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1. Supplementary Tables

Supplementary Table 1 - List of the abbreviation of the EEG features

ampl total power alpha

Amplitude total power in alpha band

ampl total power beta

Amplitude total power in beta band

ampl total power delta

Amplitude total power in delta band

ampl total power gamma

Amplitude total power in gamma band

ampl total power theta

Amplitude total power in theta band

approx entropy

Full-band EEG Approximate Entropy

asymmetry ampl alpha

Range EEG asymmetry in alpha band

asymmetry ampl beta

Range EEG asymmetry in beta band

asymmetry ampl delta

Range EEG asymmetry in delta band

asymmetry ampl gamma

Range EEG asymmetry in gamma band

asymmetry ampl theta

Range EEG asymmetry in theta band

betw cen e-dtf alpha

Betweenness Centrality of the directed transfer function at electrode level in alpha
band

betw cen e-dtf beta

Betweenness Centrality of the directed transfer function at electrode level in beta
band

betw cen e-dtf delta

Betweenness Centrality of the directed transfer function at electrode level in delta
band

betw cen e-dtf gamma

Betweenness Centrality of the directed transfer function at electrode level in gamma
band

betw cen e-dtf theta

Betweenness Centrality of the directed transfer function at electrode level in theta
band

betw cen e-icoh alpha

Betweenness Centrality of the imaginary part of coherency at electrode level in alpha
band

betw cen e-icoh beta

Betweenness Centrality of the imaginary part of coherency at electrode level in beta
band

betw cen e-icoh delta

Betweenness Centrality of the imaginary part of coherency at electrode level in delta
band

betw cen e-icoh gamma

Betweenness Centrality of the imaginary part of coherency at electrode level in
gamma band

betw cen e-icoh theta

Betweenness Centrality of the imaginary part of coherency at electrode level in theta
band

betw cen e-plv alpha

Betweenness Centrality of the phase-locking value at electrode level in alpha band

betw cen e-plv beta

Betweenness Centrality of the phase-locking value at electrode level in beta band

betw cen e-plv delta

Betweenness Centrality of the phase-locking value at electrode level in delta band

betw cen e-plv gamma

Betweenness Centrality of the phase-locking value at electrode level in gamma band

betw cen e-plv theta

Betweenness Centrality of the phase-locking value at electrode level in theta band

betw cen s-ips alpha

Betweenness Centrality of the instantaneous phase synchronization at source level
in alpha band

betw cen s-ips beta

Betweenness Centrality of the instantaneous phase synchronization at source level
in beta band




betw cen s-ips delta

Betweenness Centrality of the instantaneous phase synchronization at source level
in delta band

betw cen s-ips gamma

Betweenness Centrality of the instantaneous phase synchronization at source level
in gamma band

betw cen s-ips theta

Betweenness Centrality of the instantaneous phase synchronization at source level
in theta band

betw cen s-Icoh alpha

Betweenness Centrality of the lagged coherence at source level in alpha band

betw cen s-lcoh beta

Betweenness Centrality of the lagged coherence at source level in beta band

betw cen s-lcoh delta

Betweenness Centrality of the lagged coherence at source level in delta band

betw cen s-lcoh gamma

Betweenness Centrality of the lagged coherence at source level in gamma band

betw cen s-lcoh theta

Betweenness Centrality of the lagged coherence at source level in theta band

betw cen s-Ips alpha

Betweenness Centrality of the lagged phase synchronization at source level in alpha
band

betw cen s-Ips beta

Betweenness Centrality of the lagged phase synchronization at source level in beta
band

betw cen s-Ips delta

Betweenness Centrality of the lagged phase synchronization at source level in delta
band

betw cen s-lps gamma

Betweenness Centrality of the lagged phase synchronization at source level in
gamma band

betw cen s-Ips theta

Betweenness Centrality of the lagged phase synchronization at source level in theta
band

clust coeff e-dtf alpha

Clustering Coefficient of the directed transfer function at electrode level in alpha
band

clust coeff e-dtf beta

Clustering Coefficient of the directed transfer function at electrode level in beta band

clust coeff e-dtf delta

Clustering Coefficient of the directed transfer function at electrode level in delta
band

clust coeff e-dtf gamma

Clustering Coefficient of the directed transfer function at electrode level in gamma
band

clust coeff e-dtf theta

Clustering Coefficient of the directed transfer function at electrode level in theta
band

clust coeff e-icoh alpha

Clustering Coefficient of the imaginary part of coherency at electrode level in alpha
band

clust coeff e-icoh beta

Clustering Coefficient of the imaginary part of coherency at electrode level in beta
band

clust coeff e-icoh delta

Clustering Coefficient of the imaginary part of coherency at electrode level in delta
band

clust coeff e-icoh gamma

Clustering Coefficient of the imaginary part of coherency at electrode level in gamma
band

clust coeff e-icoh theta

Clustering Coefficient of the imaginary part of coherency at electrode level in theta
band

clust coeff e-plv alpha

Clustering Coefficient of the phase-locking value at electrode level in alpha band

clust coeff e-plv beta

Clustering Coefficient of the phase-locking value at electrode level in beta band

clust coeff e-plv delta

Clustering Coefficient of the phase-locking value at electrode level in delta band

clust coeff e-plv gamma

Clustering Coefficient of the phase-locking value at electrode level in gamma band

clust coeff e-plv theta

Clustering Coefficient of the phase-locking value at electrode level in theta band




clust coeff s-ips alpha

Clustering Coefficient of the instantaneous phase synchronization at source level in
alpha band

clust coeff s-ips beta

Clustering Coefficient of the instantaneous phase synchronization at source level in
beta band

clust coeff s-ips delta

Clustering Coefficient of the instantaneous phase synchronization at source level in
delta band

clust coeff s-ips gamma

Clustering Coefficient of the instantaneous phase synchronization at source level in
gamma band

clust coeff s-ips theta

Clustering Coefficient of the instantaneous phase synchronization at source level in
theta band

clust coeff s-Icoh alpha

Clustering Coefficient of the lagged coherence at source level in alpha band

clust coeff s-Ilcoh beta

Clustering Coefficient of the lagged coherence at source level in beta band

clust coeff s-Icoh delta

Clustering Coefficient of the lagged coherence at source level in delta band

clust coeff s-lcoh gamma

Clustering Coefficient of the lagged coherence at source level in gamma band

clust coeff s-Icoh theta

Clustering Coefficient of the lagged coherence at source level in theta band

clust coeff s-lps alpha

Clustering Coefficient of the lagged phase synchronization at source level in alpha
band

