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Abstract

The human movement plays an important rol in the spread of infectious diseases. On an urban

scale, people move daily to workplaces, schools, among others. Here, we are interested in exploring

the effect of the daily local stay on the variations of some characteristics of dengue dynamics such

as the transmission rates and local basic reproductive numbers. For this, we use a two-patch

mathematical model that explicitly considers that daily mobility of people and real data from the

2010 dengue outbreak in Hermosillo, Mexico. Based on a preliminary cluster analysis, we divide the

city into two regions, the south and north sides, which determine each patch of the model. We use a

Bayesian approach to estimate the transmission rates and local basic reproductive numbers of some

urban mobility scenarios where residents of each patch spend daily the 100% (no human movement

between patches), 75% and 50% of their day at their place of residence. For the north side,

estimates of transmission rates do not vary and it is more likely that the local basic reproductive

number to be greater than one for all three different scenarios. On the contrary, tranmission rates

of the south side have more weight in lower values when consider the human movement between

patches compared to the uncoupled case. In fact, local basic reproductive numbers less than 1 are

not negligible for the south side. If information about commuting is known, this work might be

useful to obtain better estimates of some contagion local properties of a patch, such as the basic

reproductive number.
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1. Introduction

An important factor in the spread of infectious diseases as dengue is the human movement [1].

Due to this fact, dengue can be expanded from endemic to non-endemic places [2]. It has been

suggested that infectious diseases may persist in a region where transmission rates are very low due

to interaction with people from other areas with high transmission rates [3]. On an urban scale,

daily movement occurs motivated by commuting people to workplaces, schools, commerce, among

others [4].
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Human mobility has been included in the latest generation of models in epidemiology using two

main approaches: agent-based modeling and metapopulations [5]. Metapopulation models divide

the population into interacting population groups defined by spatial or demographic information

[6]. This mathematical modeling approach, based on ordinary differential equations, has been used

to theoretically evaluate the effect of human mobility on the dynamics of infectious diseases in

heterogeneous regions connected by the mobility [3, 7–11]. The consequences of mobility between

cities have been analyzed in [12–14], whereas between an urban and suburban area in [15–17], or

between areas within the same city in [18]. There are some efforts to use real data to validate

the effect of human movement but there are few studies yet [14, 16, 18]. Authors in [14, 18] have

concluded that infectious diseases could spread in disease-free areas or with local basic reproductive

number less than one due to the human movement. In particular, authors in [14] study different

factors for the transmission of dengue disease in a Chinese province using a residence time approach.

They analyze the human movement between seven regions and estimate model parameters for each

patch based on a fixed residence time matrix and explore some hypothetical scenarios by reducing

the values of such matrix.

Similar to [14], we are interested in studying the daily human mobility between two regions

from an urban area, to explore how the transmission rates and the local basic reproductive numbers

may vary depending on the time period of daily local stay of a population within their own region.

For this, we use a two-patch mathematical model under a little explored approach [15, 19], and

data from the 2010 dengue outbreak in Hermosillo, Mexico. We use the ideas of a previous work

[19] and applied them to a scenario where the commutation between patches emerges naturally.

To define each of two patch of the model, we divide the city of Hermosillo into two regions, which

was derived from a preliminary cluster analysis. We use a Bayesian approach to obtain estimates

of some parameters of the model and compare mobility scenarios.

This work is divided into the following sections. The description of the model used, the data

and the inference method are given in Section 2. Then, in Section 3 we show the estimation results.

Finally, the conclusions and discussions on our results are presented in Section 4.

