinated people 152

rapidly outnumber vulnerable unvaccinated people we should expect to see a high proportion of vaccinated 153

individuals suffering severe disease and mortality. 154

The final shape of these distributions is a function of vaccine uptake in the most at-risk; increasing vaccine 155

uptake reduces the number of deaths but paradoxically increases the contribution of vaccinated individuals 156

to the proportion of deaths. There is also a strong influence of how well the vaccine protects against severe 157

disease – greater efficacy against the most severe disease will again reduce the number of deaths and will also 158

decrease the proportions associated with vaccinated individuals. However, if the vaccine is less efficacious 159

in the elderly this trend would be reversed. 160
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Figure 3: Characterisation of the dynamics in terms of vaccine status (not yet offered the vaccine; un-
vaccinated in an eligible age-group; received one dose; received two doses) as a function of the number of
doses delivered so far. (a) The composition of the entire population (b) The number of daily deaths (c)
The proportion of deaths. We display simulations assuming a consistent 75% vaccine uptake across all
age-groups, assuming 50% transmission efficacy, and with a moderate reduction in NPIs at the start of 2021
(corresponding to the yellow curve in Figure 2a).

5 Conclusions 161

Here we have shown that high efficacy vaccines which provide a substantial level of transmission blocking 162

offer a means of eventually relaxing controls without suffering a large subsequent wave of hospitalisations 163

and deaths. Our conclusions rely on not only the vaccine characteristics but also upon the uptake in the pop- 164

ulation; in particular the most vulnerable groups, but also in the general population if transmission blocking 165

is to be successful. We examined this in Figure 2e considering three different assumptions about vaccine 166

uptake, but in practice vaccine uptake is likely to be regionally and socio-demographically correlated [16, 17]. 167

Such correlations may potentially lead to pockets of high susceptibility in the population which can act as 168

locations of small-scale outbreaks and reduce herd immunity [18]. It is also likely that vaccine uptake will 169

vary in time as the population’s perceived risk varies [19, 20], with high levels of hospitalisations and deaths 170

leading to a greater demand for the vaccine. We expect there to be a complex four-way interaction between 171

levels of infection, NPI policy, NPI adherence and vaccine uptake. From a public health perspective, it is 172

therefore key to understand the drivers of vaccine uptake and vaccine hesitancy, identify groups that may 173

have lower than average uptake and plan accordingly.. 174

Early relaxation of non-pharmaceutical interventions (NPIs), before sufficient immunity is established, has 175

been shown to precipitate a large wave of infection with resultant hospitalisations and deaths; a similar 176

impact is predicted from any final release of NPIs if herd immunity has not been achieved (Figure 2). Even 177

with high levels of vaccine uptake, a substantial fraction of the population needs to be immunised to prevent 178

subsequent waves of infection (Figures 1 and 2), and strong NPIs will still be required even when Phase 1 179

of the vaccination programme is complete. We have focused on scenarios where NPIs are switched off in a 180

step-wise manner, but even a more measured approach in which NPIs are gradually released over a period 181

of many months does not prevent the worse effects (Supporting Information, Section S2). We stress that 182

as hospitalisations and deaths increased we would expect both national legislation and emergent behaviour 183

to limit the spread [21]. Therefore, our scenarios represent a pessimistic view of measures in response to a 184

worsening outbreak. 185

At the time of writing only two vaccine manufacturers have peer-reviewed publications presenting the 186

findings of their phase 3 trials [6, 7]. These have been used to provide approximate parameters for this 187

modelling work, but many questions have not been quantitatively addressed. However, a number of key 188

vaccine parameters within the model are based on parsimonious assumptions. We identify the following three 189
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issues that require additional experimental data to refine model assumptions: as elucidated throughout this 190

paper determining whether the vaccine blocks transmission is key for the development of herd immunity and 191

hence the role of vaccination in the long-term control of COVID-19; we have assumed that efficacy against 192

disease applies equally across the entire spectrum of disease, however if the vaccine has differential protection 193

against the most severe disease this will impact our predictions for hospital admissions and deaths. Finally, 194

we expect efficacy to vary with age and between risk groups; incorporating such heterogeneity into models 195

is key for more robust predictions. 196

Over longer time scales the possibilities of waning immunity and mutation may upset these predictions. 197

