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1. Supplementary Tables 

Supplementary Table 1 - List of the abbreviation of the EEG features 

ampl total power alpha Amplitude total power in alpha band 

ampl total power beta Amplitude total power in beta band  

ampl total power delta Amplitude total power in delta band 

ampl total power gamma Amplitude total power in gamma band 

ampl total power theta Amplitude total power in theta band 

approx entropy Full-band EEG Approximate Entropy 

asymmetry ampl alpha Range EEG asymmetry in alpha band 

asymmetry ampl beta Range EEG asymmetry in beta band 

asymmetry ampl delta Range EEG asymmetry in delta band 

asymmetry ampl gamma Range EEG asymmetry in gamma band 

asymmetry ampl theta Range EEG asymmetry in theta band 

betw cen e-dtf alpha 

Betweenness Centrality of the directed transfer function at electrode level in alpha 

band 

betw cen e-dtf beta 

Betweenness Centrality of the directed transfer function at electrode level in beta 

band 

betw cen e-dtf delta 

Betweenness Centrality of the directed transfer function at electrode level in delta 

band 

betw cen e-dtf gamma 

Betweenness Centrality of the directed transfer function at electrode level in gamma 

band 

betw cen e-dtf theta 

Betweenness Centrality of the directed transfer function at electrode level in theta 

band 

betw cen e-icoh alpha 

Betweenness Centrality of the imaginary part of coherency at electrode level in alpha 

band 

betw cen e-icoh beta 

Betweenness Centrality of the imaginary part of coherency at electrode level in beta 

band 

betw cen e-icoh delta 

Betweenness Centrality of the imaginary part of coherency at electrode level in delta 

band 

betw cen e-icoh gamma 

Betweenness Centrality of the imaginary part of coherency at electrode level in 

gamma band 

betw cen e-icoh theta 

Betweenness Centrality of the imaginary part of coherency at electrode level in theta 

band 

betw cen e-plv alpha Betweenness Centrality of the phase-locking value at electrode level in alpha band 

betw cen e-plv beta Betweenness Centrality of the phase-locking value at electrode level in beta band 

betw cen e-plv delta Betweenness Centrality of the phase-locking value at electrode level in delta band 

betw cen e-plv gamma Betweenness Centrality of the phase-locking value at electrode level in gamma band 

betw cen e-plv theta Betweenness Centrality of the phase-locking value at electrode level in theta band 

betw cen s-ips alpha 

Betweenness Centrality of the instantaneous phase synchronization at source level 

in alpha band 

betw cen s-ips beta 

Betweenness Centrality of the instantaneous phase synchronization at source level 

in beta band 
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betw cen s-ips delta 

Betweenness Centrality of the instantaneous phase synchronization at source level 

in delta band 

betw cen s-ips gamma 

Betweenness Centrality of the instantaneous phase synchronization at source level 

in gamma band 

betw cen s-ips theta 

Betweenness Centrality of the instantaneous phase synchronization at source level 

in theta band 

betw cen s-lcoh alpha Betweenness Centrality of the lagged coherence at source level in alpha band 

betw cen s-lcoh beta Betweenness Centrality of the lagged coherence at source level in beta band 

betw cen s-lcoh delta Betweenness Centrality of the lagged coherence at source level in delta band 

betw cen s-lcoh gamma Betweenness Centrality of the lagged coherence at source level in gamma band 

betw cen s-lcoh theta Betweenness Centrality of the lagged coherence at source level in theta band 

betw cen s-lps alpha 

Betweenness Centrality of the lagged phase synchronization at source level in alpha 

band 

betw cen s-lps beta 

Betweenness Centrality of the lagged phase synchronization at source level in beta 

band 

betw cen s-lps delta 

Betweenness Centrality of the lagged phase synchronization at source level in delta 

band 

betw cen s-lps gamma 

Betweenness Centrality of the lagged phase synchronization at source level in 

gamma band 

betw cen s-lps theta 

Betweenness Centrality of the lagged phase synchronization at source level in theta 

band 

clust coeff e-dtf alpha 

Clustering Coefficient of the directed transfer function at electrode level in alpha 

band 

clust coeff e-dtf beta Clustering Coefficient of the directed transfer function at electrode level in beta band 

clust coeff e-dtf delta 

Clustering Coefficient of the directed transfer function at electrode level in delta 

band 

clust coeff e-dtf gamma 

Clustering Coefficient of the directed transfer function at electrode level in gamma 

band 

clust coeff e-dtf theta 

Clustering Coefficient of the directed transfer function at electrode level in theta 

band 

clust coeff e-icoh alpha 

Clustering Coefficient of the imaginary part of coherency at electrode level in alpha 

band 

clust coeff e-icoh beta 

Clustering Coefficient of the imaginary part of coherency at electrode level in beta 

band 

clust coeff e-icoh delta 

Clustering Coefficient of the imaginary part of coherency at electrode level in delta 

band 

clust coeff e-icoh gamma 

Clustering Coefficient of the imaginary part of coherency at electrode level in gamma 

band 

clust coeff e-icoh theta 

Clustering Coefficient of the imaginary part of coherency at electrode level in theta 

band 

clust coeff e-plv alpha Clustering Coefficient of the phase-locking value at electrode level in alpha band 

clust coeff e-plv beta Clustering Coefficient of the phase-locking value at electrode level in beta band 

clust coeff e-plv delta Clustering Coefficient of the phase-locking value at electrode level in delta band 

clust coeff e-plv gamma Clustering Coefficient of the phase-locking value at electrode level in gamma band 

clust coeff e-plv theta Clustering Coefficient of the phase-locking value at electrode level in theta band 
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clust coeff s-ips alpha 

Clustering Coefficient of the instantaneous phase synchronization at source level in 

alpha band 

clust coeff s-ips beta 

Clustering Coefficient of the instantaneous phase synchronization at source level in 

beta band 

clust coeff s-ips delta 

Clustering Coefficient of the instantaneous phase synchronization at source level in 

delta band 

clust coeff s-ips gamma 

Clustering Coefficient of the instantaneous phase synchronization at source level in 

gamma band 

clust coeff s-ips theta 

Clustering Coefficient of the instantaneous phase synchronization at source level in 

theta band 

clust coeff s-lcoh alpha Clustering Coefficient of the lagged coherence at source level in alpha band 

clust coeff s-lcoh beta Clustering Coefficient of the lagged coherence at source level in beta band 

clust coeff s-lcoh delta Clustering Coefficient of the lagged coherence at source level in delta band 

clust coeff s-lcoh gamma Clustering Coefficient of the lagged coherence at source level in gamma band 

clust coeff s-lcoh theta Clustering Coefficient of the lagged coherence at source level in theta band 

clust coeff s-lps alpha 

Clustering Coefficient of the lagged phase synchronization at source level in alpha 

band 

clust coeff s-lps beta 

Clustering Coefficient of the lagged phase synchronization at source level in beta 

band 

clust coeff s-lps delta 

Clustering Coefficient of the lagged phase synchronization at source level in delta 

band 

clust coeff s-lps gamma 

Clustering Coefficient of the lagged phase synchronization at source level in gamma 

band 

clust coeff s-lps theta 

Clustering Coefficient of the lagged phase synchronization at source level in theta 

band 

coeff of var ampl alpha  Range EEG coefficient of variation in alpha band 

coeff of var ampl beta Range EEG coefficient of variation in beta band 

coeff of var ampl delta Range EEG coefficient of variation in delta band 

coeff of var ampl gamma Range EEG coefficient of variation in gamma band 

coeff of var ampl theta Range EEG coefficient of variation in theta band 

correlation dimension Full-band EEG Correlation Dimension 

dfa exponent alpha Detrended Fluctuation Analysis exponent in alpha band 

dfa exponent beta Detrended Fluctuation Analysis exponent in beta band 

dfa exponent delta Detrended Fluctuation Analysis exponent in delta band 

dfa exponent gamma Detrended Fluctuation Analysis exponent in gamma band 

dfa exponent theta Detrended Fluctuation Analysis exponent in theta band 

hfd alpha Higuchi’s Fractal Dimension in alpha band 

hfd beta Higuchi’s Fractal Dimension in beta band 

hfd delta Higuchi’s Fractal Dimension in delta band 

hfd gamma Higuchi’s Fractal Dimension in gamma band 

hfd theta Higuchi’s Fractal Dimension in theta band 

hjorth activity  Full-band EEG Hjorth parameter activity 

hjorth complexity  Full-band EEG Hjorth parameter complexity 

hjorth mobility  Full-band EEG Hjorth parameter mobility 
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hurst exponent Full-band Hurst Exponent 

kfd alpha Katz’s Fractal Dimension in alpha band 

kfd beta Katz’s Fractal Dimension in beta band 

kfd delta Katz’s Fractal Dimension in delta band 

kfd gamma Katz’s Fractal Dimension in gamma band 

kfd theta Katz’s Fractal Dimension in theta band 

kurtosis ampl alpha Kurtosis of the amplitude in alpha band 

kurtosis ampl beta Kurtosis of the amplitude in beta band 

kurtosis ampl delta Kurtosis of the amplitude in delta band 

kurtosis ampl gamma Kurtosis of the amplitude in gamma band 

kurtosis ampl theta Kurtosis of the amplitude in theta band 

life time alpha Life-time statistics of alpha bursts 

life time beta Life-time statistics of beta bursts 

life time delta Life-time statistics of delta bursts 

life time gamma Life-time statistics of gamma bursts 

life time theta Life-time statistics of theta bursts 

lyapunov exponent Full-band EEG Lyapunov Exponent 

lzc exhaustive Lempel-Ziv complexity exhaustive  

lzc primitive Lempel-Ziv complexity primitive 

mean ampl alpha Mean amplitude of the envelope in alpha band 

mean ampl beta Mean amplitude of the envelope in beta band 

mean ampl delta Mean amplitude of the envelope in delta band 

mean ampl gamma Mean amplitude of the envelope in gamma band 

mean ampl theta Mean amplitude of the envelope in theta band 

microstates temporal 

EEG microstates temporal parameters: mean duration, time coverage and 

occurrence 

microstates transitions EEG microstates transition probabilities  

mod index alpha-beta Modulation Index of alpha phase on beta amplitude  

mod index alpha-gamma Modulation Index of alpha phase on gamma amplitude  

mod index beta-gamma Modulation Index of beta phase on gamma amplitude  

mod index delta-alpha Modulation Index of delta phase on alpha amplitude  

mod index delta-beta Modulation Index of delta phase on beta amplitude  

mod index delta-gamma Modulation Index of delta phase on gamma amplitude  

mod index theta-alpha Modulation Index of theta phase on alpha amplitude  

mod index theta-beta Modulation Index of theta phase on beta amplitude  

mod index theta-gamma Modulation Index of theta phase on gamma amplitude  

node str e-dtf alpha Node Strength of the directed transfer function at electrode level in alpha band 