clust coeff s-Ips beta

Clustering Coefficient of the lagged phase synchronization at source level in beta
band

clust coeff s-Ips delta

Clustering Coefficient of the lagged phase synchronization at source level in delta
band

clust coeff s-lps gamma

Clustering Coefficient of the lagged phase synchronization at source level in gamma
band

clust coeff s-Ips theta

Clustering Coefficient of the lagged phase synchronization at source level in theta
band

coeff of var ampl alpha

Range EEG coefficient of variation in alpha band

coeff of var ampl beta

Range EEG coefficient of variation in beta band

coeff of var ampl delta

Range EEG coefficient of variation in delta band

coeff of var ampl gamma

Range EEG coefficient of variation in gamma band

coeff of var ampl theta

Range EEG coefficient of variation in theta band

correlation dimension

Full-band EEG Correlation Dimension

dfa exponent alpha

Detrended Fluctuation Analysis exponent in alpha band

dfa exponent beta

Detrended Fluctuation Analysis exponent in beta band

dfa exponent delta

Detrended Fluctuation Analysis exponent in delta band

dfa exponent gamma

Detrended Fluctuation Analysis exponent in gamma band

dfa exponent theta

Detrended Fluctuation Analysis exponent in theta band

hfd alpha Higuchi’s Fractal Dimension in alpha band
hfd beta Higuchi’s Fractal Dimension in beta band
hfd delta Higuchi’s Fractal Dimension in delta band
hfd gamma Higuchi’s Fractal Dimension in gamma band
hfd theta Higuchi’s Fractal Dimension in theta band

hjorth activity

Full-band EEG Hjorth parameter activity

hjorth complexity

Full-band EEG Hjorth parameter complexity

hjorth mobility

Full-band EEG Hjorth parameter mobility




hurst exponent

Full-band Hurst Exponent

kfd alpha Katz’s Fractal Dimension in alpha band
kfd beta Katz’s Fractal Dimension in beta band
kfd delta Katz’s Fractal Dimension in delta band
kfd gamma Katz’s Fractal Dimension in gamma band
kfd theta Katz’s Fractal Dimension in theta band

kurtosis ampl alpha

Kurtosis of the amplitude in alpha band

kurtosis ampl beta

Kurtosis of the amplitude in beta band

kurtosis ampl delta

Kurtosis of the amplitude in delta band

kurtosis ampl gamma

Kurtosis of the amplitude in gamma band

kurtosis ampl theta

Kurtosis of the amplitude in theta band

life time alpha

Life-time statistics of alpha bursts

life time beta

Life-time statistics of beta bursts

life time delta

Life-time statistics of delta bursts

life time gamma

Life-time statistics of gamma bursts

life time theta

Life-time statistics of theta bursts

lyapunov exponent

Full-band EEG Lyapunov Exponent

lzc exhaustive

Lempel-Ziv complexity exhaustive

Izc primitive

Lempel-Ziv complexity primitive

mean ampl alpha

Mean amplitude of the envelope in alpha band

mean ampl beta

Mean amplitude of the envelope in beta band

mean ampl delta

Mean amplitude of the envelope in delta band

mean ampl gamma

Mean amplitude of the envelope in gamma band

mean ampl theta

Mean amplitude of the envelope in theta band

microstates temporal

EEG microstates temporal parameters: mean duration, time coverage and

occurrence

microstates transitions

EEG microstates transition probabilities

mod index alpha-beta

Modulation Index of alpha phase on beta amplitude

mod index alpha-gamma

Modulation Index of alpha phase on gamma amplitude

mod index beta-gamma

Modulation Index of beta phase on gamma amplitude

mod index delta-alpha

Modulation Index of delta phase on alpha amplitude

mod index delta-beta

Modulation Index of delta phase on beta amplitude

mod index delta-gamma

Modulation Index of delta phase on gamma amplitude

mod index theta-alpha

Modulation Index of theta phase on alpha amplitude

mod index theta-beta

Modulation Index of theta phase on beta amplitude

mod index theta-gamma

Modulation Index of theta phase on gamma amplitude

node str e-dtf alpha

Node Strength of the directed transfer function at electrode level in alpha band

node str e-dtf beta

Node Strength of the directed transfer function at electrode level in beta band

node str e-dtf delta

Node Strength of the directed transfer function at electrode level in delta band

node str e-dtf gamma

Node Strength of the directed transfer function at electrode level in gamma band

node str e-dtf theta

Node Strength of the directed transfer function at electrode level in theta band

node str e-icoh alpha

Node Strength of the imaginary part of coherency at electrode level in alpha band

node str e-icoh beta

Node Strength of the imaginary part of coherency at electrode level in beta band

node str e-icoh delta

Node Strength of the imaginary part of coherency at electrode level in delta band




node str e-icoh gamma

Node Strength of the imaginary part of coherency at electrode level in gamma band

node str e-icoh theta

Node Strength of the imaginary part of coherency at electrode level in theta band

node str e-plv alpha

Node Strength of the phase-locking value at electrode level in alpha band

node str e-plv beta

Node Strength of the phase-locking value at electrode level in beta band

node str e-plv delta

Node Strength of the phase-locking value at electrode level in delta band

node str e-plv gamma

Node Strength of the phase-locking value at electrode level in gamma band

node str e-plv theta

Node Strength of the phase-locking value at electrode level in theta band

node str s-ips alpha

Node Strength of the instantaneous phase synchronization at source level in alpha
band

node str s-ips beta

Node Strength of the instantaneous phase synchronization at source level in beta
band

node str s-ips delta

Node Strength of the instantaneous phase synchronization at source level in delta
band

node str s-ips gamma

Node Strength of the instantaneous phase synchronization at source level in gamma
band

node str s-ips theta

Node Strength of the instantaneous phase synchronization at source level in theta
band

