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ABSTRACT 

Standard medical diagnosis of mental health conditions often requires licensed experts 

who are increasingly outnumbered by those at risk, limiting reach. We test the hypothesis 

that a trustworthy crowd of non-experts can efficiently label features needed for accurate 

machine learning detection of the common childhood developmental disorder autism. We 

implement a novel process for creating a trustworthy distributed workforce for video 

feature extraction, selecting a workforce of 102 workers from a pool of 1,107. Two 

previously validated binary autism logistic regression classifiers were used to evaluate the 

quality of the curated crowd’s ratings on unstructured home videos. A clinically 

representative balanced sample (N=50 videos) of videos were evaluated with and without 

face box and pitch shift privacy alterations, with AUROC and AUPRC scores >0.98. With 

both privacy-preserving modifications, sensitivity is preserved (96.0%) while maintaining 

specificity (80.0%) and accuracy (88.0%) at levels that exceed classification methods 

without alterations. We find that machine learning classification from features extracted 

by a curated nonexpert crowd achieves clinical performance for pediatric autism videos 

and maintains acceptable performance when privacy-preserving mechanisms are applied. 

These results suggest that privacy-based crowdsourcing of short videos can be leveraged 

for rapid and mobile assessment of behavioral health.  

 

BACKGROUND AND SIGNIFICANCE 

As digital and mobile healthcare becomes commonplace (1), data captured by 

interactive mobile and wearable intervention systems with augmented data capture 

abilities (2-10) and other developmental delays have resulted in video which can be used 

for continuous digital phenotyping (11-13). The captured video from these systems 

provide a rich data source which can be presented to humans for annotation of diagnostic 
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information (14-16), especially features that are currently beyond the scope of modern 

machine learning methods (e.g., a classifier for quantifying the extent to which a child 

follows his or her parents' directions). While automatic feature extraction can identify 

several features of importance for diagnostic classification, there are numerous behavioral 

features contained within clinical gold-standard  diagnostic questionnaires for psychiatric 

conditions that cannot be accurately and precisely detected by computer vision techniques. 

Incorporating human annotators is crucial for extracting these clinically relevant features 

from video and audio samples, at least for the time being, while artificial intelligence (AI) 

training vision and audio libraries grow to include sufficient examples. As mobile devices 

become increasingly pervasive, including in developing countries (17-19), obtaining 

videos for a crowdsourcing-enabled diagnostic process will accelerate early diagnosis of 

behavioral conditions for children who are currently limited by geographic, economic, and 

social barriers to health care. 

Crowdsourcing enables rapid human annotation of complex features in a scalable 

manner (20-21). Because crowdsourced annotators can label from anywhere in the world, 

diverse opinions can be aggregated into a consensus set of features, minimizing potential 

effects of noisy raters. However, low quality labels can degrade the accuracy of the 

crowd’s prediction. In addition to low quality annotations, different people have varying 

abilities to identify and discriminate social features of other people, let alone children. 

Optimized healthcare crowdsourcing workflows must therefore contain a certain level of 

selectivity in the workforce used to provide annotations. 

A concern for crowdsourced video-based diagnostics is data privacy, especially for 

a marginalized pediatric population recorded in the home setting. It is important to build 

trust with parents who want to receive an affordable and quick diagnosis for their child but 

who may have apprehensions towards sharing video with strangers. Preserving the privacy 
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contained in videos while maintaining enough information to provide a high-quality 

mobile screening tool is a critical challenge that must be addressed before digital 

diagnostic tools, no matter how accurate and precise, can become actualized and widely 

adopted. Transparency and trust in digital health and AI solutions is crucial yet lacking, 

requiring innovation in trustworthy systems and methods (22-24). 

We test the hypothesis that a qualified (tested and trustable) crowd of non-expert 

workers from paid platforms can efficiently tag features needed to run machine learning 

models for accurate detection of autism, which is a complex neurodevelopmental disorder 

that impacts social, communication, and interest behaviors (25). Key examples of autism 

symptoms that cannot be detected with modern machine learning (ML) methods include 

ritualistic behaviors, narrow or extreme interests, resistance to change, difficulty 

expressing emotion, following directions, social responsiveness, and resisting physical 

contact (26-36). Precisely quantifying the behavioral phenotype is crucial for developing 

high-fidelity accessible early diagnostic biomarkers for autism. Current clinical 

evaluations use behavioral instruments measuring dozens of behaviors in extended 

assessments (26-27). While early detection leads to prompt intervention and better 

outcomes, the wait to receive formal assessments can surpass one year (37), and diagnosis 

is often delayed until children enter primary school (38-39). This delay of diagnosis and 

subsequent treatment is more pronounced in underserved populations (40-42). Data-driven 

approaches have estimated that over 80% of U.S. counties contain no autism diagnostic 

resources (43). The examinations must be administered in person by clinicians and take 

hours to complete (44-46). As mental health conditions like autism are dynamic, mutable 

phenotypes (47-48), there remains an obligation to continuously monitor such conditions 

to develop and use transformative novel interventions (49). With rising mental health 
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concerns (50-51), there is a need and opportunity for faster, scalable, and telemedical 

solutions.  