2. Methods

2.1. Mathematical model

We consider a previous two-patch model without vital dynamics in humans and with human

daily movement, where movement takes place at periodic discrete times [19]. Here the interval

[tk, tk+1) represent the kth day and is divided into two time periods: low-activity period [tk, tk+Tl)

and high-activity period [tk+Tl, tk+1), where Tl represents the fraction of the kth day of low activity

and Tl ∈ (0, 1). The daily dynamics between the periods of low-activity and high-activity are as

follows. At the beginning of high-activity periods, people move to the other patch to carry out

their daily activities. Then, at the end of high-activity periods people return to their residence
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patch and stay there during the low-activity periods. Thus, the following equations represent the

dynamics of the populations for the low-activity period [tk, tk + Tl):

Ṡli(t) = −αhiS
l
i(t)Qi(t)

Nil
,

İ li(t) =
αhiS

l
i(t)Qi(t)

Nil
− γiI li(t),

Ṙli(t) = γiI
l
i(t),

Ṗi(t) = µviMi −
αviPi(t)I

l
i(t)

Nil
− µviPi(t),

Q̇i(t) =
αviPi(t)I

l
i(t)

Nil
− µviQi(t),

(1)

where Nil := Ni and i = 1, 2. For the high-activity period [tk + Tl, tk+1), the set of equations

become:

Ṡhii(t) = −αhiS
h
ii(t)Qi(t)

Nih
,

˙Ihii(t) =
αhiS

h
ii(t)Qi(t)

Nih
− γiIhii(t),

Ṙhii(t) = γiI
h
ii(t),

Ṡhji(t) = −
αhiS

h
ji(t)Qi(t)

Nih
,

˙Ihji(t) =
αhiS

h
ji(t)Qi(t)

Nih
− γiIhji(t),

Ṙhji(t) = γiI
h
ji(t),

Ṗi(t) = µviMi −
αviPi(t)(I

h
ii(t) + Ihji(t))

Nih
− µviPi(t),

Q̇i(t) =
αviPi(t)(I

h
ii(t) + Ihji(t))

Nih
− µviQi(t),

(2)

where Nih := (1− αi)Ni + αjNj , and i, j = 1, 2, i 6= j. All model parameters and meaning of the

state variables are defined in Table 1.

We assume that the infected classes both Ih12 and Ih21, who move between patches, represent only

individuals with mild or no symptoms. On the other hand, uncoupled case (Tl = 1) is obtained

considering α1 = α2 = 0 in model (1)-(2). That is, system (1)-(2) is reduced to the dynamics of a

vector-host model as in (1) for all time t.

Using the next generation matrix approach as in [20], the basic reproductive number (R0i) of

uncoupled case is given by

R0i :=
αhiαviρi
µviγi

, (3)

where ρi = Mi/Ni. Given the complexity of the model, the basic reproductive number for model

(1)-(2) was not found. However, R01 and R02 can give us an approximation of a local indicator of

the severity of the disease for both the uncoupled and the coupled cases.
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Variable or Meaning
parameter

Ni Total population from patch i.
Nih Total population in patch i during the high-activity period.
Mi Total population of mosquitoes from patch i.
Sl
i Susceptible residents from patch i.
Ili Infected residents from patch i.
Rl

i Recovered residents from patch i.
Sh
ii Susceptible residents from patch i who do not commute to another patch during the

low-activity period.
Ihii Infected residents from patch i who do not commute to another patch during the

low-activity period.
Rh

ii Recovered residents from patch i who do not commute to another patch during the
low-activity period.

Sh
ji Susceptible residents from patch j who commute to patch i during the high-activity period.

Ihji Infected residents from patch j who commute to patch i during the high-activity period.

Rh
ji Recovered residents from patch j who commute to patch i during the high-activity period.

αhi Transmission rate from mosquito to human in patch i.
αvi Transmission rate from human to mosquito in patch i.
1/γi Average recovery time of humans in patch i.
1/µvi Average life time of mosquitoes in patch i.
αi Proportion of humans from patch i who move to patch j at time tk + Tl.

Table 1: Parameter definition of model (1)-(2).

2.2. Data

Hermosillo is a city located in the north of Mexico, with a total population of 715061 inhabitants

according to the 2010 Census data provided by the National Institute of Statistics, Geography and

Informatics from Mexico (INEGI). Based on preliminary cluster analysis and using a Geographic

Information System (GIS), we divide the city into two areas: north and south side (Figure 1).