node str s-Icoh alpha

Node Strength of the lagged coherence at source level in alpha band

node str s-Icoh beta

Node Strength of the lagged coherence at source level in beta band

node str s-lcoh delta

Node Strength of the lagged coherence at source level in delta band

node str s-lcoh gamma

Node Strength of the lagged coherence at source level in gamma band

node str s-Icoh theta

Node Strength of the lagged coherence at source level in theta band

node str s-Ips alpha

Node Strength of the lagged phase synchronization at source level in alpha band

node str s-Ips beta

Node Strength of the lagged phase synchronization at source level in beta band

node str s-Ips delta

Node Strength of the lagged phase synchronization at source level in delta band

node str s-lps gamma

Node Strength of the lagged phase synchronization at source level in gamma band

node str s-Ips theta

Node Strength of the lagged phase synchronization at source level in theta band

relative ampl alpha

Relative spectral amplitude in alpha band

relative ampl beta

Relative spectral amplitude in beta band

relative ampl delta

Relative spectral amplitude in delta band

relative ampl gamma

Relative spectral amplitude in gamma band

relative ampl theta

Relative spectral amplitude in theta band

rqa determinism

Full-band EEG Recurrence Quantification Analysis Determinism

rqa entropy

Full-band EEG Recurrence Quantification Analysis Entropy

rga laminarity

Full-band EEG Recurrence Quantification Analysis Laminarity

rga max diagonal

Full-band EEG Recurrence Quantification Analysis Maximal diagonal line length

rga max vertical

Full-band EEG Recurrence Quantification Analysis Maximal vertical line length

rga mean diagonal

Full-band EEG Recurrence Quantification Analysis Mean diagonal line length

rqa rte

Full-band EEG Recurrence Quantification Analysis Recurrence times entropy

rga trapping time

Full-band EEG Recurrence Quantification Analysis Trapping time

sample entropy

Full-band EEG Sample Entropy

skewness ampl alpha

Skewness of the amplitude in alpha band

skewness ampl beta

Skewness of the amplitude in beta band

skewness ampl delta

Skewness of the amplitude in delta band




skewness ampl gamma

Skewness of the amplitude in gamma band

skewness ampl theta

Skewness of the amplitude in theta band

source ampl alpha

Spectral amplitude in alpha band at source level

source ampl beta

Spectral amplitude in beta band at source level

source ampl delta

Spectral amplitude in delta band at source level

source ampl gamma

Spectral amplitude in gamma band at source level

source ampl theta

Spectral amplitude in theta band at source level

spectral entropy alpha

Spectral Entropy in alpha band

spectral entropy beta

Spectral Entropy in beta band

spectral entropy delta

Spectral Entropy in delta band

spectral entropy gamma

Spectral Entropy in gamma band

spectral entropy theta

Spectral Entropy in theta band

std ampl alpha

Standard deviation of the amplitude of the envelope in alpha band

std ampl beta

Standard deviation of the amplitude of the envelope in beta band

std ampl delta

Standard deviation of the amplitude of the envelope in delta band

std ampl gamma

Standard deviation of the amplitude of the envelope in gamma band

std ampl theta

Standard deviation of the amplitude of the envelope in theta band

waiting time alpha

Waiting-time statistics of alpha bursts

waiting time beta

Waiting-time statistics of beta bursts

waiting time delta

Waiting-time statistics of delta bursts

waiting time gamma

Waiting-time statistics of gamma bursts

waiting time theta

Waiting-time statistics of theta bursts




Supplementary Table 2 - Prediction of SANS and SAPS scores, when using each EEG feature separately as
well as all features together (last line), by Partial Least Squares Regression with leave-one-out cross-

validation.

Features RMSE Features RMSE
SANS |SAPS SANS |SAPS |(continued) SANS  [SAPS SANS |SAPS

ampl total power

gamma 0.133 [0.098 |[5.136 |3.148 |lyapunov exponent 0.077 |0.187 |5.183 |3.117

ampl total power

theta 0.084 [0.022 |[5.165 |3.164 |mean amplgamma 0.133 |0.098 |5.136 |3.148

asymmetry  ampl

alpha 0.376 |0.107 |4.861 |3.148 [mean ampltheta 0.084 |0.022 |5.165 |(3.164

asymmetry  ampl microstates

theta 0.371 [0.472 [4.921 |2.801 |temporal 0.063 |-0.017 |5.185 |3.196

microstates

betw cen e-plvdelta [0.206 |0.287 |5.109 |3.040 [transitions 0.207 |0.121 |5.067 |(3.150

betw cen e-plv mod index alpha-

gamma 0.434 |0.357 4718 |2.948 |gamma 0.400 0.279 4.832 |3.029

mod index delta-

betw cen s-ips beta [0.393 |0.318 |4.793 |3.007 |alpha 0.114 |0.136 |5.158 [3.132

betw cen s-lcoh mod index delta-

gamma 0.369 |0.290 |4.828 |[3.025 |beta 0.168 [0.308 |5.153 |3.031

clust coeff e-icoh mod index delta-

theta 0.122 |-0.020 |5.140 |3.175 |gamma 0.131 |0.292 |5.167 |3.016

clust coeff e-plv node str e-icoh

beta 0.301 |0.026 |5.037 |3.167 |gamma 0.152 |0.223 |5.129 |3.072

clust coeff e-plv

delta 0.167 |0.114 |5.127 |3.137 |node str e-icoh theta [0.120 |-0.006 |5.165 |3.175

clust coeff e-plv

gamma 0.186 |[0.157 |[5.124 |[3.130 |nodestre-plvalpha |0.154 |0.013 |5.121 |3.166

clust coeff e-plv

theta 0.083 |[0.046 |[5.172 |[3.159 |node stre-plv beta 0.315 |0.091 |[4.987 |(3.154

clust coeff s-ips

theta 0.297 |0.106 [4.959 |[3.144 |nodestre-plvdelta |0.191 |0.153 |[5.111 |3.119

clust coeff s-Icoh node str  e-plv

theta 0.004 |-0.020 |5.216 |3.174 |gamma 0.211 |0.188 |5.096 |3.103

clust coeff s-Ips

gamma 0.006 |0.232 |5.226 |3.076 |[nodestre-plvtheta |0.166 |0.106 |[5.121 [3.139

clust coeff s-lps

theta 0.065 |-0.001 [5.190 |3.174 |node strs-ipsalpha [0.189 |0.188 |5.110 |3.099

coeff of var ampl

alpha 0.376 |0.062 [4.798 |3.174 |nodestrs-ipstheta [0.243 |0.130 |5.022 |3.138

coeff of var ampl node str s-lcoh

beta 0.081 |0.248 |5.176 |3.060 [gamma 0.112 |0.242 |5.171 |3.073




coeff of var ampl

theta 0.044 |0.197 |5.204 (3.091 |node strs-lcoh theta [0.050 |0.077 |5.202 |3.158

dfa exponent alpha |-0.060 [0.019 |[5.231 (3.171 |nodestrs-lpsgamma [0.065 |0.169 |5.216 |3.115

dfa exponent beta |0.059 |[0.070 |[5.201 (3.155 |node strs-Ipstheta [0.106 |0.052 |5.174 |3.165

hfd alpha 0.050 |[0.056 |[5.191 |3.148 |relative ampl beta 0.041 |0.201 |[5.195 |3.097