node str e-dtf beta Node Strength of the directed transfer function at electrode level in beta band 

node str e-dtf delta Node Strength of the directed transfer function at electrode level in delta band 

node str e-dtf gamma Node Strength of the directed transfer function at electrode level in gamma band 

node str e-dtf theta Node Strength of the directed transfer function at electrode level in theta band 

node str e-icoh alpha Node Strength of the imaginary part of coherency at electrode level in alpha band 

node str e-icoh beta Node Strength of the imaginary part of coherency at electrode level in beta band 

node str e-icoh delta Node Strength of the imaginary part of coherency at electrode level in delta band 
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node str e-icoh gamma Node Strength of the imaginary part of coherency at electrode level in gamma band 

node str e-icoh theta Node Strength of the imaginary part of coherency at electrode level in theta band 

node str e-plv alpha Node Strength of the phase-locking value at electrode level in alpha band 

node str e-plv beta Node Strength of the phase-locking value at electrode level in beta band 

node str e-plv delta Node Strength of the phase-locking value at electrode level in delta band 

node str e-plv gamma Node Strength of the phase-locking value at electrode level in gamma band 

node str e-plv theta Node Strength of the phase-locking value at electrode level in theta band 

node str s-ips alpha 

Node Strength of the instantaneous phase synchronization at source level in alpha 

band 

node str s-ips beta 

Node Strength of the instantaneous phase synchronization at source level in beta 

band 

node str s-ips delta 

Node Strength of the instantaneous phase synchronization at source level in delta 

band 

node str s-ips gamma 

Node Strength of the instantaneous phase synchronization at source level in gamma 

band 

node str s-ips theta 

Node Strength of the instantaneous phase synchronization at source level in theta 

band 

node str s-lcoh alpha Node Strength of the lagged coherence at source level in alpha band 

node str s-lcoh beta Node Strength of the lagged coherence at source level in beta band 

node str s-lcoh delta Node Strength of the lagged coherence at source level in delta band 

node str s-lcoh gamma Node Strength of the lagged coherence at source level in gamma band 

node str s-lcoh theta Node Strength of the lagged coherence at source level in theta band 

node str s-lps alpha Node Strength of the lagged phase synchronization at source level in alpha band 

node str s-lps beta Node Strength of the lagged phase synchronization at source level in beta band 

node str s-lps delta Node Strength of the lagged phase synchronization at source level in delta band 

node str s-lps gamma Node Strength of the lagged phase synchronization at source level in gamma band 

node str s-lps theta Node Strength of the lagged phase synchronization at source level in theta band 

relative ampl alpha Relative spectral amplitude in alpha band 

relative ampl beta Relative spectral amplitude in beta band 

relative ampl delta Relative spectral amplitude in delta band 

relative ampl gamma Relative spectral amplitude in gamma band 

relative ampl theta Relative spectral amplitude in theta band 

rqa determinism  Full-band EEG Recurrence Quantification Analysis Determinism 

rqa entropy  Full-band EEG Recurrence Quantification Analysis Entropy 

rqa laminarity  Full-band EEG Recurrence Quantification Analysis Laminarity 

rqa max diagonal  Full-band EEG Recurrence Quantification Analysis Maximal diagonal line length 

rqa max vertical Full-band EEG Recurrence Quantification Analysis Maximal vertical line length 

rqa mean diagonal Full-band EEG Recurrence Quantification Analysis Mean diagonal line length 

rqa rte Full-band EEG Recurrence Quantification Analysis Recurrence times entropy 

rqa trapping time Full-band EEG Recurrence Quantification Analysis Trapping time 

sample entropy Full-band EEG Sample Entropy 

skewness ampl alpha Skewness of the amplitude in alpha band 

skewness ampl beta Skewness of the amplitude in beta band 

skewness ampl delta Skewness of the amplitude in delta band 
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skewness ampl gamma Skewness of the amplitude in gamma band 

skewness ampl theta Skewness of the amplitude in theta band 

source ampl alpha Spectral amplitude in alpha band at source level 

source ampl beta Spectral amplitude in beta band at source level 

source ampl delta Spectral amplitude in delta band at source level 

source ampl gamma Spectral amplitude in gamma band at source level 

source ampl theta Spectral amplitude in theta band at source level 

spectral entropy alpha Spectral Entropy in alpha band 

spectral entropy beta Spectral Entropy in beta band 

spectral entropy delta Spectral Entropy in delta band 

spectral entropy gamma Spectral Entropy in gamma band 

spectral entropy theta Spectral Entropy in theta band 

std ampl alpha Standard deviation of the amplitude of the envelope in alpha band 

std ampl beta Standard deviation of the amplitude of the envelope in beta band 

std ampl delta Standard deviation of the amplitude of the envelope in delta band 

std ampl gamma Standard deviation of the amplitude of the envelope in gamma band 

std ampl theta Standard deviation of the amplitude of the envelope in theta band 

waiting time alpha Waiting-time statistics of alpha bursts 

waiting time beta Waiting-time statistics of beta bursts 

waiting time delta Waiting-time statistics of delta bursts 

waiting time gamma Waiting-time statistics of gamma bursts 

waiting time theta Waiting-time statistics of theta bursts 

 

  



8 
 

Supplementary Table 2 - Prediction of SANS and SAPS scores, when using each EEG feature separately as 
well as all features together (last line), by Partial Least Squares Regression with leave-one-out cross-
validation. 

Features  𝑟 RMSE Features  𝑟 RMSE 

 SANS SAPS SANS SAPS (continued) SANS SAPS SANS SAPS 

ampl total power 

gamma 0.133 0.098 5.136 3.148 lyapunov exponent 0.077 0.187 5.183 3.117 

ampl total power 

theta 0.084 0.022 5.165 3.164 mean ampl gamma 0.133 0.098 5.136 3.148 

asymmetry ampl 

alpha 0.376 0.107 4.861 3.148 mean ampl theta 0.084 0.022 5.165 3.164 

asymmetry ampl 

theta 0.371 0.472 4.921 2.801 

microstates 

temporal 0.063 -0.017 5.185 3.196 

betw cen e-plv delta 0.206 0.287 5.109 3.040 

microstates 

transitions 0.207 0.121 5.067 3.150 

betw cen e-plv 

gamma 0.434 0.357 4.718 2.948 

mod index alpha-

gamma 0.400 0.279 4.832 3.029 

betw cen s-ips beta 0.393 0.318 4.793 3.007 

mod index delta-

alpha 0.114 0.136 5.158 3.132 

betw cen s-lcoh 

gamma 0.369 0.290 4.828 3.025 

mod index delta-

beta 0.168 0.308 5.153 3.031 

clust coeff e-icoh 

theta 0.122 -0.020 5.140 3.175 

mod index delta-

gamma 0.131 0.292 5.167 3.016 

clust coeff e-plv 

beta 0.301 0.026 5.037 3.167 

node str e-icoh 

gamma 0.152 0.223 5.129 3.072 

clust coeff e-plv 

delta 0.167 0.114 5.127 3.137 node str e-icoh theta 0.120 -0.006 5.165 3.175 

clust coeff e-plv 

gamma 0.186 0.157 5.124 3.130 node str e-plv alpha 0.154 0.013 5.121 3.166 

clust coeff e-plv 

theta 0.083 0.046 5.172 3.159 node str e-plv beta 0.315 0.091 4.987 3.154 

clust coeff s-ips 

theta 0.297 0.106 4.959 3.144 node str e-plv delta 0.191 0.153 5.111 3.119 

clust coeff s-lcoh 

theta 0.004 -0.020 5.216 3.174 

node str e-plv 

gamma 0.211 0.188 5.096 3.103 

clust coeff s-lps 

gamma 0.006 0.232 5.226 3.076 node str e-plv theta 0.166 0.106 5.121 3.139 

clust coeff s-lps 

theta 0.065 -0.001 5.190 3.174 node str s-ips alpha 0.189 0.188 5.110 3.099 

coeff of var ampl 

alpha 0.376 0.062 4.798 3.174 node str s-ips theta 0.243 0.130 5.022 3.138 

coeff of var ampl 

beta 0.081 0.248 5.176 3.060 

node str s-lcoh 

gamma 0.112 0.242 5.171 3.073 
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coeff of var ampl 

theta 0.044 0.197 5.204 3.091 node str s-lcoh theta 0.050 0.077 5.202 3.158 

dfa exponent alpha -0.060 0.019 5.231 3.171 node str s-lps gamma 0.065 0.169 5.216 3.115 

dfa exponent beta 0.059 0.070 5.201 3.155 node str s-lps theta 0.106 0.052 5.174 3.165 

hfd alpha 0.050 0.056 5.191 3.148 relative ampl beta 0.041 0.201 5.195 3.097 

hfd beta 0.055 0.084 5.194 3.150 relative ampl theta -0.057 0.123 5.229 3.131 

hfd delta 0.046 0.337 5.194 2.984 skewness ampl beta 0.260 0.238 5.024 3.066 

hfd theta 0.378 0.087 4.798 3.139 skewness ampl theta 0.128 0.179 5.151 3.106 

hurst exponent 0.065 0.117 5.187 3.137 

spectral entropy 

alpha 0.344 0.149 4.950 3.130 

kfd delta 0.141 0.118 5.130 3.140 

spectral entropy 

delta 0.248 0.155 5.049 3.118 

kfd gamma 0.140 0.183 5.135 3.102 

spectral entropy 

gamma 0.083 0.174 5.176 3.106 

kfd theta 0.097 0.422 5.146 2.868 

spectral entropy 

theta 0.047 0.129 5.202 3.130 

kurtosis ampl alpha 0.113 0.094 5.156 3.142 std ampl gamma 0.174 0.090 5.100 3.152 

kurtosis ampl 

gamma 0.264 0.149 5.017 3.162 std ampl theta 0.131 0.025 5.127 3.162 

kurtosis ampl theta 0.175 0.333 5.100 2.984 waiting time beta 0.081 0.122 5.184 3.151 

life time beta 0.141 0.060 5.144 3.168 waiting time gamma 0.301 0.097 4.939 3.142 

life time gamma 0.295 0.097 4.958 3.142 All Features 0.837 0.832 2.835 1.752 
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Supplementary Table 3 - Number of components and number of variables used for the prediction of SANS 
and SAPS scores, when using each EEG feature separately as well as features together (last line), by Partial 
Least Squares Regression. 