The north side has 374102 inhabitants and the south side 340959. On the south side are located

the offices of the municipal and state government, the city center, the largest university, industrial

parks, among others. Thus, we consider that the flow from north to south of the city is greater

than from south to north.

North

South

Regions

Figure 1: Division of Hermosillo in two regions: north (dark gray) and south (light gray).

According to data provided by the Health Ministry of the State of Sonora, 2139 dengue cases

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248375doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.17.20248375
http://creativecommons.org/licenses/by-nc-nd/4.0/


were located on the north along 52 epidemiological weeks resulting in a rate of 57.17cases/10000

inhabitants, and 590 dengue cases on the south with a rate of 17.3cases/10000 inhabitants during

2010. In this study, we use the weekly incidence from epidemiological week 33 to 40 for both

regions north and south from Hermosillo.

2.3. Parameter estimation

For parameter estimation purposes, we add a class Ci to system (1)-(2), which represents the

accumulated number of reported infected residents from patch i, and is given by

Ċi(t) =

 δ × αhiS
l
i(t)Qi(t)
Nil

if tk ≤ t < tk + Tl

δ × αhiS
h
ii(t)Qi(t)
Nih

+ δ × αhjS
h
ij(t)Qj(t)

Njh
if si tk + Tl ≤ t < tk+1

(4)

where, δ represents the proportion of infected individuals that were confirmed by the surveillance

system of the state government of Sonora.

We establish the following movement scenario: α1 = 0.45 and α2 = 0.1. The first is determined

based on the economically active population of the north side according to the 2010 Census data

from Mexico, and the second is an assumed value considering that the daily flow of people is less

from south to north. Based on previous studies, we assume that the average lifetime of a mosquito

(1/µvi) is 2 weeks [21], and the number of mosquitoes per person (ρ) is 2 [22]. Given a Tl fixed value,

we use the data to estimate the remaining seven parameters (αh1, γ1, αv2, αh2, γ2, αv2, and δ) by

Bayesian inference approach.

For computational purposes, we take logarithmic transformations as

α̃h1 = log(αh1), γ̃1 = log(γ1), α̃v1 = log(αv1), (5)

α̃h1 = log(αh1), γ̃1 = log(γ1), α̃v1 = log(αv1). (6)

Thus, we assign a priori beta distribution for δ with shape parameters α = 5 and β = 50, and

priori normal distributions for all six parameters given in (5)-(6) [23]. The distribution of α̃h1 and

α̃h2 has a mean equal to log(0.3) and a standard deviation of 0.4. The distribution of γ̃1 and γ̃2

has a mean equal to log(0.22) and a standard deviation of 0.1. The distribution of α̃v1 and α̃v2 has

a mean equal to log(0.4) and a standard deviation of 0.3. The distribution of δ̃ has a mean equal

to log(0.08) and a standard deviation of 0.15. To establish the mean and standard deviation of the

normal distributions for parameters (5)-(6), we considered the ranges given in [21]. Therefore, the

prior joint density function of (α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2, δ̃) is given by

π(α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2, δ̃) = π(α̃h1)π(γ̃1)π(α̃v1)π(α̃h2)π(γ̃1)π(α̃v2)π(δ̃), (7)

where π(•) is the normal density function of each parameter defined above.

Since model (1)-(2) is in a time-scale of days and starts at t = 0, we define Di
w to represent the
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number of new infectious cases of dengue at wth week (w = 33, ..., 40) in patch i, which is given by

Di
32+k =

∫ 7k−7

7k

Ċi(t)dt,

where k = 1, 2, ..., 8, and Ci(j) defined as (4). We define patch 1 as the north area and patch 2 as

the south area. Thus, we consider that the new weekly cases at week w from patch 1 and patch

2 follow a Poisson distribution with a mean λ1w(θ) = D1
w and λ2w(θ) = D2

w, respectively, where

θ = (α̃h1, γ̃1, α̃v1, α̃h2, γ̃2, α̃v2). Thus, the sampling distribution is given by

π (~x|θ) =
40∏

w=33

1

x1w!