hfd beta 0.055 [0.084 [5.194 |3.150 |[relative ampl theta -0.057 [0.123 |5.229 |3.131

hfd delta 0.046 |0.337 |5.194 |2.984 [skewnessamplbeta [0.260 |0.238 |5.024 |3.066

hfd theta 0.378 |0.087 |4.798 |[3.139 |skewness ampltheta [0.128 |0.179 |5.151 |3.106
spectral entropy

hurst exponent 0.065 |(0.117 |5.187 |[3.137 |alpha 0.344 |0.149 |4.950 (3.130
spectral entropy

kfd delta 0.141 |0.118 |[5.130 |3.140 |delta 0.248 [0.155 |5.049 |3.118
spectral entropy

kfd gamma 0.140 (0.183 [5.135 |3.102 |gamma 0.083 [0.174 |5.176 |3.106
spectral entropy

kfd theta 0.097 |0.422 |5.146 |2.868 |theta 0.047 ]0.129 |5.202 |3.130

kurtosis ampl alpha [0.113 |0.094 |5.156 |3.142 |std amplgamma 0.174 |0.090 |(5.100 [3.152

kurtosis ampl

gamma 0.264 [0.149 |5.017 |3.162 |std ampltheta 0.131 |0.025 |5.127 |3.162

kurtosis ampl theta [0.175 |0.333 |5.100 |2.984 |waitingtime beta 0.081 |[0.122 |5.184 |3.151

life time beta 0.141 |0.060 |5.144 |(3.168 |waitingtime gamma |0.301 |0.097 |4.939 |3.142

life time gamma 0.295 |0.097 |4.958 |3.142 |All Features 0.837 (0.832 (2.835 |1.752




Supplementary Table 3 - Number of components and number of variables used for the prediction of SANS
and SAPS scores, when using each EEG feature separately as well as features together (last line), by Partial
Least Squares Regression.

Features Number of | Number of | Features Number of | Number of
Components Variables Components Variables
SANS | SAPS SANS | SAPS | (continued) SANS SAPS SANS | SAPS

ampl total power lyapunov

gamma 1 1 2 5 exponent 1 1 2 8

ampl total power

theta 1 1 40 2 mean ampl gamma | 1 1 2 5

asymmetry ampl

alpha 2 1 29 3 mean ampl theta 1 1 40 2

asymmetry ampl microstates

theta 2 2 26 21 temporal 1 2 2 4

betw cen e-plv microstates

delta 1 1 8 7 transitions 1 2 2 6

betw cen e-plv mod index alpha-

gamma 2 1 23 5 gamma 3 1 18 4

betw cen s-ips mod index delta-

beta 1 1 12 10 alpha 1 1 3 27

betw cen s-lcoh mod index delta-

gamma 1 1 9 6 beta 1 2 6 24

clust coeff e-icoh mod index delta-

theta 1 1 10 2 gamma 1 1 3 3

clust coeff e-plv node str e-icoh

beta 4 1 14 13 gamma 1 1 3 2

clust coeff e-plv node str e-icoh

delta 2 1 4 4 theta 1 1 11 2

clust coeff e-plv node str e-plv

gamma 2 1 24 2 alpha 1 1 2 64

clust coeff e-plv

theta 1 1 5 2 node str e-plv beta | 4 1 11 3

clust coeff s-ips

theta 2 1 5 5 node stre-plvdelta | 2 1 4 4

clust coeff s-Icoh node str e-plv

theta 1 1 3 4 gamma 2 1 5 2

clust coeff s-lps node str e-plv

gamma 1 2 3 50 theta 1 1 3 3

clust coeff s-Ips

theta 1 1 2 2 node strs-ipsalpha | 1 1 3 6

coeff of var ampl

alpha 2 1 11 10 node str s-ipstheta | 1 1 3 6

coeff of var ampl node str s-lcoh

beta 1 1 2 5 gamma 1 2 2 42
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coeff of var ampl

node str s-lcoh

theta 1 1 2 2 theta 1 1 4 4

dfa exponent node str s-lps

alpha 1 1 2 54 gamma 1 1 2 7

dfa exponentbeta | 1 1 6 2 node str s-Ips theta | 1 1 2 2

hfd alpha 1 1 2 37 relative ampl beta | 1 2 4 9

hfd beta 1 1 2 2 relative ampl theta | 1 1 2 2
skewness ampl

hfd delta 1 2 2 16 beta 1 1 6 4
skewness ampl

hfd theta 3 1 5 24 theta 1 1 11 7
spectral  entropy

hurst exponent 1 1 6 6 alpha 5 2 23 3
spectral  entropy

kfd delta 1 1 2 11 delta 2 1 19 2
spectral  entropy

kfd gamma 1 1 6 2 gamma 1 1 2 3
spectral  entropy

kfd theta 1 4 53 7 theta 1 1 6 3

kurtosis ampl

alpha 1 1 2 13 std ampl gamma 1 1 8 5

kurtosis ampl

gamma 2 1 14 2 std ampl theta 1 1 50 4

kurtosis ampl

theta 1 1 2 7 waiting time beta 1 1 2 5
waiting time

life time beta 1 1 11 3 gamma 2 1 12 3

life time gamma 2 1 9 9 All Features 4 6 185 196
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2. Supplementary Methods

EEG Data Pre-Processing

Offline EEG data were downsampled to 256 Hz (128 Hz for the microstates analysis) and preprocessed
using an automatic pipeline (APP; da Cruz et al., 2018). APP included the following steps: filtering via a
bandpass filter of 1-100 Hz (1-40 Hz for the microstates analysis); removal of line-noise (CleanLine;
www.nitrc.org/projects/cleanline); re-referencing to the bi-weight estimate of the mean of all electrodes;

removal and 3D spline interpolation of bad electrodes; removal of bad epochs; independent component
analysis to remove artifacts related to eye movements, muscle activity and bad electrodes (not conducted
for the connectivity analysis); and re-referencing to the common average.

Time-Domain Amplitude Features

The most straight forward analysis of EEG signals is the quantification of its time-domain amplitude
features. For that, we first filtered the EEG signal of each channel into five frequency bands (delta (1 - 4
Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), gamma (30 - 70 Hz)). Then, for each frequency
band, we computed several amplitude features: total power, mean of the envelope, standard deviation
of the envelope, skewness of the signal amplitude, and kurtosis of the signal amplitude. The EEG signal
was divided into 4-second epochs and the features were calculated for each epoch. Then the mean across
epochs is used for group comparisons and main analyses.