Features  Number of 

Components 

Number of 

Variables 

Features  Number of 

Components 

Number of 

Variables 

 SANS SAPS SANS SAPS (continued) SANS SAPS SANS SAPS 

ampl total power 

gamma 1 1 2 5 

lyapunov 

exponent 1 1 2 8 

ampl total power 

theta 1 1 40 2 mean ampl gamma 1 1 2 5 

asymmetry ampl 

alpha 2 1 29 3 mean ampl theta 1 1 40 2 

asymmetry ampl 

theta 2 2 26 21 

microstates 

temporal 1 2 2 4 

betw cen e-plv 

delta 1 1 8 7 

microstates 

transitions 1 2 2 6 

betw cen e-plv 

gamma 2 1 23 5 

mod index alpha-

gamma 3 1 18 4 

betw cen s-ips 

beta 1 1 12 10 

mod index delta-

alpha 1 1 3 27 

betw cen s-lcoh 

gamma 1 1 9 6 

mod index delta-

beta 1 2 6 24 

clust coeff e-icoh 

theta 1 1 10 2 

mod index delta-

gamma 1 1 3 3 

clust coeff e-plv 

beta 4 1 14 13 

node str e-icoh 

gamma 1 1 3 2 

clust coeff e-plv 

delta 2 1 4 4 

node str e-icoh 

theta 1 1 11 2 

clust coeff e-plv 

gamma 2 1 24 2 

node str e-plv 

alpha 1 1 2 64 

clust coeff e-plv 

theta 1 1 5 2 node str e-plv beta 4 1 11 3 

clust coeff s-ips 

theta 2 1 5 5 node str e-plv delta 2 1 4 4 

clust coeff s-lcoh 

theta 1 1 3 4 

node str e-plv 

gamma 2 1 5 2 

clust coeff s-lps 

gamma 1 2 3 50 

node str e-plv 

theta 1 1 3 3 

clust coeff s-lps 

theta 1 1 2 2 node str s-ips alpha 1 1 3 6 

coeff of var ampl 

alpha 2 1 11 10 node str s-ips theta 1 1 3 6 

coeff of var ampl 

beta 1 1 2 5 

node str s-lcoh 

gamma 1 2 2 42 
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coeff of var ampl 

theta 1 1 2 2 

node str s-lcoh 

theta 1 1 4 4 

dfa exponent 

alpha 1 1 2 54 

node str s-lps 

gamma 1 1 2 7 

dfa exponent beta 1 1 6 2 node str s-lps theta 1 1 2 2 

hfd alpha 1 1 2 37 relative ampl beta 1 2 4 9 

hfd beta 1 1 2 2 relative ampl theta 1 1 2 2 

hfd delta 1 2 2 16 

skewness ampl 

beta 1 1 6 4 

hfd theta 3 1 5 24 

skewness ampl 

theta 1 1 11 7 

hurst exponent 1 1 6 6 

spectral entropy 

alpha 5 2 23 3 

kfd delta 1 1 2 11 

spectral entropy 

delta 2 1 19 2 

kfd gamma 1 1 6 2 

spectral entropy 

gamma 1 1 2 3 

kfd theta 1 4 53 7 

spectral entropy 

theta 1 1 6 3 

kurtosis ampl 

alpha 1 1 2 13 std ampl gamma 1 1 8 5 

kurtosis ampl 

gamma 2 1 14 2 std ampl theta 1 1 50 4 

kurtosis ampl 

theta 1 1 2 7 waiting time beta 1 1 2 5 

life time beta 1 1 11 3 

waiting time 

gamma 2 1 12 3 

life time gamma 2 1 9 9 All Features 4 6 185 196 
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2. Supplementary Methods 

EEG Data Pre-Processing 

Offline EEG data were downsampled to 256 Hz (128 Hz for the microstates analysis) and preprocessed 

using an automatic pipeline (APP; da Cruz et al., 2018). APP included the following steps: filtering via a 

bandpass filter of 1-100 Hz (1-40 Hz for the microstates analysis); removal of line-noise (CleanLine; 

www.nitrc.org/projects/cleanline); re-referencing to the bi-weight estimate of the mean of all electrodes; 

removal and 3D spline interpolation of bad electrodes; removal of bad epochs; independent component 

analysis to remove artifacts related to eye movements, muscle activity and bad electrodes (not conducted 

for the connectivity analysis); and re-referencing to the common average. 

Time-Domain Amplitude Features 

The most straight forward analysis of EEG signals is the quantification of its time-domain amplitude 

features. For that, we first filtered the EEG signal of each channel into five frequency bands (delta (1 - 4 

Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), gamma (30 - 70 Hz)). Then, for each frequency 

band, we computed several amplitude features: total power, mean of the envelope, standard deviation 

of the envelope, skewness of the signal amplitude, and kurtosis of the signal amplitude. The EEG signal 

was divided into 4-second epochs and the features were calculated for each epoch. Then the mean across 

epochs is used for group comparisons and main analyses. 

Amplitude Total Power 

If 𝑦(𝑡) is the time domain EEG signal of a given channel at time 𝑡, the amplitude total power is given by 

 
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 =

1

𝑇
 ∑|𝑦(𝑡)|2

𝑇

𝑡=1

 
 

 

where 𝑇 is the total time. 

Mean and Standard Deviation of the Envelope 

If ℋ(𝑦(𝑡)) is the Hilbert transform of the time domain EEG signal 𝑦(𝑡), then the envelope of the signal is 

given by  

 𝐸𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑡)  = |ℋ(𝑦(𝑡))|
2

  

 

and the measures of centrality and variability are given by the mean and standard deviation of the 

envelope. 

Skewness and Kurtosis of the Signal 

If 𝑦̅ and 𝑦𝑆𝐷 are the mean and standard deviation of the EEG signal 𝑦(𝑡), respectively, then the skewness 

of the signal is given by 

http://www.nitrc.org/projects/cleanline
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𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑇

∑ |𝑦(𝑡) − 𝑦̅|3𝑇
𝑡=1

𝑦𝑆𝐷
3

 

 

  

and the kurtosis of the signal is given by 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑇

∑ |𝑦(𝑡) − 𝑦̅|4𝑇
𝑡=1

𝑦𝑆𝐷
4

 

 

 

Range EEG 

Similar to EEG Data Pre-Processing 

Offline EEG data were downsampled to 256 Hz (128 Hz for the microstates analysis) and preprocessed 

using an automatic pipeline (APP; da Cruz et al., 2018). APP included the following steps: filtering via a 

bandpass filter of 1-100 Hz (1-40 Hz for the microstates analysis); removal of line-noise (CleanLine; 

www.nitrc.org/projects/cleanline); re-referencing to the bi-weight estimate of the mean of all electrodes; 

removal and 3D spline interpolation of bad electrodes; removal of bad epochs; independent component 

analysis to remove artifacts related to eye movements, muscle activity and bad electrodes (not conducted 

for the connectivity analysis); and re-referencing to the common average. 

Time-Domain Amplitude Features, range EEG was introduced as a way to quantify the amplitude of the 

EEG data (O’Reilly et al., 2012). However, unlike the previously described features, range EEG focuses on 

a peak-to-peak measure of the EEG amplitude. Here, before calculating the range EEG features, we first 

filtered the EEG signal of each channel into five frequency bands (delta, theta, alpha, beta, gamma). Then, 

for each frequency band, we calculated the range EEG and two of its features: coefficient of variation and 

asymmetry. If 𝑦(𝑡) is the EEG signal, then over a time segment 𝑠 the difference between the maximum 

and the minimum is given by   

 𝑑𝑖𝑓𝑓(𝑠)  = 𝑚𝑎𝑥(𝑦(𝑡)𝑤(𝑡 − 𝑠Δ)) −  𝑚𝑖𝑛(𝑦(𝑡)𝑤(𝑡 − 𝑠Δ))  

 

where 𝑤(𝑡) is a window (here, a 4-second Hanning window) and Δ is a time-shift factor related to the 

percentage of overlap (here, we used 50%). Then, the range EEG is given by 

 

𝑟𝐸𝐸𝐺(𝑠)  = {

50

𝑙𝑜𝑔50
𝑙𝑜𝑔(𝑑𝑖𝑓𝑓(𝑠))        𝑖𝑓 𝑑𝑖𝑓𝑓(𝑠) > 50

𝑑𝑖𝑓𝑓(𝑠)                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

 

 

Coefficient of variation 

If 𝑟𝐸𝐸𝐺̅̅ ̅̅ ̅̅ ̅ is the mean range EEG and 𝑟𝐸𝐸𝐺𝑆𝐷 is the standard deviation of the range EEG, the coefficient of 

variation of the range EEG (𝑟𝐸𝐸𝐺𝐶𝑉) is given by 
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𝑟𝐸𝐸𝐺𝐶𝑉  =

𝑟𝐸𝐸𝐺𝑆𝐷

𝑟𝐸𝐸𝐺
 

 

 

Asymmetry 

If 𝑟𝐸𝐸𝐺𝑚𝑒𝑑𝑖𝑎𝑛, 𝑟𝐸𝐸𝐺5%, and 𝑟𝐸𝐸𝐺95% are the median, 5 and 95 percentile of the range EEG, respectively, 

and we let 𝐴 = 𝑟𝐸𝐸𝐺𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑟𝐸𝐸𝐺5% and 𝐵 = 𝑟𝐸𝐸𝐺95% − 𝑟𝐸𝐸𝐺𝑚𝑒𝑑𝑖𝑎𝑛, then the range EEG 

asymmetry is given by 

 
𝑟𝐸𝐸𝐺𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦  =

𝐵 − 𝐴

𝐴 + 𝐵
 

 

 

The 𝑟𝐸𝐸𝐺𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ranges from -1 to 1, with values close to 0 representing symmetry and values close 

to -1 and 1 indicating asymmetry of the range EEG. 