We demonstrate the potential of a distributed crowd workforce, selected through a 

multi-round virtual rater certification process, to accurately tag behavioral features of 

unstructured videos of children with autism and matched controls, both with and without 

privacy-preserving alterations to the video. We emphasize that we are testing the ability of 

workers recruited from the crowd to adequately and fairly score the features we care about 

without knowing anything about the underlying diagnostic task; the workers are not 

directly providing a diagnosis or answering any questions mentioning autism.  We feed 

these vectors of tagged categorical ordinal labels into two logistic regression binary autism 

classifiers trained on ADOS (26) score sheets filled out by professional clinicians. The 

performance of the classifiers when predicting from crowdsourced features is used as a 

gold standard of crowd rater performance. We then evaluate the performance of the 

classifier on a balanced set of 50 unstructured videos of children with autism and matched 

controls. We evaluate median, mode, and mean aggregation methods of crowd responses 

for a single question, finding that the accuracy, precision, sensitivity, and specificity of the 

classifier are >=95% across all metrics for the best aggregation strategy, outperforming all 

prior video-based diagnostics efforts. We find that the sensitivity (recall) of classifiers is 

preserved, even with the most stringent privacy-preserving mechanisms. Applying the 

process to privacy-altered videos achieves performance that exceed alternative 

classification methods without alterations (14). These results suggest that after the 

curation of a targeted crowd workforce, clinicians may draw from the generated pool of 

crowd workers for rapid assessment of pediatric behavior in a scalable and privacy-

preserved manner, increasing the number of patients that a clinician can diagnose.  
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MATERIALS AND METHODS 

 

Fig. 1. Overview of the crowd-powered AI diagnostic process. (a) A trustworthy crowd 

is selected through a filtration process involving an evaluation set of videos. (b) A 

diagnosis and gender balanced set of unstructured videos are mined from YouTube. 

Videos are evaluated both with and without a set of privacy-preserving alterations: pitch 

shift and face obfuscation. (c) The curated crowd labels the selected videos by answering a 

set of multiple choice questions about the child’s behavior exhibited in the video, with 

each worker assigned to a random subset of the videos. (d) A classifier trained on 

electronic medical records corresponding to the multiple choice questions is used to 

predict the diagnosis from the crowd labels per video, and the classifications are compared 

against the known diagnoses in the video set. 

 

 Machine learning classifiers 

Two previously validated (14, 52) binary autism logistic regression classifiers were 

used to evaluate the quality of the crowd ratings (Fig. 1). One classifier (LR6) was trained 

on publicly available archived medical records derived from the administration of the 
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ADOS Module 2 (26) for 1,319 children with autism and 70 non-autism controls. We refer 

to this model as LR6 to indicate that it is a logistic regression classifier that has 6 input 

features. The other classifier (LR10) was trained on medical records from the ADOS 

Module 3 (26) for 2,870 children with autism and 273 non-autism controls. We refer to 

this model as LR10 to indicate that it is a logistic regression classifier that has 10 input 

features. The features input to each model have a categorical and ordinal structure. As 

discussed in (53), stepwise backward feature selection was used to determine the top-6 

and top-10 predictive features for autism diagnosis.  

Selection of videos 

A clinically representative collection of videos (12 female autism; 13 male autism; 

12 female neurotypical; 13 male neurotypical) was selected from publicly available 

YouTube videos containing both children with and without autism. Diagnosis was based 

on video title and description reported by the uploader, e.g., “Joey with autism at 36 

months”. Videos for autism were required to match the following criteria: (1) the child’s 

hand and face are visible, (2) opportunities for social engagement are present, and (3) an 

opportunity for using an object such as a toy or utensil are present. To curate a variety of 

videos, no further selection criteria were used. Of the 200 videos collected using this 

method, we selected a subset of 50 videos for the study.   

Recruitment trustworthy and capable crowd workers 

All experiments were conducted on Amazon Mechanical Turk (MTurk). A 

different set of N=20 balanced public YouTube videos used in prior studies (16) and 

selected as described above were used to filter crowd workers on MTurk from an initial 

pool of 1,107 workers to a set of 82 workers passing a set of quality control measures. To 

cast a wide net of potential crowd workers while maintaining some promise of quality, the 

initial pool was required to possess MTurk system qualifications indicating that they had 
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completed at least 50 Human Intelligence Tasks (HITs) and had a cumulative approval 

rating above 80%. See Materials and Methods for a detailed description of the process. 