Amplitude Total Power

If y(t) is the time domain EEG signal of a given channel at time t, the amplitude total power is given by

T
1
Total Power = T Zly(t)l2

t=1

where T is the total time.
Mean and Standard Deviation of the Envelope

Ifﬂ-[(y(t)) is the Hilbert transform of the time domain EEG signal y(t), then the envelope of the signal is
given by

Envelope(t) = |7'f(3’(t))|2

and the measures of centrality and variability are given by the mean and standard deviation of the
envelope.

Skewness and Kurtosis of the Signal

If ¥ and ygp, are the mean and standard deviation of the EEG signal y(t), respectively, then the skewness
of the signal is given by
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1 _
pElaly® - 1P

Skewness = 3
YVsp
and the kurtosis of the signal is given by
1 _
 mXialy@® - y1*
Kurtosis = 7
YVsp

Range EEG

Similar to EEG Data Pre-Processing

Offline EEG data were downsampled to 256 Hz (128 Hz for the microstates analysis) and preprocessed
using an automatic pipeline (APP; da Cruz et al., 2018). APP included the following steps: filtering via a
bandpass filter of 1-100 Hz (1-40 Hz for the microstates analysis); removal of line-noise (CleanLine;
www.nitrc.org/projects/cleanline); re-referencing to the bi-weight estimate of the mean of all electrodes;
removal and 3D spline interpolation of bad electrodes; removal of bad epochs; independent component
analysis to remove artifacts related to eye movements, muscle activity and bad electrodes (not conducted
for the connectivity analysis); and re-referencing to the common average.

Time-Domain Amplitude Features, range EEG was introduced as a way to quantify the amplitude of the
EEG data (O'Reilly et al., 2012). However, unlike the previously described features, range EEG focuses on
a peak-to-peak measure of the EEG amplitude. Here, before calculating the range EEG features, we first
filtered the EEG signal of each channel into five frequency bands (delta, theta, alpha, beta, gamma). Then,
for each frequency band, we calculated the range EEG and two of its features: coefficient of variation and
asymmetry. If y(t) is the EEG signal, then over a time segment s the difference between the maximum
and the minimum is given by

dif f(s) = max(y(©Ow(t — sh)) — min(y(©)w(t — sA))

where w(t) is a window (here, a 4-second Hanning window) and A is a time-shift factor related to the
percentage of overlap (here, we used 50%). Then, the range EEG is given by

50

FEEG(s) = {logs0 29I () if diff(s) > 50

diff(s) otherwise
Coefficient of variation

If rEEG is the mean range EEG and rEEGg, is the standard deviation of the range EEG, the coefficient of
variation of the range EEG (rEEGy) is given by
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T'EEGSD
TEEGCV = TEEG

Asymmetry

frEEGeqian, TEEGsy,, and rTEEGgse, are the median, 5 and 95 percentile of the range EEG, respectively,
and we let A =71EEGnedian — TEEGsy, and B = rEEGqsy, — TEEGeqian, then the range EEG
asymmetry is given by

B—-A
rEE Gasymmetry = m

The rEEGysymmetry ranges from -1 to 1, with values close to O representing symmetry and values close
to -1 and 1 indicating asymmetry of the range EEG.

Hjorth Parameters

Hjorth parameters are descriptive statistical properties of the EEG time-domain signal and provide a
bridge between time and frequency domain interpretation of the EEG signal (Hjorth, 1970). There are 3
Hjorth parameters: Activity, Mobility, and Complexity. The EEG signal was divided into 4-second epochs
and the 3 Hjorth parameters were calculated for each epoch. Then, for each parameter, the mean across
epochs was used for group comparisons and main analyses.

Activity

The Activity parameter quantifies the power of the signal. If y(t) is the time domain EEG signal of a given
channel, then Activity is the variance of the signal (var(y(t))).

Mobility

The Mobility parameter is an approximation of the mean frequency of the signal and is computed as
dy(t)

var (22)

var(y(t))

Mobility =

where dy(t)/dt is the first derivative of the signal with respect to time.
Complexity

The Complexity parameter is sensitive to changes in the frequency of the signal as it quantifies the
deviations from a pure sinusoidal signal. It is computed as

Mobility (—dﬁ(tt))

Mobility(y(t))

Complexity =
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Relative Spectral Amplitude

Fourier analysis is the most common method to decompose an EEG time series into frequency
components. The analysis of the amplitude spectrum gives us the magnitude of the Fourier coefficients
at different frequencies. It is thought that activity in high frequencies reflects processing within brain areas
and activity in low frequencies is thought to reflect communication between brain areas (Uhlhaas &
Singer, 2010; von Stein & Sarnthein, 2000). Here, for each of the 5 frequency bands (delta, theta, alpha,
beta, and gamma), we computed their relative spectral amplitude. If Y (f) is the spectral amplitude of the
Fourier transform of the EEG signal y(t) at frequency f, then, the relative amplitude for each frequency

Sl Y(R)

Sz Y (k)
/fz_fa

band is given by

Relative Amplitude (f;, f;) =

where f; and f; are the boundaries of the frequency band of interest (e.g., for delta band, f; and ff are 1
and 4 Hz, respectively) and f, and f, are the boundaries of all the frequencies considered. Here, f, and f,
are 1 and 70 Hz, respectively. For each of the 5 frequency bands, the relative amplitude was computed
for non-overlapping windows of 4 seconds. Then for each frequency band the mean across windows was
used for group comparisons and main analyses.

Source Spectral Amplitude

Besides quantifying the spectral amplitude in the electrode space, we also quantified the spectral
amplitude in the source space. The three-dimensional cortical current source densities were computed
using the software LORETA (Pascual-Marqui et al., 2011). First, the EEG data of each electrode is converted
to the frequency domain using the Fourier transform and the cross-spectrum is obtained for each time
epoch. Then, the cortical activity was reconstructed from the scalp signals, using the exact low-resolution
electromagnetic tomography (eLORETA) algorithm to a space of 6239 gray matter voxels as implemented
in LORETA. We defined 80 regions of interest (ROI; 40 per hemisphere) from the Automated Anatomical
Labelling (AAL) atlas, similar to a previous schizophrenia EEG study (Andreou et al., 2015). We defined 5
frequency bands of interest (delta, theta, alpha, beta and gamma) and, for each frequency band, we
computed the average current source densities for the 80 ROls from the eLORETA solution space.