Hjorth Parameters 

Hjorth parameters are descriptive statistical properties of the EEG time-domain signal and provide a 

bridge between time and frequency domain interpretation of the EEG signal (Hjorth, 1970). There are 3 

Hjorth parameters: Activity, Mobility, and Complexity. The EEG signal was divided into 4-second epochs 

and the 3 Hjorth parameters were calculated for each epoch. Then, for each parameter, the mean across 

epochs was used for group comparisons and main analyses. 

Activity  

The Activity parameter quantifies the power of the signal. If 𝑦(𝑡) is the time domain EEG signal of a given 

channel, then Activity is the variance of the signal (𝑣𝑎𝑟(𝑦(𝑡))).  

Mobility 

The Mobility parameter is an approximation of the mean frequency of the signal and is computed as 

 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑣𝑎𝑟 (

𝑑𝑦(𝑡)
𝑑𝑡

)

𝑣𝑎𝑟(𝑦(𝑡))
 

 

 

where 𝑑𝑦(𝑡) 𝑑𝑡⁄  is the first derivative of the signal with respect to time. 

Complexity 

The Complexity parameter is sensitive to changes in the frequency of the signal as it quantifies the 

deviations from a pure sinusoidal signal. It is computed as 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑦(𝑡)
𝑑𝑡

)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑦(𝑡))
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Relative Spectral Amplitude 

Fourier analysis is the most common method to decompose an EEG time series into frequency 

components. The analysis of the amplitude spectrum gives us the magnitude of the Fourier coefficients 

at different frequencies. It is thought that activity in high frequencies reflects processing within brain areas 

and activity in low frequencies is thought to reflect communication between brain areas (Uhlhaas & 

Singer, 2010; von Stein & Sarnthein, 2000). Here, for each of the 5 frequency bands (delta, theta, alpha, 

beta, and gamma), we computed their relative spectral amplitude. If 𝑌(𝑓) is the spectral amplitude of the 

Fourier transform of the EEG signal 𝑦(𝑡) at frequency 𝑓, then, the relative amplitude for each frequency 

band is given by   

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑓𝑖, 𝑓𝑗)  =

∑ 𝑌(𝑘)
𝑓𝑗

𝑘=𝑓𝑖

𝑓𝑗 − 𝑓𝑖
⁄

∑ 𝑌(𝑘)𝑓𝑧
𝑘=𝑓𝑎

𝑓𝑧 − 𝑓𝑎
⁄

 

 

 

where 𝑓𝑖 and 𝑓𝑓 are the boundaries of the frequency band of interest (e.g., for delta band, 𝑓𝑖 and 𝑓𝑓 are 1 

and 4 Hz, respectively) and 𝑓𝑎 and 𝑓𝑧 are the boundaries of all the frequencies considered. Here, 𝑓𝑎 and 𝑓𝑧 

are 1 and 70 Hz, respectively. For each of the 5 frequency bands, the relative amplitude was computed 

for non-overlapping windows of 4 seconds. Then for each frequency band the mean across windows was 

used for group comparisons and main analyses. 

Source Spectral Amplitude 

Besides quantifying the spectral amplitude in the electrode space, we also quantified the spectral 

amplitude in the source space. The three-dimensional cortical current source densities were computed 

using the software LORETA (Pascual-Marqui et al., 2011). First, the EEG data of each electrode is converted 

to the frequency domain using the Fourier transform and the cross-spectrum is obtained for each time 

epoch. Then, the cortical activity was reconstructed from the scalp signals, using the exact low-resolution 

electromagnetic tomography (eLORETA) algorithm to a space of 6239 gray matter voxels as implemented 

in LORETA. We defined 80 regions of interest (ROI; 40 per hemisphere) from the Automated Anatomical 

Labelling (AAL) atlas, similar to a previous schizophrenia EEG study (Andreou et al., 2015). We defined 5 

frequency bands of interest (delta, theta, alpha, beta and gamma) and, for each frequency band, we 

computed the average current source densities for the 80 ROIs from the eLORETA solution space. 

Modulation Index 

Low-frequency brain oscillations exert a modulatory effect on high-frequency activity, potentially, 

allowing optimal coordination between large-scale networks and more local functional brain sub-systems 

(Canolty & Knight, 2010). Such cross-frequency interactions may occur via phase-amplitude coupling (PAC) 

and can be quantified using a modulation index (Tort et al., 2010). First, the phase and amplitude values 

are obtained from the band-pass filtered signals, 𝑓𝑝 and 𝑓𝐴 respectively, using Hilbert transform. Then, all 
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the instantaneous phases from -180 to 180 corresponding to 𝑓𝑝 are binned into 18 values. The bins take 

a mean amplitude value 𝑎̅ and a vector of normalized amplitude values is defined as 𝑃 given by 

 
𝑃(𝑖) =

𝑎̅

∑ 𝑎̅𝑖
𝑁
𝑖=1

 

 

 

where 𝑁 is 18. If there is no effect of the phase of 𝑓𝑝 on 𝑓𝐴, the values of 𝑃 would be roughly uniformly 

distributed. MI calculates the deviation of 𝑃 from a uniform distribution using Kullback-Leibler (KL) 

divergence, which provides a value on how similar two distributions are. KL divergence is defined as 

 𝐾𝐿(𝑈, 𝑋) = ln(𝑁) − 𝐻(𝑃) 

 

 

where 𝐻(𝑃) is the Shannon’s information entropy given by 

 
𝐻(𝑃) = −∑𝑃(𝑖)ln 𝑃(𝑖)

𝑁

𝑖=1

 

 

 

Finally, the modulation index (MI) is defined as 

 
𝑀𝐼 =

𝐾𝐿(𝑈, 𝑋)

ln (𝑁)
 

 

 

Before estimating the MI, we segmented the continuous EEG signals into non-overlapping 4-second 

segments. The mean MI across non-overlapping segments is used for group comparisons and main 

analyses. We quantified 8 modulation indexes corresponding to: delta phase-alpha amplitude, delta 

phase-beta amplitude, delta phase-gamma amplitude, theta phase-alpha amplitude, theta phase-beta 

amplitude, theta phase-gamma amplitude, alpha phase-beta amplitude, alpha phase-gamma amplitude, 

and beta phase-gamma amplitude. 

Fractal Dimension 

Fractal dimension (FD) of a signal is a measure of the signal’s irregularity and self-similarity in the time 

domain. It is different from the dimension of an attractor which is calculated in a phase-space. For EEG 

signals, FD values lie between 1 and 2, with high values associated with higher self-similarity (Eke et al., 

2002). Here, we first filtered the EEG signal of each channel into the 5 frequency bands and for each 

frequency band we computed two FD: Katz’s Fractal Dimension, and Higuchi’s Fractal Dimension. The EEG 

signal was divided into 4 seconds epochs and the features were calculated for each epoch. Then, for each 

method, the mean across epochs was used for group comparisons and main analyses. 

Katz’s Fractal Dimension 

Katz’s method for FD (KFD) calculation is derived from the EEG time series by computing the sum (𝐿) as 

well as the average (𝑎) of the Euclidean distances between successive points of the sequence, and the 

maximum distance between the first point and all other points of the sequence (𝑑) (Katz, 1988). Then the 

KFD is given by 
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𝐾𝐹𝐷 =

𝑙𝑜𝑔(𝐿 𝑎⁄ )

𝑙𝑜𝑔(𝑑/𝑎)
 

 

 

 

Higuchi’s Fractal Dimension 

Higuchi’s method for FD (HFD) calculation is derived from the EEG time series 𝑦(𝑡) by first deriving 𝑘 new 

subsample sets (𝑦𝑘) (Higuchi, 1988). Then the length of each 𝑦𝑘  (𝐿𝑚) is given by 

 
𝐿𝑚(𝑘)  =

1

𝑘
(
𝑇 − 1

𝑀𝑘
∑|𝑦(𝑚 + 𝑖𝑘) − 𝑦(𝑚 + (𝑖 − 1)𝑘)|

𝑀

𝑖=1

) 
 

     

where 𝑚 = 1, 2,… , 𝑘, 𝑇 is the total number of samples, and 𝑀 = (𝑇 − 𝑚) 𝑘⁄ . The length of the signal is 

given by 

 
𝐿(𝑘)  = ∑ 𝐿𝑚(𝑘)

𝑘

𝑚=1

 
 

 

and it is proportional to 𝑘−𝐷, where 𝐷 is the fractal dimension. Finally, 𝐿(𝑘) is plotted against 𝑘 (𝑘 =

1, 2, … , 𝑘𝑚𝑎𝑥 ; here, 𝑘𝑚𝑎𝑥 = 25) on a double logarithm scale. The data should fall on a straight line, with 

the slope equal to the FD of 𝑦(𝑡).  

Hurst Exponent 

The Hurst Exponent was introduced by Harold Hurst as a measure of the long-term memory of a time 

series (Hurst, 1957). Hurst exponent ranges from 0 to 1. Values larger than 0.5 suggest long-term positive 

autocorrelation, values smaller than 0.5 indicate anti-persistent behavior, while a Hurst exponent of 0.5 

suggests that the time-series is truly random. EEG time series tend to have Hurst exponents around 0.7 

(Vorobyov & Cichocki, 2002).  