Waning immunity, either naturally derived or from vaccination, may necessitate seasonal vaccination pro- 198

grammes against SARS-CoV-2 protecting the most vulnerable in a similar manner to seasonal influenza 199

vaccines [22]. Again we are lacking in our fundamental understanding of SARS-CoV-2 epidemiology, in par- 200

ticular whether subsequent infections have the same severity as primary infections, as well as the duration 201

of protection. Both of these elements can be factored into the prediction mechanisms, but without detailed 202

evidence such long-term forecasts are speculation. 203

Effective vaccines with high uptake are likely to be an essential element in the long-term control and 204

potential elimination of COVID-19. However, experience with other diseases has illustrated that elimination 205

is difficult and generally requires a targeted multi-strategy approach [23], the same is likely to be true for 206

SARS-CoV-2. While mass vaccination will inevitably reduce the reproductive number R and reduce disease 207

prevalence, other measures, such as intensive test-trace-and-isolate, will be needed to target pockets of 208

infection. Ultimately whether we achieve eradication of SARS-CoV-2 is likely to depend on the long-term 209

natural history of infection and the public health importance attached to this goal. 210
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SUPPORTING INFORMATION

S1 The Mathematical Model
The model involves an extended SEIR-type framework: susceptibles (S) may become infected and move
into a latent exposed (E) state before progressing to become infectious. Echoing the observed behaviour
of COVID-19 infections, the model differentiates between individuals who are symptomatic (D, and hence
likely to be detected) and those who are asymptomatic (U , likely to remain undetected). Partitioning those
who are infectious by symptom status allows for a lower level of transmission believed to be associated
with asymptomatic infection. It also generates the possible progression of symptoms increasing in severity,
leading to hospitalisation and/or death.

Here we present the basic model formulation that underpins the age-structured predictions of COVID-19
dynamics in the UK, and how the parameters of this model have been inferred from the available data.
We used a compartmental age-structured model, developed to simulate the spread of SARS-CoV-2 within
ten regions of the UK (seven regions in England: East of England, London, Midlands, North East &
Yorkshire, North West, South East and South West; and the devolved nations: Northern Ireland, Scotland
and Wales) [12], with parameters inferred to generate a good match to deaths, hospitalisations, hospital
occupancy and serological testing [24]. The model population is stratified by age, with force of infection
determined by the use of an age-dependent (who acquires infection from whom) social contact matrix for
the UK [25, 26]. Additionally, we allow susceptibility and the probabilities of becoming symptomatic, being
hospitalised and the risk of dying to be age dependent; these are matched to UK outbreak data. Finally,
we account for the role of household isolation, by separating primary and secondary infections within a
household (more details may be found in [12]). This allows us to capture household isolation by preventing
secondary infections from playing a further role in onward transmission. Model parameters were inferred on
a regional basis using regional time series of recorded daily hospitalisation numbers, hospital bed occupancy,
ICU occupancy and daily deaths [24].

S1.1 Model description
We first show the underlying system of equations that account for the transmission dynamics, including
symptomatic and asymptomatic transmission, household saturation of transmission and household quaran-
tining. The population is stratified into multiple compartments: individuals may be susceptible (S), exposed
(E), infectious with symptoms (I), or infectious and either asymptomatic or with very mild symptoms (A).
Asymptomatic infections are assumed to transmit infection at a reduced rate given by τ . To some extent,
the separation into symptomatic (I) and asymptomatic (A) within the model is somewhat artificial as there
are a wide spectrum of symptom severities that can be experienced.

We let superscripts denote the first infection in a household (F ), a subsequent infection from a symptomatic
household member (SI) and a subsequent infection from an asymptomatic household member (SA). A
fraction (H) of the first detected cases (necessarily symptomatic) in a household are quarantined (QF ),
as are all their subsequent household infections (QS) - we ignore the impact of household quarantining on
the susceptible population as the number in quarantine is assumed small compared with the rest of the
population. The recovered class is not explicitly modelled, although it may become important once we have
a better understanding of the duration of immunity. We omitted natural demography and disease-induced
mortality in the formulation of the epidemiological dynamics.