Modulation Index

Low-frequency brain oscillations exert a modulatory effect on high-frequency activity, potentially,
allowing optimal coordination between large-scale networks and more local functional brain sub-systems
(Canolty & Knight, 2010). Such cross-frequency interactions may occur via phase-amplitude coupling (PAC)
and can be quantified using a modulation index (Tort et al., 2010). First, the phase and amplitude values
are obtained from the band-pass filtered signals, f,, and f, respectively, using Hilbert transform. Then, all
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the instantaneous phases from -180 to 180 corresponding to f,, are binned into 18 values. The bins take
a mean amplitude value @ and a vector of normalized amplitude values is defined as P given by

a
P(i)=T

i=14i

where N is 18. If there is no effect of the phase of f, on fj, the values of P would be roughly uniformly
distributed. MI calculates the deviation of P from a uniform distribution using Kullback-Leibler (KL)
divergence, which provides a value on how similar two distributions are. KL divergence is defined as

KL(U,X) = In(N) — H(P)

where H(P) is the Shannon’s information entropy given by
N
HP) = — Z P@)In P(D)
i=1

Finally, the modulation index (Ml) is defined as

_ KL(U,X)
~ In(N)

Before estimating the MI, we segmented the continuous EEG signals into non-overlapping 4-second
segments. The mean MI across non-overlapping segments is used for group comparisons and main
analyses. We quantified 8 modulation indexes corresponding to: delta phase-alpha amplitude, delta
phase-beta amplitude, delta phase-gamma amplitude, theta phase-alpha amplitude, theta phase-beta
amplitude, theta phase-gamma amplitude, alpha phase-beta amplitude, alpha phase-gamma amplitude,
and beta phase-gamma amplitude.

Fractal Dimension

Fractal dimension (FD) of a signal is a measure of the signal’s irregularity and self-similarity in the time
domain. It is different from the dimension of an attractor which is calculated in a phase-space. For EEG
signals, FD values lie between 1 and 2, with high values associated with higher self-similarity (Eke et al.,
2002). Here, we first filtered the EEG signal of each channel into the 5 frequency bands and for each
frequency band we computed two FD: Katz’s Fractal Dimension, and Higuchi’s Fractal Dimension. The EEG
signal was divided into 4 seconds epochs and the features were calculated for each epoch. Then, for each
method, the mean across epochs was used for group comparisons and main analyses.

Katz's Fractal Dimension

Katz’s method for FD (KFD) calculation is derived from the EEG time series by computing the sum (L) as
well as the average (a) of the Euclidean distances between successive points of the sequence, and the
maximum distance between the first point and all other points of the sequence (d) (Katz, 1988). Then the
KFD is given by
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B log(L/a)

KED = tog@/a)

Higuchi’s Fractal Dimension

Higuchi’s method for FD (HFD) calculation is derived from the EEG time series y(t) by first deriving k new
subsample sets (y;) (Higuchi, 1988). Then the length of each yy, (L,,) is given by

L) =1 -1y ik | — 1)k
() =7 W;w(mﬂ )= y(m + (i = Do)

wherem = 1,2, ..., k, T is the total number of samples, and M = (T — m)/k. The length of the signal is
given by

k
LD = ) LK)
m=1

and it is proportional to k=P, where D is the fractal dimension. Finally, L(k) is plotted against k (k =

1,2, ..., kmax ; here, k0 = 25) on a double logarithm scale. The data should fall on a straight line, with
the slope equal to the FD of y(t).

Hurst Exponent

The Hurst Exponent was introduced by Harold Hurst as a measure of the long-term memory of a time
series (Hurst, 1957). Hurst exponent ranges from 0 to 1. Values larger than 0.5 suggest long-term positive
autocorrelation, values smaller than 0.5 indicate anti-persistent behavior, while a Hurst exponent of 0.5
suggests that the time-series is truly random. EEG time series tend to have Hurst exponents around 0.7
(Vorobyov & Cichocki, 2002).

For a time series y(t), with T samples, we can calculate a cumulative deviate series as

T
YT =) ¥ -7
t=1

where y is the mean T samples. Then the range of the accumulated values is given by
R =maxicer(Y(t,T)) — mingor(Y (£, T))

If S is the standard deviation of the time series y(t), the Hurst exponent H is related to the ratio R/S by
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R
5= (cHH

where c is a constant (usually set to 0.5).

Here, we divided the EEG signal of each channel into 4-second epochs and used the code provided by
(Davidson, 2006) to estimate the full band Hurst exponent. Then the mean across epochs was used for
group comparisons and main analyses.

Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) provides a suitable framework to analyze long-range (> 1s) temporal
autocorrelations and the scaling behavior of brain oscillations (Hardstone et al., 2012). DFA is performed
on the amplitude envelopes of band-pass filtered EEG time series. Here, we performed the DFA for the 5
frequency bands. The cumulative of the amplitude envelope is calculated as

T
Y(t) = 2 A(t)
tr=1

where A(t) is the amplitude envelope, obtained using Hilbert transform. The integrated signal is
subsequently split into 20 sets of 50% percent overlapping windows with sizes varying from 1 to
25 seconds. The windows were equidistant according to a logarithmic scale. The signals in each
window are detrended using a least-squares fit and the fluctuation function is obtained. The
fluctuation function is expressed as

Ngh

F2) = 2 ) V() ~ KO

t=1

where 1 is the window size of the subset defined initially, and N is the number of samples
corresponding to the window size. The square-root of the fluctuation functions for each window
are plotted on log-log axes with respect to the window sizes and a line is fitted to the data. The
slope of the fitted line provides the DFA exponent which quantifies long-range temporal
correlations (< 0.5: anti-correlated; ~0.5: uncorrelated; > 0.5: correlated; ~1: pink noise; > 1:
non-stationary).

Life and Waiting Times

The structure of brain oscillations in short-to-mid temporal scales (< 1s) is estimated using life-and
waiting-times (Montez et al., 2009). The analysis is performed on the instantaneous amplitude of the
band-pass filtered signals, obtained using Hilbert transform. Here, we calculated the life and waiting times
for the 5 frequency bands. The median of the amplitude envelope is set as a threshold, which allows
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identifying the onset and end of a burst. The time during which the amplitudes exceed or stay below the
threshold is defined as life or waiting time respectively. The statistics of interest are the 95™ percentiles
of the empirical cumulative distributions of the life or waiting times.