For a time series 𝑦(𝑡), with 𝑇 samples, we can calculate a cumulative deviate series as 

 
𝑌(𝑡, 𝑇)  = ∑𝑦(𝑡) − 𝑦̅

𝑇

𝑡=1

 
 

 

where 𝑦̅ is the mean 𝑇 samples. Then the range of the accumulated values is given by 

 𝑅 = 𝑚𝑎𝑥1≤𝑡≤𝑇(𝑌(𝑡, 𝑇)) − 𝑚𝑖𝑛1≤𝑡≤𝑇(𝑌(𝑡, 𝑇))  

 

If 𝑆 is the standard deviation of the time series 𝑦(𝑡), the Hurst exponent 𝐻 is related to the ratio 𝑅 𝑆⁄  by 
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 𝑅

𝑆
= (𝑐𝑇)𝐻 

 

 

where 𝑐 is a constant (usually set to 0.5).  

Here, we divided the EEG signal of each channel into 4-second epochs and used the code provided by 

(Davidson, 2006) to estimate the full band Hurst exponent. Then the mean across epochs was used for 

group comparisons and main analyses. 

Detrended Fluctuation Analysis 

Detrended fluctuation analysis (DFA) provides a suitable framework to analyze long-range (> 1s) temporal 

autocorrelations and the scaling behavior of brain oscillations (Hardstone et al., 2012). DFA is performed 

on the amplitude envelopes of band-pass filtered EEG time series. Here, we performed the DFA for the 5 

frequency bands. The cumulative of the amplitude envelope is calculated as 

 
𝑌(𝑡) = ∑ 𝐴(𝑡′)

𝑇

𝑡′=1

 
 

 

where 𝐴(𝑡) is the amplitude envelope, obtained using Hilbert transform. The integrated signal is 

subsequently split into 20 sets of 50% percent overlapping windows with sizes varying from 1 to 

25 seconds. The windows were equidistant according to a logarithmic scale. The signals in each 

window are detrended using a least-squares fit and the fluctuation function is obtained. The 

fluctuation function is expressed as 

 

𝐹2(𝜏) =
1

𝑁
∑[𝑌(𝑡) − 𝑌𝜏(𝑡)]

2

𝑇

𝑡=1

 

 

where 𝜏 is the window size of the subset defined initially, and 𝑁 is the number of samples 

corresponding to the window size. The square-root of the fluctuation functions for each window 

are plotted on log-log axes with respect to the window sizes and a line is fitted to the data. The 

slope of the fitted line provides the DFA exponent which quantifies long-range temporal 

correlations (< 0.5: anti-correlated; ~0.5: uncorrelated; > 0.5: correlated; ~1: pink noise; > 1: 

non-stationary). 

Life and Waiting Times 

The structure of brain oscillations in short-to-mid temporal scales (< 1s) is estimated using life-and 

waiting-times (Montez et al., 2009). The analysis is performed on the instantaneous amplitude of the 

band-pass filtered signals, obtained using Hilbert transform. Here, we calculated the life and waiting times 

for the 5 frequency bands. The median of the amplitude envelope is set as a threshold, which allows 
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identifying the onset and end of a burst. The time during which the amplitudes exceed or stay below the 

threshold is defined as life or waiting time respectively. The statistics of interest are the 95th percentiles 

of the empirical cumulative distributions of the life or waiting times. 

  

Entropy in the Time-Domain 

Entropy, in the sense of dynamical systems, provides a powerful approach to understanding biological 

systems by quantifying the amount of information contained in a time series like EEG. Here, we used two 

common ways to quantify the entropy of the time-domain of EEG signals: approximate entropy (Pincus et 

al., 1991) and sample entropy (Richman & Moorman, 2000). First we split the EEG data into non-

overlapping 4-second epochs and for each epoch we estimated the embedding dimension 𝑚 and the lag 

𝜏, using the delay embedding theorem (Takens, 1981) as implemented in the phaseSpaceRecons function 

of the Predictive Maintenance MATLAB Toolbox. Then, we estimated the approximate and sample 

entropy for each epoch and take the mean across epochs for the main analyses. Small values of 

approximate and sample entropy reflect repeatability of the signal and high values indicate irregularity.   

Approximate Entropy 

If 𝑦(𝑡) is the EEG time series with length 𝑇, 𝑚 is the embedding dimension, and 𝑟 the radius of similarity 

(here, we set 𝑟 = 0.2 × 𝑠𝑡𝑑(𝑦(𝑡))), then we can embed the signal in blocks 𝑌𝑚(𝑖) = {𝑦(𝑖), 𝑦(𝑖 +

1),… , 𝑦(𝑖 + 𝑚 − 1)} and 𝑌𝑚(𝑗) = {𝑦(𝑗), 𝑦(𝑗 + 1),… , 𝑦(𝑗 + 𝑚 − 1)}. The distance between 𝑌𝑚(𝑖) and 

𝑌𝑚(𝑗) is given by 

 𝑑[𝑌𝑚(𝑖), 𝑌𝑚(𝑗)]  = 𝑚𝑎𝑥𝑘=1,2,..,𝑚(| 𝑦(𝑖 + 𝑘 − 1) −  𝑦(𝑗 + 𝑘 − 1)|)  

 

If we let 𝑁(𝑖) be the number of within range points, at point 𝑖, given by 

 
𝑁(𝑖) = ∑ 𝟏(𝑑[𝑌𝑚(𝑖), 𝑌𝑚(𝑗)] < 𝑟)

𝑇

𝑖=1,   𝑖≠𝑗

 
 

 

where 1 is the indicator operator, and let 𝐶𝑚(𝑖) = 𝑁(𝑖) (𝑇 − 𝑚 + 1)⁄ , we can compute the average 

logarithm of 𝐶𝑚(𝑖) as 

 
Ψ(𝑚) =

1

𝑇 − 𝑚 + 1
∑ 𝑙𝑜𝑔(𝐶𝑚(𝑖))

𝑇−𝑚+1

𝑗=1

 
 

 

Then, the approximate entropy is given by 

 𝐴𝑝𝐸𝑛 = Ψ(𝑚) − Ψ(𝑚 + 1)  
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Sample Entropy 

Sample entropy was introduced by Richman and Moorman as a measure of complexity, which contrary to 

approximate entropy, does not include self-similarity patterns (Richman & Moorman, 2000). Similar to 

approximate entropy, if we have embedded times series in blocks with 𝑚 dimensions (𝑌𝑚(𝑖), 𝑌𝑚(𝑗)) as 

well as with 𝑚 + 1 dimensions (𝑌𝑚+1(𝑖), 𝑌𝑚+1(𝑗)), we calculate 𝐴 = the number of template vectors 

having 𝑑[𝑌𝑚(𝑖), 𝑌𝑚(𝑗)] < 𝑟 and 𝐵 = the number of template vectors having 𝑑[𝑌𝑚+1(𝑖), 𝑌𝑚+1(𝑗)] < 𝑟. 

Then, the sample entropy can be calculated as 

 
𝑆𝑎𝑚𝑝𝐸𝑛 = −𝑙𝑜𝑔 (

𝐴

𝐵
) 

 

 

Spectral Entropy 

Besides time-domain, entropy can also be calculated in the spectral domain as a measure of information 

of a signal. Spectral entropy quantifies the irregularity of the EEG signal, i.e., the peakedness, or flatness 

of the EEG power spectrum (Inouye et al., 1991). Here, for each of the 5 frequency bands (delta, theta, 

alpha, beta, and gamma), we computed their spectral entropy for non-overlapping windows of 4 seconds. 

Then the mean across windows is used for group comparisons and main analyses 

For the spectral entropy calculation, we first calculated the power spectral density (𝑃𝑆𝐷) via Fourier 

transform. Then, given two frequencies of interest 𝑓𝑖 and 𝑓𝑓 (i.e., the boundaries of a frequency band of 

interest; for delta band, for example, 𝑓𝑖 and 𝑓𝑓 are 1 and 4 Hz, respectively), the 𝑃𝑆𝐷 between these two 

frequencies is normalized (𝑃𝑆𝐷𝑛) by the total energy in the EEG segment. Finally, the spectral entropy is 

calculated using the Shannon Entropy as 

 

𝑆𝐸(𝑓𝑖, 𝑓𝑓) = − ∑ 𝑃𝑆𝐷𝑛(𝑓)𝑙𝑜𝑔(𝑃𝑆𝐷𝑛(𝑓))

𝑓𝑓

𝑓=𝑓𝑖

 

 

 

Complexity 

EEG exhibits complex nonlinear behavior with nonlinear dynamical properties. This complexity should not 

be seen as randomness but as an intermediate condition between randomness and order (Stam, 2005). 

High values of complexity are associated with highly distributed and desynchronized neural generators of 

the EEG signal, while low values of complexity are associated with local and synchronized generators 

(Ibáñez-Molina et al., 2018). Here, we computed three estimates of the complexity of the EEG signal: 

Lempel-Ziv complexity (which is based on algorithmic complexity), Lyapunov Exponent, and Correlation 

Dimension (which are chaos-based estimates of complexity). The EEG signal was divided into 4-second 

epochs and the features were calculated for each epoch. Then the mean across epochs is used for group 

comparisons and main analyses. 

Lempel-Ziv Complexity 
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Lempel-Ziv Complexity (LZC) was introduced as a measure of complexity of finite sequences and is related 

to the number of steps by which a given sequence is presumed to be generated (Lempel & Ziv, 1976). In 

essence, given a string (in our case an EEG signal), LZC estimates the number of bits of the shortest 

computer that can generate the string. The first step of the LZC computation is to transform the EEG signal 

(𝑦(𝑡)) into a binary sequence 𝑃 = 𝑠(1), 𝑠(2), … , 𝑠(𝑛), by thresholding the signal based on the median 

(𝑦𝑚𝑒𝑑𝑖𝑎𝑛): 

 
𝑠(𝑖) = {

0     𝑖𝑓 𝑦(𝑖) < 𝑦𝑚𝑒𝑑𝑖𝑎𝑛

1     𝑖𝑓 𝑦(𝑖) > 𝑦𝑚𝑒𝑑𝑖𝑎𝑛
 

 

 

Then the sequence 𝑃 is scanned from left to right and every time that a new sequence of consecutive 

numbers is found one unit is added to a complexity counter (𝐶(𝑛)). Finally, the complexity counter is 

normalized by the length of the sequence 𝑃 (𝐿) and the LZC is given by 

 
𝐿𝑍𝐶 =

𝐶(𝑛)

𝐿 𝑙𝑜𝑔2(𝐿)⁄
 

 

 

Here, we used the code provide by Thai (2019), to estimate the LZC based on the decomposition of the 

sequence 𝑃 into an exhaustive and a primitive production process. The exhaustive LZC and the primitive 

LZC can be seen as lower and upper limit of the complexity, respectively.  