Crowd workers possessed no prior training or knowledge about the video rating task. 

Altering videos to achieve privacy conditions 

We selected established mechanisms for both visual and audio privacy. To achieve 

visual privacy, we obfuscated the face with a red box, as illustrated in Supplemental Fig. 

S1. We used the OpenCV toolkit to draw boxes over the bounding box of the face as 

detected by a convolutional pretrained ResNet face detector. Frame smoothing was 

implemented to ensure that the face remained covered in the occasional frames where the 

face detector failed. In particular, when a face was not detected in the frame, the red box 

remained in the same position in all subsequent frames without a detected face until a new 

face position was detected. This ensured that a box was drawn near the child’s face 

throughout the duration of the video. To ensure perfect and complete coverage of the 

child’s face for all frames of the video, the processed videos were manually viewed and 

trimmed by the authors until complete face coverage was achieved.  

To achieve audio privacy, we chose to use pitch shifting because it preserves all of 

the original content of the speech while obfuscating potentially identifying vocal features. 

We used ffmpeg to extract the audio from the original video, pitch shift the audio down by 

a factor of 10/7, then append the new audio clip to a new video constructed from the 

sequential JPG frames of the original video. 
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RESULTS 

Crowd labeling of video behaviors 

We constructed a formal pipeline to aggregate a steady-state population of 

trustworthy and competent workers from a broad crowd whose labels of behavioral 

features from video would yield high diagnostic performance. Prior work has 

demonstrated that features extracted by non-expert raters can yield high diagnostic 

performance on unstructured videos (14). Yet, no prior literature, to our knowledge, has 

demonstrated the capacity of crowdsourced ratings for diagnosis of developmental delays. 

We created a series of Human Intelligence Tasks (HITs) on the Amazon Mechanical Turk 

(MTurk) crowdsourcing platform to recruit crowd workers (see Materials and Methods: 

Recruitment of trustworthy and capable crowd workers for details). We initially evaluated 

1,107 randomly selected crowd workers through our “virtual rater certification” process 

and filtered the crowd down to 102 consistently well-performing workers who provided 

complete feature vectors with consistent results. 
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To extract categorical ordinal behavioral feature labels for each video, we 

published a HIT for each of a balanced set of 50 unstructured videos of children (25 

autism, 25 neurotypical; 26 male, 24 female). Each HIT contained the embedded video of 

the child with a potential developmental delay and a series of 31 multiple choice questions 

(see Supplemental Information Fig. S1 for a visualization of the interface and 

Supplemental Information File S1 for the full list of behavioral questions asked in each 

HIT). Each multiple-choice question is a reworded version of one or more questions from 

the Autism Diagnostic Observation Schedule (ADOS) questionnaire (2), a survey 

frequently used for diagnosing autism. Due to the low number of behavioral features used 

as input to the classifiers (see Supplementary Information: Machine learning classifiers 

for details), we did not provide raters with the opportunity to answer “N/A” to a particular 

question, instead requesting for raters to predict what the behavior for the child would be 

using their intuition. We hypothesized that some crowd workers would exhibit a high level 

of intuition about certain autism-related behaviors given other behaviors. While we only 

used a subset of the 31 questions as inputs to the classifiers, the unused questions served 

as quality control opportunities (see Materials and Methods: Recruitment of 

diagnostically-capable crowd workers for details). We randomly sampled 3 crowd 

workers from the filtered crowd to perform each HIT. Three workers were chosen per 

condition based on prior experiments by Tariq et al. demonstrating that 3 human raters are 

sufficient for classifier performance to converge (14). 

The importance of trust in healthcare solutions, especially with machine learning 

approaches deployed on mobile devices, cannot be overstated. We explored the effect of 

privacy-preserving mechanisms in the visual and audio domains on classifier performance 

due to the potential privacy concerns of parents regarding the use of machine learning and 

crowdsourcing techniques on videos of their children. We published an identical set of 
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HITs with 3 privacy-preserving mechanisms: (1) full obfuscation of the face with a red 

face box (visual privacy; see Supplemental Information Fig. S1), (2) pitch shifting the 

audio of the child to a lower frequency (audio privacy), and (3) a combination of both 

approaches (visual and audio privacy). As with the unaltered video tasks, we randomly 

sampled 3 crowd workers from the filtered crowd to perform each HIT. 