[
λ1w (θ)

]x1
w exp

[
−λ1w (θ)

] 40∏
w=33

1

x2w!

[
λ2w (θ)

]x2
w exp

[
−λ2w (θ)

]
, (8)

where (xi33, x
i
34, ..., x

i
40) is the observed data from patch i, and ~x = (x133, x

1
34, ..., x

1
40, x

2
33, x

2
34, ..., x

2
40).

Therefore, the posterior distribution π(θ|~x) is given by

π(θ|~y) ∝ π (~x|θ)π(θ),

where π(θ) and π (~x|θ) are given in (7) and (8), respectively.

To obtain the estimated probability density of the model parameters, we used a MCMC method

based on the Metropolis-Hasting algorithm [24]. We run the algorithm for 200000 iterations, and

use the last 50000 to generate the posterior densities of the parameters and the posterior predictive

distributions to check the fit. The initial conditions assumed are as follows: Sl1(0) = N1 − 1,

I l1(0) = 1, Rl1(0) = 0, P1(0) = ρN1, Q1(0) = 0, Sl2(0) = N2−1, I l2(0) = 1, Rl2(0) = 0, P2(0) = ρN2,

and Q2(0) = 0, where N1 = 374102 and N2 = 340959. To generate the posterior density of R01

and R02, we replace each sample of (αh1, γ1, αv1, αh2, γ2, αv2, δ) in equation (3). The code

used to calculate the posterior predictive distribution is available online at https://github.com/

MayraTocto/DailyHumanMobility_DengueOutbreak.

3. Results

The results are based on three scenarios: Tl = 1, Tl = 0.75 and Tl = 0.5. Case Tl = 1 represents

that there is no flow of people between the north and south regions. Cases Tl = 0.75 and Tl = 0.5

indicate that the residents from each patch spend 75% and 50% of their day at their residence place,

respectively. To check the fit of the model to the data, we construct 95% predictive intervals of the

posterior predictive distributions using the 0.025 and 0.975 quantiles for the north and south sides,

as shown in Figure 2. This figure shows that the three scenarios are plausible. In the next lines,

we will see that there are differences in the estimates of the model parameters and, consequently,

the estimated local basic reproductive numbers may drastically change.

Figure 3 shows the posterior densities of transmission rates for the north and south regions. The

range of most likely values for estimated local transmission rates from the north side (αh1 and αv1)

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248375doi: medRxiv preprint 

https://github.com/MayraTocto/DailyHumanMobility_DengueOutbreak
https://github.com/MayraTocto/DailyHumanMobility_DengueOutbreak
https://doi.org/10.1101/2020.12.17.20248375
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time (Weeks)

33 35 37 39

0
1
0

0
2
0

0
3
0
0

4
0
0 A

95%CI, Tl = 1

95%CI, Tl = 0.75

95%CI, Tl = 0.5

data

Time (Weeks)

33 35 37 39

0
1
5

3
0

4
5

6
0 B

Figure 2: The 95% predictive intervals for the estimated posterior predictive distributions from the north side (A)
and south side (B) versus data from dengue cases in Hermosillo.

coincides for Tl = 1, Tl = 0.75 and Tl = 0.5 (Figure 3A and 3B). Based on our mobility scenarios,

this fact could indicate that the daily mobility of people does not affect the disease dynamics on

the north side of the city. On the contrary, the posterior density for local transmission rates (αh2

and αv2) from the south region, when Tl < 1, have more weight in lower values compared to the

case Tl = 1 (Figure 3C and 3D). That is, it would be more likely to obtain smaller values for

the transmission rates on the south side when Tl goes down from 1 to 0.5, and, therefore, local

contagions decrease. In this case, according the Tl value (Tl < 1), infected individuals from the

south side who get the dengue virus during their visit to the north side is more credible than local

contagions. Thus, the results may suggest that some dengue cases from the south side may have

emerged by the interaction between a susceptible individual from the south side that gets bitten

by a infected mosquito from the north of the city during his visit. The median and 95% confidence

intervals of the posterior distributions for γ1, γ2, and δ are given in Table 2.