We extended the model formulation to capture a range of vaccination scenarios. We modelled two vaccination
classes for individuals where it has been 7 days since they received their first and second dose of the vaccine,
where the 7-day delay allows partial immunity to develop (Figure S2). We included these within the S and E
class by adding an additional vaccination subscript for the number of doses received; hence Sa,0 corresponds
to susceptible unvaccinated individuals while Sa,2 corresponds to those that received their second dose of
vaccine at least 7 days ago.
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Figure S1: Representation of the basis model states and transitions. Black arrows show key epidemiological
transitions while blue arrows show movements to observable states. Parameters in green show the action of
vaccine on infection and probability of disease.
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Figure S2: Dynamics of vaccine efficacy within an individual. 7 days after the first dose partial efficacy is
development, and 7 days after the second dose efficacy is raised to its maximum value. We highlight two
forms of efficacy: disease efficacy (red) which prevents the development of symptomatic infection and acts
on parameter d within the model; and transmission efficacy (green) which prevents all infection and acts on
parameter σ.
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The full equations are given by

dSa,0

dt
= −

(
λF

a,0 + λSI
a,0 + λSA

a,0 + λQ
a,0

) Sa,0

Na
− v1(t)Sa,0,

dSa,1

dt
= V 1(t)Sa,0 −

(
λF

a,1 + λSI
a,1 + λSA

a,1 + λQ
a,1

) Sa,1

Na
− V 2(t)Sa,1,
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(
λF

a,2 + λSI
a,2 + λSA
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dt
= λSI

a,v

Sa,v

Na
−MεESI

1,a,v,

dESA
1,a,v
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dEQ
1,a,v
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dt
= MεEX

m−1,a,v −MεEm,a,v, X ∈ {F, SI, SA,Q}

dIF
a

dt
= da,v(1−H)MεEF

M,a,v − γIF
a ,
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a

dt
= da,vMεESI
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a ,

dISU
a

dt
= da,v(1−H)MεESA
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a ,

dIQF
a

dt
= da,vHMεEF
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a ,
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a

dt
= da,vHMεESA

M,a,v + da,vεE
Q
a − γIQS

a ,

dAF
a

dt
= (1− da,v)MεEF

M,a,v − γAF
a ,

dAS
a

dt
= (1− da,v)Mε(ESI

M,a,v + ESA
M,a,v)− γAS

a ,

dAQ
a

dt
= (1− da,v)MεEQ

M,a,v − γA
Q
a ,

Here we have included m latent classes, giving rise to an Erlang distribution for the latent period, while the
infectious period was exponentially distributed. Throughout we have taken M = 3.

The forces of infection which govern the non-linear transmission of infection obey:

λF
a,v = σa,v

∑
b

(
IF

b + ISI
b + ISA

b + τ(AF
b +AS

b )
)
βN

ba,

λSI
a,v = σa,v

∑
b

IF
b β

H
ba,

λSA
a,v = σa,vτ

∑
b

AF
a β

H
ba,

λQ
a,v = σa,v

∑
b

DQF
b βH

ba,

where βH represents household transmission and βN = βS + βW + βO represents all other transmission
locations, comprising school-based transmission (βS), work-place transmission (βW ) and transmission in all
other locations (βO). These matrices are taken from Prem et al. [26] to allow easily translation to other
geographic settings, although other sources such as POLYMOD [25] could be used.

Two key parameters, together with the transmission matrix, govern the age-structured dynamics: σa cor-
responds to the age-dependent susceptibility of individuals to infection; da the age-dependent probability
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of displaying symptoms (and hence potentially progressing to more severe disease). Both of these are also
modified by the vaccine status, such that those that have received one or two doses of vaccine have a lower
risk of infection and a lower risk of developing symptoms. The action of vaccine on the parameter σ cap-
tures the transmission blocking aspect of the vaccine, while the action on d captures the efficacy against
disease (Figure S2). We also define τ as the reduced transmission from asymptomatic infections compared
to symptomatic infections; given the probability of displaying symptoms is less in the younger age groups,
this parameter shapes the role of younger ages in onward transmission.

We require our model to capture both individual level quarantining of infected individuals and isolation of
households containing identified cases. In a standard ODE framework this level of household structure is
only achievable at large computational expense [27, 28]. Thus, we instead made a relatively parsimonious
approximation to achieve a comparable effect.