Lyapunov Exponent 

The complexity of an EEG time series 𝑦(𝑡) can be considered a chaotic phenomenon (Stam, 2005). One of 

the most important properties of a chaotic system is its sensitive dependence on initial conditions. 

Lyapunov exponents can be used to quantify how a slight perturbation in the initial conditions can cause 

divergent trajectories in a system. Given two phase space trajectories with initial separation vector 𝛿𝒚0, 

the rate at which these two trajectories diverge can be estimated by 

 |𝛿𝒚(𝑡)| ≈ 𝑒𝜆𝑡|𝛿𝒚0|  

 

where 𝜆 is the Lyapunov exponent. Because the rate of divergence can be different for different 

orientations of the initial separation vector, it is common to refer to the Largest Lyapunov exponent (LLE) 

since it characterizes the stability of a system (positive LLE is unstable and negative LLE is stable). Here, 

we used the code provided by Mohammadi (2009) to estimate the LLE of the EEG signal. The code is based 

on Rosenstein’s method to estimate the LLE (Rosenstein et al., 1993) and uses the False Nearest Neighbors 

and the Symplectic Geometry methods to choose the embedding dimension 𝑚 (Hegger & Kantz, 1999; Lei 

et al., 2002).   

Correlation Dimension 

As a measure of chaotic signal complexity, Correlation Dimension (𝐷2) can be seen as the number of 

independent variables or degrees of freedom that describe the behavior of a dynamic system (Stam, 

2005). In the EEG literature, 𝐷2 is often interpreted as a proxy of the integration of information in the 
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brain. To estimate 𝐷2, we first estimated the embedding dimension 𝑚 and the lag 𝜏 of the EEG time series 

𝑦(𝑡) with length 𝑇 using the delay embedding theorem (Takens, 1981) as implemented in the 

phaseSpaceRecons function of the Predictive Maintenance MATLAB Toolbox. Second, we embedded the 

signal in blocks 𝑌𝑚(𝑖) = {𝑦(𝑖), 𝑦(𝑖 + 1),… , 𝑦(𝑖 + 𝑚 − 1)} and 𝑌𝑚(𝑗) = {𝑦(𝑗), 𝑦(𝑗 + 1),… , 𝑦(𝑗 + 𝑚 −

1)}. The distance between 𝑌𝑚(𝑖) and 𝑌𝑚(𝑗) is given by 

 𝑑[𝑌𝑚(𝑖), 𝑌𝑚(𝑗)]  = 𝑚𝑎𝑥𝑘=1,2,..,𝑚(| 𝑦(𝑖 + 𝑘 − 1) −  𝑦(𝑗 + 𝑘 − 1)|)  

 

Then we calculated the number of within range points, at point 𝑖 (𝑁𝑖(𝑅)), as 

 
𝑁𝑖(𝑅) = ∑ 𝟏(𝑑[𝑌𝑚(𝑖), 𝑌𝑚(𝑗)] < 𝑅)

𝑇

𝑖=1,   𝑖≠𝑗

 
 

 

where 1 is the indicator operator and 𝑅 is the radius of similarity (we used Matlab’s function 

correlationDimension default value). Finally, the correlation integral 𝐶(𝑅) is given by 

 
𝐶(𝑅)  =

2

𝑇(𝑇 − 1)
∑𝑁𝑖(𝑅)

𝑇

𝑖=1

 
 

 

and 𝐷2 is the slope of 𝐶(𝑅) vs. 𝑅. 

Recurrence Quantification Analysis 

Recurrence plots (RPs) and recurrence quantification analysis (RQA) are nonlinear methods that permit 

to explore several aspects of the dynamics of complex systems, such as EEG signals, in a reconstructed 

phase space (Eckmann et al., 1987; N Marwan et al., 2007). Mathematically, the RPs are expressed as 

 𝑅𝑖,𝑗(𝜀) =  Θ(𝜀 − ‖𝑦𝑖⃗⃗⃗  − 𝑦𝑗⃗⃗  ⃗‖),     𝑖, 𝑗 = 1,… ,𝑁 

 

 

where 𝑦𝑖⃗⃗⃗   is the phase space reconstruction of the time series 𝑦(𝑡),  corresponds to the Heaviside 

function, ‖ . ‖ to the Euclidean norm, and 𝜀 to the recurrence threshold. If the system is close enough 

(determined by 𝜀) to a previously visited state, a 1 will be assigned to the RP in the corresponding (𝑖, 𝑗) 

coordinates, a value of 0 otherwise. The structures of the RP are quantified using RQA complexity 

measures. To build the recurrence plots, continuous EEG signals were split into non-overlapping 4-second 

segments. For each segment, a phase space is reconstructed using the delay embedding theorem (Takens, 

1981) as implemented in the function phaseSpaceRecons of the Predictive Maintenance MATLAB Toolbox. 

We extracted 8 different measures from the recurrence matrix using the CRP Toolbox for MATLAB 

(Marwan, 2017) and used the mean across segments group comparisons and main analyses. The 

recurrence threshold is set for each EEG channel at each time-window as the 10th percentile of the 

distribution of distances.  

Determinism 
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If the trajectory of a system is similar at different moments in time, the RP will produce diagonal lines 

parallel to the main diagonal. Determinism quantifies the proportion of recurrence points (denoted as “1” 

in the recurrence matrix) that form diagonal lines and is defined as 

 
𝐷𝐸𝑇 =

∑ 𝑙 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙 𝑃(𝑙)𝑁
𝑙=1

 
 

 

where 𝑃(𝑙) indicates a distribution of diagonal lines. We set 𝑙𝑚𝑖𝑛 to 2.  

Entropy 

The complexity of the distribution of diagonal lines can be quantified using Shannon’s information entropy 

 
𝐸𝑁𝑇𝑅 = − ∑ 𝑝(𝑙) ln 𝑝(𝑙)

𝑁

𝑙=𝑙𝑚𝑖𝑛

 
 

 

where 𝑝(𝑙) = 𝑃(𝑙) 𝑁𝑙⁄  indicates the probability of finding a diagonal line of a given length 𝑙. If the system 

shows periodicity, the value of entropy will be low.  

Laminarity 

If a system evolves subtlety, or if it is “trapped” in a state, the recurrence plot will reflect vertical 

structures. Laminarity quantifies the proportion of recurrence points forming vertical lines and is defined 

as 

 
𝐿𝐴𝑀 =

∑ 𝑣 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣 𝑃(𝑣)𝑁
𝑣=1

 
 

  

where 𝑃(𝑣) denotes the distribution of all vertical lines that exceed two points (𝑣𝑚𝑖𝑛 = 2). 

Maximal Diagonal Line Length 

The maximal diagonal line length of the distribution of diagonal lines is defines as 

 𝐿𝑚𝑎𝑥 = max({𝑙𝑖}𝑖=1
𝑁𝑙 )  

 

where 𝑁𝑙  indicates the total number of vertical lines. The inverse of 𝐿𝑚𝑎𝑥 is related to the divergence of 

the system.  

Maximal Vertical Line Length 

The utility of the vertical structures in the recurrence plots is mainly related to the detection of chaos-

chaos transitions (Marwan et al., 2002). The maximal length of vertical lines is also a recurrence statistic 

of interest and is expressed as 
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 𝑉𝑚𝑎𝑥 = max({𝑣𝑖}𝑖=1
𝑁𝑣 )  

 

where 𝑁𝑣 indicates the total number of vertical lines.   

Mean Diagonal Line Length 

Given the nature of diagonal structures on recurrence plots, the mean length of diagonal lines provides a 

value for the predictability of the system. It is formulated as 

 
𝐿 =

∑ 𝑙 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 
 

 

where 𝑃(𝑙) indicates a distribution of diagonal lines. 

Recurrence Times Entropy 

Recurrence times entropy (RTE) denotes the entropy of the frequency distribution of vertical “white” or 

not-recurrent segments, which provide information about the time that it takes for the system to return 

to previously visited states. The entropy of recurrence times is thus formulated as 

 

𝑅𝑇𝐸 = −
1

ln (𝑇𝑚𝑎𝑥)
∑ 𝑝(𝑡𝑤) ln 𝑝(𝑡𝑤)

𝑇𝑚𝑎𝑥

𝑡𝑤=1

 

 

 

where 𝑇𝑚𝑎𝑥 is the maximum white vertical line length, and 𝑝(𝑡𝑤) is the probability of finding a white 

segment of length 𝑡𝑤. 

Trapping Time 

The mean vertical line length, also denoted in the literature as trapping time is formulated as 

 
𝑇𝑇 =

∑ 𝑣 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 
 

 

where 𝑃(𝑣) indicates the distribution of vertical lines. Trapping time provides information on the average 

time during which the system does not evolve significantly or stays within the limits of the recurrence 

neighborhood. Similar to the case of Laminarity, we set 𝑣𝑚𝑖𝑛 = 2. 

Microstates Analysis 

EEG microstates are on-going scalp potential topographies that remain stable for around 60 to 120 ms 

before changing to another topography that remains stable again, suggesting quasi-simultaneity of 

activity of large scale brain networks (Lehmann et al., 1987). Four recurrent and dominant classes of 

microstates (commonly labeled A, B, C, and D, based on their topographies) are observed in resting-state 
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EEG, explaining around 65 to 84% of the variance of the data (Michel & Koenig, 2018). EEG microstates 

are closely related to resting-state networks found in resting-state functional magnetic resonance (Britz 

et al., 2010). Here, we used Cartool (Brunet et al., 2011) to extract the above-mentioned four microstate 

classes from the EEG data and compute their temporal parameters as well as the transition probability 

from one microstate class to another one.   