Parameter Median (95% CI) Median (95% CI) Median (95% CI)
for Tl = 1 for Tl = 0.75 for Tl = 0.5

γ1 0.250 ([0.206, 0.305]) 0.252 ([0.207, 0.307]) 0.253 ([0.208, 0.309])
γ2 0.230 ([0.189, 0.280]) 0.231 ([0.192, 0.283]) 0.233 ([0.192, 0.284])
δ 0.429 ([0.337, 0.526]) 0.436 ([0.344, 0.530]) 0.436 ([0.342, 0.532])

Table 2: Parameter estimation of γ1, γ2, and δ parameters.

Based on the samples obtained for the parameters and replacing them in expression (3), we

obtain the estimated density of local basic reproductive numbers (for Tl = 1, Tl = 0.75 and

Tl = 0.5). As we have already mentioned, for Tl < 1, the local basic reproductive number are used

as local indicators of the disease, that is, these values would tell us how serious the disease could be

locally. Figure 4 shows the posterior densities of R01 and R02. From Figure 4A, we have that R01

is more likely to take values greater than 1 for all three cases. However, if we consider Tl < 0.75,

we have that the most probable values for R02 are smaller compared to the case Tl = 1 as we can
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Figure 3: The posterior density of parameters from north patch (A and B) and south patch (C and D).

see in Figure 4B. Furthermore, if we consider that T1 = 0.5, we have that the probability that R02

takes on values less than 1 is not negligible.

The estimates obtained above coincides with the fact that there was only 1 confirmed case of

dengue on the south side from 33th to 35th week, while on the north side there were 18 cases in the

same period of time, see Figure 2. Thus, the appearance of a dengue outbreak in the south region

may be due to the daily movement of people. These results may suggest that not considering daily

human movement overestimates the transmission rates and the local basic reproductive number of

the south side of the city. The daily mobility between both patches decreased the estimated values

of the local transmission rates of the South side, attributing the outbreak on that side due to the

connection with the North side.

4. Conclusions and discussions

Many mathematical models based on ordinary differential equations have been used to model the

dynamics of infectious disease throughout a country or a city. We believe it is essential to consider

that an area may have, for example, different demographic and socioeconomic characteristics which
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Figure 4: The posterior density of R0 from the north side (A) and the south side (B).

may be affected by the daily mobility of people. Considering these factors for modeling the disease

dynamics and estimating the model parameter are very important because takes into account

heterogeneities within a region and provides a way to analyze possible effects on each local dynamics

of the disease.

Here we have explored a scenario of human mobility by fitting data of a dengue outbreak from

Hermosillo to a two-patch mathematical model. For the estimation process, we have only used data

from the initial stage of the outbreak because there are many factors that can influence the disease

dynamics for the complete outbreak. In addition, since no data are available on the mosquito

population, some assumptions based on literature, were made for parameters related to the vector.

On the other hand, despite not having an overall R0 of coupled model (1)-(2), the expression for

the basic reproductive number given in (3) was helpful to measure the local severity of the disease

in each patch.

Based on the results, we have observed that not considering the daily mobility between connected

areas may lead to inappropriate conclusions of some characteristics of the disease dynamics. We

have obtained higher estimates of transmission rates and local basic reproductive number in the

south side if it is assumed that there is no flow of people between the north and south sides of

the city. This fact could lead to suppose that the conditions for the spread of the disease on the

south side may be relatively similar to the north side. However, the results may suggest that

some infected residents of the south side could be a contribution of daily mobility, but not because

of the conditions on that side of the city, which is consistent with previous results [1, 14, 18].

The latter could lead to more appropriate decisions regarding where to focus the control measures

when an outbreak is stronger. Thus, despite having a reasonable fit of the uncoupled model to

the data (case Tl = 1), we must take into account the importance of mobility and how this could

significantly affect the dynamics in regions without conditions of disease development. Similar

conclusions were obtained for other settings of the proportions that move between patches (α1 and
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α2, with α1 > α2).