Entropy in the Time-Domain

Entropy, in the sense of dynamical systems, provides a powerful approach to understanding biological
systems by quantifying the amount of information contained in a time series like EEG. Here, we used two
common ways to quantify the entropy of the time-domain of EEG signals: approximate entropy (Pincus et
al.,, 1991) and sample entropy (Richman & Moorman, 2000). First we split the EEG data into non-
overlapping 4-second epochs and for each epoch we estimated the embedding dimension m and the lag
T, using the delay embedding theorem (Takens, 1981) as implemented in the phaseSpaceRecons function
of the Predictive Maintenance MATLAB Toolbox. Then, we estimated the approximate and sample
entropy for each epoch and take the mean across epochs for the main analyses. Small values of
approximate and sample entropy reflect repeatability of the signal and high values indicate irregularity.

Approximate Entropy

If y(t) is the EEG time series with length T, m is the embedding dimension, and r the radius of similarity
(here, we set r = 0.2 X std(y(t))), then we can embed the signal in blocks Y, (i) = {y(0),y(i +
1),..,yi+m—-1}and ¥,,(;)) = {y(),y(G + 1), ...,y(G + m — 1)}. The distance between Y, (i) and
Y (j) is given by

d[Yn (@, Y (D] = maxg=12, m(lyE+k—=1)— y(G+ k-1
If we let N(i) be the number of within range points, at point i, given by

T
ND = > 1@, (DI < 1)

i=1, i#j

where 1 is the indicator operator, and let C,,(i) = N(i)/(T —m + 1), we can compute the average
logarithm of C,, (i) as

T-m+1

1

Wom) = ——— le 1og(Cn(®)

Then, the approximate entropy is given by

ApEn =¥Y(m) —¥(m+1)
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Sample Entropy

Sample entropy was introduced by Richman and Moorman as a measure of complexity, which contrary to
approximate entropy, does not include self-similarity patterns (Richman & Moorman, 2000). Similar to
approximate entropy, if we have embedded times series in blocks with m dimensions (Y, (i), ¥;,(j)) as
well as with m 4+ 1 dimensions (Y41 (i), Yin+1()), we calculate A = the number of template vectors
having d[Y,,(i), Y, (j)] < r and B = the number of template vectors having d[Y,;,41 (i), Ym+1()] <.
Then, the sample entropy can be calculated as

A
SampEn = —log <§>

Spectral Entropy

Besides time-domain, entropy can also be calculated in the spectral domain as a measure of information
of a signal. Spectral entropy quantifies the irregularity of the EEG signal, i.e., the peakedness, or flatness
of the EEG power spectrum (Inouye et al., 1991). Here, for each of the 5 frequency bands (delta, theta,
alpha, beta, and gamma), we computed their spectral entropy for non-overlapping windows of 4 seconds.
Then the mean across windows is used for group comparisons and main analyses

For the spectral entropy calculation, we first calculated the power spectral density (PSD) via Fourier
transform. Then, given two frequencies of interest f; and f (i.e., the boundaries of a frequency band of
interest; for delta band, for example, f; and ff are 1 and 4 Hz, respectively), the PSD between these two
frequencies is normalized (PSD,,) by the total energy in the EEG segment. Finally, the spectral entropy is
calculated using the Shannon Entropy as

fr

SECfufy) == ) PSDu(Plog(PSDa(f)
f=fi

Complexity

EEG exhibits complex nonlinear behavior with nonlinear dynamical properties. This complexity should not
be seen as randomness but as an intermediate condition between randomness and order (Stam, 2005).
High values of complexity are associated with highly distributed and desynchronized neural generators of
the EEG signal, while low values of complexity are associated with local and synchronized generators
(Ibafiez-Molina et al., 2018). Here, we computed three estimates of the complexity of the EEG signal:
Lempel-Ziv complexity (which is based on algorithmic complexity), Lyapunov Exponent, and Correlation
Dimension (which are chaos-based estimates of complexity). The EEG signal was divided into 4-second
epochs and the features were calculated for each epoch. Then the mean across epochs is used for group
comparisons and main analyses.

Lempel-Ziv Complexity
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Lempel-Ziv Complexity (LZC) was introduced as a measure of complexity of finite sequences and is related
to the number of steps by which a given sequence is presumed to be generated (Lempel & Ziv, 1976). In
essence, given a string (in our case an EEG signal), LZC estimates the number of bits of the shortest
computer that can generate the string. The first step of the LZC computation is to transform the EEG signal
(y(t)) into a binary sequence P = s(1),s(2), ..., s(n), by thresholding the signal based on the median

(Ymedian):

N 0 ifJ/(i) < Ymedian
O={1 30 >y

Then the sequence P is scanned from left to right and every time that a new sequence of consecutive
numbers is found one unit is added to a complexity counter (C(n)). Finally, the complexity counter is
normalized by the length of the sequence P (L) and the LZC is given by

C(n)

L7C =————
L/log,(L)

Here, we used the code provide by Thai (2019), to estimate the LZC based on the decomposition of the
sequence P into an exhaustive and a primitive production process. The exhaustive LZC and the primitive
LZC can be seen as lower and upper limit of the complexity, respectively.

Lyapunov Exponent

The complexity of an EEG time series y(t) can be considered a chaotic phenomenon (Stam, 2005). One of
the most important properties of a chaotic system is its sensitive dependence on initial conditions.
Lyapunov exponents can be used to quantify how a slight perturbation in the initial conditions can cause
divergent trajectories in a system. Given two phase space trajectories with initial separation vector §y,,
the rate at which these two trajectories diverge can be estimated by

18y(©)| = e*|5y,|

where A is the Lyapunov exponent. Because the rate of divergence can be different for different
orientations of the initial separation vector, it is common to refer to the Largest Lyapunov exponent (LLE)
since it characterizes the stability of a system (positive LLE is unstable and negative LLE is stable). Here,
we used the code provided by Mohammadi (2009) to estimate the LLE of the EEG signal. The code is based
on Rosenstein’s method to estimate the LLE (Rosenstein et al., 1993) and uses the False Nearest Neighbors
and the Symplectic Geometry methods to choose the embedding dimension m (Hegger & Kantz, 1999; Lei
et al., 2002).