Temporal Parameters of EEG microstates 

We conducted the same analysis as in da Cruz et al. (2020). For each participant and microstate class, we 

computed three microstate temporal parameters: mean duration, time of coverage, and frequency of 

occurrence. Mean duration (in ms) is the average time that a given microstate is present uninterruptedly. 

Time of coverage (%) is the percentage of the total recording time spent in a given microstate. Occurrence 

is the average number of times a given microstate occurred per second. 

Transition Probabilities 

To investigate the transition probability from one microstate class to another one, also known as the 

syntax analysis, we computed the occurrence frequency of transitions from one class to all the others 

(Lehmann et al., 2005). After normalization to fractions of all between-class transitions of the participant, 

we obtained, for each participant, the observed probability of each possible transition. Twelve transitions 

between microstates classes (sum of transitions from one of the 4 classes to all the remaining 3 classes) 

were obtained for each subject. Similarly to Lehmann and colleagues (2005), given the occurrence of each 

microstate class, we also calculated the expected transition probability for each possible transition. We 

then used the difference between the expected and the observed transition probabilities for the statistical 

analyses. 

Functional Connectivity Analysis (across electrodes) 

Normal brain functioning requires coordinated flow of information between different brain areas. A way 

to quantify this flow of information is through functional connectivity analysis. Formally, functional 

connectivity is defined as the statistical relationship between the measures of activity of spatially distant 

neurophysiological events over time (Friston, 1994). In EEG, functional connectivity can be assessed both 

at the electrode and source level. Here, we describe how we conducted the connectivity estimation in the 

electrode space. All connectivity estimation measures were computed on a spatial Laplacian transformed 

EEG, also commonly referred to as current source density (CSD) or scalp current density (SCD) (Kayser & 

Tenke, 2006). The analysis was conducted on FieldTrip (Oostenveld et al., 2010). First, the spatial Laplacian 

transformed EEG time-series were converted into the frequency domain by using multitaper frequency 

transformation. Then we calculated the connectivity matrices for the directed transfer function, the 

imaginary part of coherency, and the phase-locking value. Finally, we performed a network analysis on 

the connectivity matrices to characterize them with a small number of measures. Please see Network 

Analysis for more information.  

Directed Transfer Function (DTF) 
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Directed Transfer Function (DTF) was first introduced by Kaminski and Blinowska as a method to 

determine the direction and frequency content of brain activity flow (Kaminski & Blinowska, 1991). DTF is 

based on the transfer function 𝐻(𝑓) of a multivariate autoregressive (MVAR) model, describing the causal 

influence of electrode 𝑙 on electrode 𝑘 at a frequency 𝑓 as follows: 

 
𝐷𝑇𝐹𝑙→𝑘(𝑓) =

|𝐻𝑘𝑙(𝑓)|2

∑ |𝐻𝑘𝑗(𝑓)|
2𝐽

𝑗=1

 
 

 

where 𝐽 is the total number of electrodes. DTF is zero only if there is no delay between electrode 𝑙 and 

electrode 𝑘. For more information, see (Kaminski & Blinowska, 1991). 

Imaginary Part of Coherency 

Coherence measures the phase coupling between electrode 𝑘 and electrode 𝑙 (Nunez et al., 1997). If 

𝑌𝑘𝑡(𝑓) is the Fourier transform of the time series 𝑦(𝑡) of electrode 𝑘, then the cross-spectrum of electrode 

𝑘 and electrode 𝑙 is given by 

 
𝑆𝑘𝑙(𝑓) =

1

𝑇
∑𝑌𝑘𝑡(𝑓)𝑌𝑙𝑡

∗(𝑓)

𝑇

𝑡=1

 
 

 

Then the complex coherence at frequency 𝑓 is given by 

 
𝐶𝑘𝑙(𝑓) =

𝑆𝑘𝑙(𝑓)

(𝑆𝑘𝑘(𝑓)𝑆𝑙𝑙(𝑓))
1
2

 
 

 

Here, we used the imaginary part of coherency since it minimizes effects of volume conduction (Nolte et 

al., 2004). 

Phase-Locking Value 

Phase-Locking Value (PLV) was introduced by Lachaux et al. as a method to detect frequency specific 

phase coupling between two signals (Lachaux et al., 1999). If Φ𝑘𝑡(𝑓) is the phase of the Fourier coefficient 

of electrode 𝑘 of the time segment 𝑦(𝑡) at frequency 𝑓, then PLV between the electrode 𝑘 and electrode 

𝑙 at frequency 𝑓 is given by 

 
𝑃𝐿𝑉𝑘𝑙(𝑓) =

1

𝑇
∑𝑒𝑥𝑝 (𝑖(Φ𝑘𝑡(𝑓) − Φ𝑙𝑡(𝑓)))

𝑇

𝑡=1

 
 

 

Functional Connectivity Analysis (across brain regions) 

Besides conducting functional connectivity analysis across electrodes, we also conducted the analysis in 

the source space across brain regions. Functional connectivity analysis at the source level was conducted 
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using the software LORETA (Pascual-Marqui et al., 2011). Cortical activity was reconstructed from scalp 

EEG signals, using the exact low-resolution electromagnetic tomography (eLORETA) algorithm, to a space 

of 6239 gray matter voxels as implemented in LORETA. We defined 80 seeds of interest (40 per 

hemisphere) from the Automated Anatomical Labelling (AAL) atlas, similar to a previous schizophrenia 

EEG study (Andreou et al., 2015). From the solution space, we included all gray matter voxels within a 

range of 10-mm radius of the seed. Connectivity between reconstructed brain sources was calculated for 

each frequency band using three different methods: instantaneous phase synchronization, lagged phase 

synchronization, and lagged coherence. Finally, we performed a network analysis on the connectivity 

matrices to characterize them with a small number of measures. Please see Network Analysis for more 

information. 

Instantaneous and lagged phase synchronization 

Nonlinear interactions between two time-series may be quantified in the frequency domain using the 

measure of phase synchronization (Pascual-Marqui, 2007). The instantaneous phase synchronization is 

defined as 

 𝜑𝑘,𝑙
2 (𝜔) = {Re[𝑓𝑘,𝑙(𝜔)]}

2
+ {Im[𝑓𝑘,𝑙(𝜔)]}

2
  

 

which, to reduce the effects of instantaneous non-physiological components, can be reformulated as the 

lagged phase synchronization given by 

 
𝜑𝑘,𝑙

2 (𝜔) =
{Im[𝑓𝑘,𝑙(𝜔)]}

2

1 − {Re[𝑓𝑘,𝑙(𝜔)]}
2 

 

 

where 

 

𝑓𝑘,𝑙(𝜔) =
1

𝑁𝑅
∑ [

𝑘𝑎(𝜔)

|𝑘𝑎(𝜔)|
]

𝑁𝑅

𝑎=1

[
𝑙𝑎
∗ (𝜔)

|𝑙𝑎(𝜔)|
] 

 

 

with the Fourier transforms of the signals denoted as 𝑘𝑎(𝜔) and 𝑙𝑎(𝜔), 𝑁𝑅 accounting for the number of 

epochs, and the superscript “*” indicating a complex conjugate. Re[𝑐] and Im[𝑐] are respectively the real 

and imaginary part of a complex number 𝑐, with brackets indicating the modulus. 

Lagged coherence 

Linear lagged connectivity measures the lagged linear dependence between two time-series without 

being affected by the covariance structure within each time series (Pascual-Marqui, 2007). Lagged 

coherence is defined as 

 
𝜌𝑘,𝑙

2 (𝜔) =
{Im[𝑓𝑘,𝑙(𝜔)]}

2

[𝑓𝑘,𝑘(𝜔)][𝑓𝑙,𝑙(𝜔)] − {Re[𝑓𝑘,𝑙(𝜔)]}
2 
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where, 𝑓𝑘,𝑙, contrary to the phase synchronization cases, is not normalized, and thus there is an effect of 

amplitude on the estimation. 

 

 

Network Analysis 

Network analysis provides a way to characterize brain networks with a small number of neurobiological 

meaningful measures (Rubinov & Sporns, 2010). We conducted the analysis on FieldTrip (Oostenveld et 

al., 2010) with the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). From the connectivity matrices 

obtained with directed transfer function, imaginary part of coherency, and phase-locking value in the 

electrode space as well as instantaneous and lagged phase synchronization, and lagged coherence in the 

source space, we calculated the node strength, the clustering coefficient, and the betweenness centrality. 

We applied the analysis to the whole spectrum and aggregated the results into the 5 frequency bands. 

Node Strength 

Node strength is the typical measurement for quantifying the level of node centrality. Important 

electrodes or brain regions interact with many other electrodes or regions, facilitating functional 

integration and measures of node centrality assess the importance of individual nodes (Rubinov & Sporns, 

2010). Given a node 𝑖, its strength is defined as the sum of all the weights of all edges of the node 𝑖 as 

follows 

 
𝑆𝑖 = ∑𝑤𝑖𝑗

𝑁

𝑗

 
 

 

where 𝑤𝑖𝑗 is the weight of node 𝑖 to node 𝑗 (Opsahl et al., 2010). 

Clustering Coefficient 

Clustering coefficient qualifies the level of connection of a node with other neighboring nodes (Onnela et 

al., 2005). Given a node 𝑖, the clustering coefficient is calculated as follows 

 
𝐶𝑖 =

2

𝑘𝑖(𝑘𝑖 − 1)
∑(𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖)

1/3

𝑗,𝑘

 
 

 

where 𝑤𝑖𝑗 is the weight of node 𝑖 to node 𝑗 and 𝑘 is the degree of the node. 

Betweenness Centrality 

Betweenness centrality is based on the idea that central nodes take part in many short paths in a network 

and, therefore, are considered key controls of information flow (Freeman, 1978). More specifically, it is 



29 
 

defined as the fraction of all shortest paths in the network that pass through a given node (Brandes, 2001). 

Betweenness centrality is calculated as follows  

 
𝐵(𝑖) = ∑

𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘𝑖≠𝑗≠𝑘
 

 

 

where 𝜎𝑗𝑘(𝑖) is the shortest path of two nodes that contain 𝑖.  