We assume that all within household transmission originates from the first infected individual within the
household (denoted with a superscript F , or QF if they become quarantined). This allows us to assume
that secondary infections within a household in isolation (denoted with a superscript QS or Q) play no
further role in any of the transmission dynamics. As a consequence, high levels of household isolation can
drive the epidemic extinct, even if within household transmission is high – an effect not achievable with the
standard SEIR-type modelling approach. This improved methodology also helps to capture to some degree
household depletion of susceptibles (or saturation of infection), as secondary infections in the household are
incapable of generating additional household infections.

S1.2 Capturing social distancing
We obtained age-structured contact matrices for the United Kingdom from Prem et al. [26]. We used these
contact matrices to provide information on normal levels household transmission (βH

ab, with the subscript
ab corresponding to transmission from age group a against age group b), school-based transmission (βS

ab),
work-place transmission (βW

ab ) and transmission in all other locations (βO
ab).

We assume that any instigated non-pharmaceutical interventions (patterns of social-distancing or lockdown
measures) leads to a reduction in the work, school and other matrices while increasing the strength of
household contacts. Any given level of non-pharmaceutical interventions (NPIs), captured by the parameter
φ between zero and one, therefore scales the four transmission matrices between their normal values (when
φ = 0) and their value under the most severe lockdown (φ = 1).

We infer the level of NPIs as a slowly varying parameter in the MCMC processes on a weekly basis. In turn,
the weekly value of φ allows us to calculate the growth rate r (and hence the reproductive number R) by
an eigenvalue approach.

S1.3 Parameter Inference
As with any model of this complexity, there are multiple parameters that determine the dynamics. Some of
these are global parameters and apply for all geographical regions, with others used to capture the regional
dynamics. Some of these parameters are matched to the early outbreak data (including the resultant age-
distribution of infection), however the majority are inferred by an MCMC process (Table 1).

We would highlight that the parameters of α and τ are key in determining age-structured behaviour and
are therefore essential in quantifying the role of school children in transmission [29]. We argue that a low
τ and a low α are the only combination that are consistent with the growing body of data suggesting
that levels of seroprevalence show only moderate variation across age-ranges [30], yet children are unlikely
to display major symptoms, suggesting their role in transmission may be lower than for other respiratory
infections [31, 32].

Throughout the current epidemic, there has been noticeable heterogeneity between the different regions of
England and between the devolved nations. In particular, London is observed to have a large proportion of
early cases and a relatively steeper decline in the subsequent lock-down than the other regions and the de-
volved nations. In our model this heterogeneity is captured through three regional parameters (DR

S , HR
S and

IR
S ) which act on the heterogeneous population pyramid of each region to generate key observables.
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Table 1: Key model parameters and their source

Parameter Description Source
β Age-dependent transmission, split into household,

school, work and other
Matrices from Prem et al. [26]

γ Recovery rate, changes with τ , the relative level of trans-
mission from undetected asymptomatics compared to
detected symptomatics

Fitted from early age-stratified UK
case data to match growth rate and
R0

da,v Age-dependent and vaccine status dependent probabil-
ity of displaying symptoms (and hence being detected),
changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

σa,v Age-dependent and vaccine status dependent suscepti-
bility, changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

HR Household quarantine proportion = 0.8φR Can be varied according to scenario
NR

a Population size of a given age within each region ONS
ε Rate of progression to infectious disease (1/ε is the du-

ration in the exposed class). ε ∼ 0.2
MCMC

α Scales the degree to which age-structured heterogeneity
is due to age-dependent probability of symptoms (α =
0) or age-dependent susceptibility (α = 1)

MCMC

τ Relative level of transmission from asymptomatic com-
pared to symptomatic infection

MCMC

φR Regional relative strength of the lockdown restrictions;
scales the transmission matrices. Can also be varied
according to scenario.