Correlation Dimension

As a measure of chaotic signal complexity, Correlation Dimension (D,) can be seen as the number of
independent variables or degrees of freedom that describe the behavior of a dynamic system (Stam,
2005). In the EEG literature, D, is often interpreted as a proxy of the integration of information in the
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brain. To estimate D,, we first estimated the embedding dimension m and the lag T of the EEG time series
y(t) with length T using the delay embedding theorem (Takens, 1981) as implemented in the
phaseSpaceRecons function of the Predictive Maintenance MATLAB Toolbox. Second, we embedded the
signal in blocks Y,,,(i) = {y()),y(i + 1), ...,y(i+m—1)} and Y,,(j) = {y(),yG+ 1), ..,y + m—
1)}. The distance between Yy, (i) and Y, (j) is given by

d[Ym (@), Ym ()] = maxg=12.m(y(@E+k—-1)— y(G+k—1)])
Then we calculated the number of within range points, at point i (N;(R)), as

T
MR = D 1@ @, V(DI < R

i=1, i#j

where 1 is the indicator operator and R is the radius of similarity (we used Matlab’s function
correlationDimension default value). Finally, the correlation integral C(R) is given by

T
2
CR) = m; N;(R)

and D, is the slope of C(R) vs. R.
Recurrence Quantification Analysis

Recurrence plots (RPs) and recurrence quantification analysis (RQA) are nonlinear methods that permit
to explore several aspects of the dynamics of complex systems, such as EEG signals, in a reconstructed
phase space (Eckmann et al., 1987; N Marwan et al., 2007). Mathematically, the RPs are expressed as

Rije=0(—|m-%l) ii=1..N

where 7y, is the phase space reconstruction of the time series y(t), ® corresponds to the Heaviside
function, || .|| to the Euclidean norm, and ¢ to the recurrence threshold. If the system is close enough
(determined by €) to a previously visited state, a 1 will be assigned to the RP in the corresponding (i, j)
coordinates, a value of 0 otherwise. The structures of the RP are quantified using RQA complexity
measures. To build the recurrence plots, continuous EEG signals were split into non-overlapping 4-second
segments. For each segment, a phase space is reconstructed using the delay embedding theorem (Takens,
1981) as implemented in the function phaseSpaceRecons of the Predictive Maintenance MATLAB Toolbox.
We extracted 8 different measures from the recurrence matrix using the CRP Toolbox for MATLAB
(Marwan, 2017) and used the mean across segments group comparisons and main analyses. The
recurrence threshold is set for each EEG channel at each time-window as the 10" percentile of the
distribution of distances.

Determinism
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If the trajectory of a system is similar at different moments in time, the RP will produce diagonal lines
parallel to the main diagonal. Determinism quantifies the proportion of recurrence points (denoted as “1”
in the recurrence matrix) that form diagonal lines and is defined as

Mt LPOD

DET =
it PO

where P(1) indicates a distribution of diagonal lines. We set L,;;,, to 2.
Entropy

The complexity of the distribution of diagonal lines can be quantified using Shannon’s information entropy

N
ENTR = — Z p(D Inp()

I=lnin

where p(1) = P(1)/N, indicates the probability of finding a diagonal line of a given length [. If the system
shows periodicity, the value of entropy will be low.

Laminarity

If a system evolves subtlety, or if it is “trapped” in a state, the recurrence plot will reflect vertical
structures. Laminarity quantifies the proportion of recurrence points forming vertical lines and is defined
as

LAM — 11y=1]min v P(U)
X)-1v P(v)
where P(v) denotes the distribution of all vertical lines that exceed two points (Vi = 2).

Maximal Diagonal Line Length

The maximal diagonal line length of the distribution of diagonal lines is defines as

Lax = max({li}iv=11

where N; indicates the total number of vertical lines. The inverse of L,,,, is related to the divergence of
the system.

Maximal Vertical Line Length

The utility of the vertical structures in the recurrence plots is mainly related to the detection of chaos-
chaos transitions (Marwan et al., 2002). The maximal length of vertical lines is also a recurrence statistic
of interest and is expressed as
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Ny
Vinax = max({vi}i:1)

where N, indicates the total number of vertical lines.
Mean Diagonal Line Length

Given the nature of diagonal structures on recurrence plots, the mean length of diagonal lines provides a
value for the predictability of the system. It is formulated as

N PO

l=bnin

NP

I=lmin

where P(1) indicates a distribution of diagonal lines.
Recurrence Times Entropy

Recurrence times entropy (RTE) denotes the entropy of the frequency distribution of vertical “white” or
not-recurrent segments, which provide information about the time that it takes for the system to return
to previously visited states. The entropy of recurrence times is thus formulated as

Tmax

1

where T4, is the maximum white vertical line length, and p(tw) is the probability of finding a white
segment of length tw.

Trapping Time
The mean vertical line length, also denoted in the literature as trapping time is formulated as

TT _ 11y=1]min v P(U)
- N
P(w)

V=Vmin

where P(v) indicates the distribution of vertical lines. Trapping time provides information on the average
time during which the system does not evolve significantly or stays within the limits of the recurrence
neighborhood. Similar to the case of Laminarity, we set v,;,;, = 2.

Microstates Analysis

EEG microstates are on-going scalp potential topographies that remain stable for around 60 to 120 ms
before changing to another topography that remains stable again, suggesting quasi-simultaneity of
activity of large scale brain networks (Lehmann et al., 1987). Four recurrent and dominant classes of
microstates (commonly labeled A, B, C, and D, based on their topographies) are observed in resting-state
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EEG, explaining around 65 to 84% of the variance of the data (Michel & Koenig, 2018). EEG microstates
are closely related to resting-state networks found in resting-state functional magnetic resonance (Britz
et al., 2010). Here, we used Cartool (Brunet et al., 2011) to extract the above-mentioned four microstate
classes from the EEG data and compute their temporal parameters as well as the transition probability
from one microstate class to another one.

Temporal Parameters of EEG microstates

We conducted the same analysis as in da Cruz et al. (2020). For each participant and microstate class, we
computed three microstate temporal parameters: mean duration, time of coverage, and frequency of
occurrence. Mean duration (in ms) is the average time that a given microstate is present uninterruptedly.
Time of coverage (%) is the percentage of the total recording time spent in a given microstate. Occurrence
is the average number of times a given microstate occurred per second.

Transition Probabilities

To investigate the transition probability from one microstate class to another one, also known as the
syntax analysis, we computed the occurrence frequency of transitions from one class to all the others
(Lehmann et al., 2005). After normalization to fractions of all between-class transitions of the participant,
we obtained, for each participant, the observed probability of each possible transition. Twelve transitions
between microstates classes (sum of transitions from one of the 4 classes to all the remaining 3 classes)
were obtained for each subject. Similarly to Lehmann and colleagues (2005), given the occurrence of each
microstate class, we also calculated the expected transition probability for each possible transition. We
then used the difference between the expected and the observed transition probabilities for the statistical
analyses.

Functional Connectivity Analysis (across electrodes)

Normal brain functioning requires coordinated flow of information between different brain areas. A way
to quantify this flow of information is through functional connectivity analysis. Formally, functional
connectivity is defined as the statistical rel