30 
 

3. Supplementary References 

Andreou, C., Nolte, G., Leicht, G., Polomac, N., Hanganu-Opatz, I. L., Lambert, M., Engel, A. K., & Mulert, 

C. (2015). Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia. 

Schizophrenia Bulletin, 41(4), 930–939. https://doi.org/10.1093/schbul/sbu121 

Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 

25(2), 163–177. https://doi.org/10.1080/0022250X.2001.9990249 

Britz, J., Van De Ville, D., & Michel, C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-

state network dynamics. NeuroImage, 52(4), 1162–1170. 

https://doi.org/10.1016/j.neuroimage.2010.02.052 

Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal Analysis of Multichannel EEG: 

CARTOOL. Intell. Neuroscience, 2011, 2:1–2:15. https://doi.org/10.1155/2011/813870 

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive 

Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001 

da Cruz, J. R., Chicherov, V., Herzog, M. H., & Figueiredo, P. (2018). An automatic pre-processing pipeline 

for EEG analysis (APP) based on robust statistics. Clinical Neurophysiology, 129(7), 1427–1437. 

https://doi.org/10.1016/j.clinph.2018.04.600 

da Cruz, J. R., Favrod, O., Roinishvili, M., Chkonia, E., Brand, A., Mohr, C., Figueiredo, P., & Herzog, M. H. 

(2020). EEG microstates are a candidate endophenotype for schizophrenia. Nature 

Communications, 11. https://doi.org/10.1038/s41467-020-16914-1 

Davidson, B. (2006). Hurst exponent (1.0.0.0) [Matlab]. 

https://ch.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent 

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence Plots of Dynamical Systems. Europhysics 

Letters (EPL), 4(9), 973–977. https://doi.org/10.1209/0295-5075/4/9/004 

Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal 

physiological signals. Physiological Measurement, 23(1), R1–R38. https://doi.org/10.1088/0967-

3334/23/1/201 

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–

239. Scopus. https://doi.org/10.1016/0378-8733(78)90021-7 

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain 

Mapping, 2(1–2), 56–78. https://doi.org/10.1002/hbm.460020107 

Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-Hansen, 

K. (2012). Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations. Frontiers 

in Physiology, 3. https://doi.org/10.3389/fphys.2012.00450 

Hegger, R., & Kantz, H. (1999). Improved false nearest neighbor method to detect determinism in time 

series data. Physical Review E, 60(4), 4970–4973. https://doi.org/10.1103/PhysRevE.60.4970 

Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: 

Nonlinear Phenomena, 31(2), 277–283. https://doi.org/10.1016/0167-2789(88)90081-4 

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and Clinical 

Neurophysiology, 29(3), 306–310. https://doi.org/10.1016/0013-4694(70)90143-4 

Hurst, H. E. (1957). A Suggested Statistical Model of some Time Series which occur in Nature. Nature, 

180(4584), 494–494. https://doi.org/10.1038/180494a0 



31 
 

Ibáñez-Molina, A. J., Lozano, V., Soriano, M. F., Aznarte, J. I., Gómez-Ariza, C. J., & Bajo, M. T. (2018). EEG 

Multiscale Complexity in Schizophrenia During Picture Naming. Frontiers in Physiology, 9. 

https://doi.org/10.3389/fphys.2018.01213 

Inouye, T., Shinosaki, K., Sakamoto, H., Toi, S., Ukai, S., Iyama, A., Katsuda, Y., & Hirano, M. (1991). 

Quantification of EEG irregularity by use of the entropy of the power spectrum. 

Electroencephalography and Clinical Neurophysiology, 79(3), 204–210. 

https://doi.org/10.1016/0013-4694(91)90138-T 

Kaminski, M. J., & Blinowska, K. J. (1991). A new method of the description of the information flow in the 

brain structures. Biological Cybernetics, 65(3), 203–210. https://doi.org/10.1007/BF00198091 

Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–

156. https://doi.org/10.1016/0010-4825(88)90041-8 

Kayser, J., & Tenke, C. E. (2006). Principal components analysis of Laplacian waveforms as a generic 

method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clinical 

Neurophysiology, 117(2), 348–368. https://doi.org/10.1016/j.clinph.2005.08.034 

Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain 

signals. Human Brain Mapping, 8(4), 194–208. https://doi.org/10.1002/(SICI)1097-

0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 

Lehmann, D., Ozaki, H., & Pal, I. (1987). EEG alpha map series: Brain micro-states by space-oriented 

adaptive segmentation. Electroencephalography and Clinical Neurophysiology, 67(3), 271–288. 

https://doi.org/10.1016/0013-4694(87)90025-3 

Lehmann, Dietrich, Faber, P. L., Galderisi, S., Herrmann, W. M., Kinoshita, T., Koukkou, M., Mucci, A., 

Pascual-Marqui, R. D., Saito, N., Wackermann, J., Winterer, G., & Koenig, T. (2005). EEG microstate 

duration and syntax in acute, medication-naïve, first-episode schizophrenia: A multi-center study. 

Psychiatry Research: Neuroimaging, 138(2), 141–156. 

https://doi.org/10.1016/j.pscychresns.2004.05.007 

Lei, M., Wang, Z., & Feng, Z. (2002). A method of embedding dimension estimation based on symplectic 

geometry. Physics Letters A, 303(2), 179–189. https://doi.org/10.1016/S0375-9601(02)01164-7 

Lempel, A., & Ziv, J. (1976). On the Complexity of Finite Sequences. IEEE Transactions on Information 

Theory, 22(1), 75–81. https://doi.org/10.1109/TIT.1976.1055501 

Marwan, N. (2017). Cross recurrence plot toolbox for MATLAB (5.22) [Matlab]. 

Marwan, N, Carmenromano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex 

systems. Physics Reports, 438(5–6), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001 

Marwan, Norbert, Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J. (2002). Recurrence-plot-based 

measures of complexity and their application to heart-rate-variability data. Physical Review E, 

66(2). https://doi.org/10.1103/PhysRevE.66.026702 

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal dynamics of whole-

brain neuronal networks: A review. NeuroImage, 180, 577–593. 

https://doi.org/10.1016/j.neuroimage.2017.11.062 

Mohammadi, S. (2009). LYAPROSEN: MATLAB function to calculate Lyapunov exponent. In Statistical 

Software Components. Boston College Department of Economics. 

https://ideas.repec.org/c/boc/bocode/t741502.html 



32 
 

Montez, T., Poil, S.-S., Jones, B. F., Manshanden, I., Verbunt, J. P. A., van Dijk, B. W., Brussaard, A. B., van 

Ooyen, A., Stam, C. J., Scheltens, P., & Linkenkaer-Hansen, K. (2009). Altered temporal correlations 

in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proceedings of 

the National Academy of Sciences, 106(5), 1614–1619. https://doi.org/10.1073/pnas.0811699106 

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction 

from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–

2307. https://doi.org/10.1016/j.clinph.2004.04.029 

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, 

P. J. (1997). EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, 

cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical 

Neurophysiology, 103(5), 499–515. https://doi.org/10.1016/S0013-4694(97)00066-7 

Onnela, J.-P., Saramäki, J., Kertész, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted 

complex networks. Physical Review E, 71(6), 065103. 

https://doi.org/10.1103/PhysRevE.71.065103 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010). FieldTrip: Open Source Software for 

Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational 

Intelligence and Neuroscience, 2011, e156869. https://doi.org/10.1155/2011/156869 

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing 

degree and shortest paths. Social Networks, 32(3), 245–251. 

https://doi.org/10.1016/j.socnet.2010.03.006 

O’Reilly, D., Navakatikyan, M. A., Filip, M., Greene, D., & Van Marter, L. J. (2012). Peak-to-peak amplitude 

in neonatal brain monitoring of premature infants. Clinical Neurophysiology, 123(11), 2139–2153. 

https://doi.org/10.1016/j.clinph.2012.02.087 

Pascual-Marqui, R. D. (2007). Instantaneous and lagged measurements of linear and nonlinear 

dependence between groups of multivariate time series: Frequency decomposition. 

ArXiv:0711.1455 [Stat]. http://arxiv.org/abs/0711.1455 

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., Tanaka, H., Hirata, K., 

John, E. R., Prichep, L., Biscay-Lirio, R., & Kinoshita, T. (2011). Assessing interactions in the brain 

with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, 369(1952), 3768–3784. 

https://doi.org/10.1098/rsta.2011.0081 

Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. 

Journal of Clinical Monitoring, 7(4), 335–345. https://doi.org/10.1007/BF01619355 

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and 

sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–

H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039 

Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov 

exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1), 117–134. 

https://doi.org/10.1016/0167-2789(93)90009-P 

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and 

interpretations. NeuroImage, 52(3), 1059–1069. 

https://doi.org/10.1016/j.neuroimage.2009.10.003 



33 
 

Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical 

Neurophysiology, 116(10), 2266–2301. https://doi.org/10.1016/j.clinph.2005.06.011 

Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L.-S. Young (Eds.), Dynamical 

Systems and Turbulence, Warwick 1980 (Vol. 898, pp. 366–381). Springer Berlin Heidelberg. 

https://doi.org/10.1007/BFb0091924 

Thai, Q. (2019). Calc_lz_complexity (1.9.0.0) [Matlab]. 

https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_complexity 

Tort, A. B. L., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring Phase-Amplitude Coupling 

Between Neuronal Oscillations of Different Frequencies. Journal of Neurophysiology, 104(2), 

1195–1210. https://doi.org/10.1152/jn.00106.2010 

Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature 

Reviews Neuroscience, 11(2), 100–113. https://doi.org/10.1038/nrn2774 

von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From 

local gamma to long range alpha/theta synchronization. International Journal of 

Psychophysiology, 38(3), 301–313. https://doi.org/10.1016/S0167-8760(00)00172-0 

Vorobyov, S., & Cichocki, A. (2002). Blind noise reduction for multisensory signals using ICA and subspace 

filtering, with application to EEG analysis. Biological Cybernetics, 86(4), 293–303. 

https://doi.org/10.1007/s00422-001-0298-6 

 

 

  

 

 

 

 

 

 