MCMC

σR Regional modifier of susceptibility to account for differ-
ences in level of social mixing

MCMC

ER
0 Initial regional level of infection, rescaled from early age-

distribution of cases
MCMC

DR
S Regional scaling for the mortality probability

Pa(Death|Hospitalised))
MCMC

HR
S Regional scaling for the hospitalisation probability

Pa(Hospitalised|Symptomatic))
MCMC

IR
S Regional scaling for the ICU probability

Pa(ICU|Symptomatics))
MCMC

S1.4 Public Health Measurable Quantities
The main model equations focus on the epidemiological dynamics, allowing us to compute the number of
symptomatic and asymptomatic infectious individuals over time. However, these quantities are not directly
measured - and even the number of confirmed cases (the closest measure to symptomatic infections) is highly
biased by the testing protocols at any given point in time. It is therefore necessary to convert infection
estimates into quantities of interest that can be compared to data. We considered six such quantities which
we calculated from the number of new symptomatic infections on a given day Id

a .

1. Hospital Admissions: An age-dependent fraction of symptomatic individuals are assumed to need
hospital treatment, with a distributed lag between infection and hospitalisation.

2. ICU Admissions: Similarly, an age-dependent fraction of symptomatic individuals are assumed to
need treatment in an Intensive Care Unit. This is not a quantity that is generally reported, and
therefore we cannot match our model predictions to this data source.

3. Hospital Beds Occupied: By convolving hospital admissions with the distributions of lengths of
stay, we can estimate the number of hospital beds occupied.

4. ICU Beds Occupied: A similar process generates the number of occupied ICU beds.

5. Number of Deaths: Mortality is assumed to occur to a fraction of hospitalised individuals, with the
probability of mortality dependent upon age, and occuring after a distributed lag.

6. Proportion of Pillar 2 positives: Given that the raw number of detected cases in any region is
substantially influenced by the number of tests conducted, we consider the proportion of pillar 2 tests
that are positive as a less biased figure. We assume that those symptomatically infected with COVID-
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19 compete with individuals suffering symptoms for other infections for the available testing capacity.
This leads to proportion of pillar 2 tests that are positive being a saturating function of the number
of symptomatic infections, with a single scaling parameter.

We compared these model predictions to the data by assuming that the true numbers are drawn from
a negative binomial distribution with the model value as the mean, while the true proportions (Pillar 2
positives) are from a beta-binomial.

S2 Extensions to Main Text Scenarios
In the main text we focused on a few chosen scenarios that illustrate the range of plausible behaviours,
and only considered COVID-19 related deaths. Here, we show some other representative scenarios and the
impact on the number of hospitalisations under all of these cases. We also display the 95% credible intervals,
as defined by the variability in inferred parameters; these shaded regions contain 95% of all simulations at
every point in time. (We note that any one prediction will not necessarily follow the upper or lower bound,
these are envelopes that contain predictions that may wander both above and below the mean.)

S2.1 Alternative Step-wise NPI relaxation

Figure S3: Predicted daily deaths in the UK following the start of an immunisation program and relaxation
or removal of NPIs. Panels (a) and (b) show the effect of partial NPI measures down early September 2020
(when R ∼ 1.2− 1.4) from January or April 2021 respectively, while panels (c) and (d) show the complete
removal of all NPI measures (leading to R ∼ 2.2) from either April or at the final stages of vaccination in
July 2021. Shaded regions show the 95% credible intervals.

S2.2 Alternative gradual NPI relaxation
S2.3 Impact of Vaccination and NPI release on Hospital Admissions
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Figure S4: Effect of gradual relaxation of NPI measures on deaths across the UK following the start of
vaccination. In panels (a)-(d) different relaxation scenarios are shown with NPIs reduced linearly from
December levels down to complete release over different time periods represented by the height of the grey
shading. Panel (e) compares the total predicted deaths from Jan-21 onwards between the scenarios for each
vaccine efficacy.
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Figure S5: Predicted daily hospitalisations in the UK following the start of an immunisation program and
relaxation or removal of NPIs. Panels (a) and (b) show the effect of partial NPI measures down early
September 2020 (R ∼ 1.2 − 1.4) from January or April 2021 respectively, while panels (c) and (d) show
the complete removal of all NPI measures (leading to R ∼ 2.2) from either April or at the final stages of
vaccination in July 2021.
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Figure S6: Effect of gradual relaxation of NPI measures on hospital admissions across the UK following the
start of vaccination. In panels (a)-(d) different relaxation scenarios are shown with NPIs reduced linearly
from December levels down to complete release over different time periods represented by the height of the
grey shading. Panel (e) compares the total predicted hospital admissions from Jan-21 onwards between the
scenarios for each vaccine efficacy.
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