Since human mobility has been identified as a critical factor in the spread of infectious diseases,

nowadays, articles in the same line with this work are more recurrent. Furthermore, the current

COVID-19 pandemic makes it even more relevant to study mathematical models with an approach

that includes daily mobility. This type of study allows us to analyze the weight of commuters in

the disease dynamics, which may be useful to propose control policies and reduce cases or prevent

outbreaks in certain city locations.

Finally, this work is supported by the knowledge of dengue cases within a population and

a socio-economic and socio-demographic analysis, to study the city as two regions connected by

the human movement. However, in general, we could have a better understanding of the local

properties of a community if we had more documented information about mobility. This latter

could help to detect contagion risk areas within the same community.
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K. M. Tomashek, Travel-associated dengue infections in the United States, 1996 to 2005,

Journal of Travel Medicine 17 (2010) 8–14. doi:10.1111/j.1708-8305.2009.00374.x.

[3] C. Cosner, Models for the effects of host movement in vector-borne disease systems,

Mathematical Biosciences 270 (2015) 192–197. doi:10.1016/j.mbs.2015.06.015.

[4] B. Adams, D. D. Kapan, Man bites mosquito: Understanding the contribution of human

movement to vector-borne disease dynamics, PLoS ONE 4 (2009). doi:10.1371/journal.

pone.0006763.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.12.17.20248375doi: medRxiv preprint 

http://dx.doi.org/10.1371/journal.pntd.0000481
http://dx.doi.org/10.1371/journal.pntd.0000481
http://dx.doi.org/10.1111/j.1708-8305.2009.00374.x
http://dx.doi.org/10.1016/j.mbs.2015.06.015
http://dx.doi.org/10.1371/journal.pone.0006763
http://dx.doi.org/10.1371/journal.pone.0006763
https://doi.org/10.1101/2020.12.17.20248375
http://creativecommons.org/licenses/by-nc-nd/4.0/


[5] H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes,

J. J. Ramasco, F. Simini, M. Tomasini, Human mobility : Models and applications, Physics

Reports 734 (2018) 1–74. doi:10.1016/j.physrep.2018.01.001.

[6] G. Chowell, R. Rothenberg, Spatial infectious disease epidemiology: on the cusp, BMC

Medicine 16 (2018) 192. doi:10.1186/s12916-018-1184-6.

[7] S. Lee, C. Castillo-Chavez, The role of residence times in two-patch dengue transmission

dynamics and optimal strategies, Journal of Theoretical Biology 374 (2015) 152–164. doi:10.

1016/j.jtbi.2015.03.005.

[8] G. R. Phaijoo, D. B. Gurung, Mathematical Study of Dengue Disease Transmission in

Multi-Patch Environment, Applied Mathematics 07 (2016) 1521–1533. doi:10.4236/am.2016.

714132.

[9] D. Bichara, C. Castillo-Chavez, Vector-borne diseases models with residence times - A

Lagrangian perspective, Mathematical Biosciences 281 (2016) 128–138. doi:10.1016/j.mbs.

2016.09.006.

[10] J. E. Kim, H. Lee, C. H. Lee, S. Lee, Assessment of optimal strategies in a two-patch dengue

transmission model with seasonality, PLoS ONE 12 (2017) 1–21. doi:10.1371/journal.pone.

0173673.

[11] A. Anzo-Hernández, B. Bonilla-Capilla, J. Velázquez-Castro, M. Soto-Bajo,

A. Fraguela-Collar, The risk matrix of vector-borne diseases in metapopulation networks and

its relation with local and global R0, Communications in Nonlinear Science and Numerical

Simulation 68 (2019) 1–14. doi:10.1016/j.cnsns.2018.06.006.

[12] J. A. Falcón-Lezama, R. A. Mart́ınez-Vega, P. A. Kuri-Morales, J. Ramos-Castañeda,
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