Performance of autism classifiers 

 

Fig. 2. Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves of 

the classifiers trained on aggregated features from the filtered crowd raters. The blue 

line shows the performance of the LR6 classifier and the green line shows the 

performance of the LR10 classifier. ROC curves for input features to the classifier are 

aggregated using the (A) mode, (B) round of the mean, and (C) median of the crowd 

worker responses. PR curves for input features to the classifier are aggregated using the 

(D) mode, (E) round of the mean, and (F) median of the crowd worker responses. 
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We evaluated the quality of the crowd’s answers using two logistic regression 

classifiers trained on ADOS scoresheets (see Supplementary Information: Machine 

learning classifiers for details). We used one logistic regression classifier (which we call 

LR6 for brevity) trained on 6 highly predictive questions from the ADOS and another 

classifier (which we call LR10 for brevity) trained on a different set of 10 highly 

predictive questions from the ADOS. 

We first aggregated the 3 crowdsourced responses for each video by taking the 

mode of the answers to each question, breaking ties randomly. The mode of each crowd 

worker response was used as the input to the classifiers. The Area Under the Receiver 

Operating Curve (AUROC) of the LR10 classifier was 0.9872 while the AUROC of the 

LR6 classifier was 0.9904 (Fig. 2a). The Area Under the Precision-Recall Curve 

(AUPRC) of the LR10 classifier was 0.9895 while the AUPRC of the LR6 classifier was 

0.9906 (Fig. 2d).  The LR10 classifier achieved 96.0% accuracy, 100.0% precision, 92.0% 

sensitivity / recall, and 100.0% specificity (Table 1). The LR6 classifier achieved 92.0% 

accuracy, 95.7% precision, 88.0% sensitivity / recall, and 96.0% specificity (Table 1).   

We next aggregated the crowdsourced responses by using the median response of 

crowd workers as the input to the classifiers. The AUROC of the LR10 classifier was 

0.9864 while the AUROC of the LR6 classifier was 0.9904 (Fig. 2b). The AUPRC of the 

LR10 classifier was 0.9897 while the AUPRC of the LR6 classifier was 0.9911 (Fig. 2e). 

The LR10 classifier achieved 92.0% accuracy, 88.9% precision, 96.0% sensitivity / recall, 

and 88.0% specificity (Table 1). The LR6 classifier achieved 92.0% accuracy, 92.0% 

precision, 92.0% sensitivity / recall, and 92.0% specificity (Table 1).   
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 Accuracy (%) Precision (%) Sensitivity / 
Recall (%) 

Specificity 

LR10 LR6 LR10 LR6 LR10 LR6 LR10 LR6 

Mode  96.0 92.0 100.0 95.7 92.0 88.0 100.0 96.0 

Median 92.0 92.0 88.9 92.0 96.0 92.0 88.0 92.0 

Mean 
(rounded) 

90.0 98.0 85.7 100.0 96.0 96.0 84.0 100.0 

Table 1. Performance of the machine learning classifiers on aggregated crowd labels 

when using the majority rules (mode), median, and mean aggregation methods. 

Performance metrics from the LR10 and LR6 classifiers are shown respectively. A 

probability threshold of 0.5 was used to distinguish the autism and neurotypical classes. 

 

Finally, we aggregated the crowdsourced responses by taking the mean of the 

categorical ordinal variables and rounding the answer to the nearest whole number. The 

AUROC of the LR10 classifier was 0.9848 while the AUROC of the LR6 classifier was 

0.9936 (Fig. 2c). The AUPRC of the LR10 classifier was 0.9888 while the AUPRC of the 

LR6 classifier was 0.9944 (Fig. 2f). The LR10 classifier achieved 90.0% accuracy, 85.7% 

precision, 96.0% sensitivity / recall, and 84.0% specificity (Table 1). The LR6 classifier 

achieved 98.0% accuracy, 100.0% precision, 96.0% sensitivity / recall, and 100.0% 

specificity (Table 1).  

Performance using privacy-preserving mechanisms 

We studied the effect of privacy-preserving mechanisms on the performance of the 

crowd. We evaluated the performance of MTurk workers on the same balanced set of 50 

videos with all faces obfuscated, with audio pitch shifted down, and with both faces 

obfuscated and audio pitch shifted. Each worker was assigned to one privacy condition per 
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video. This allowed us to quantify the effects of visual and audio privacy mechanisms on 

non-expert clinical ratings.  

 

Fig. 3. ROC curves of the classifiers trained on aggregated features from the filtered 

crowd raters under each privacy condition. The color of the curve represents the 

privacy condition: blue represents unaltered video, green represents face obfuscation, red 

represents pitch shift, and purple represents face obfuscation and pitch shift. Plots show 

aggregated results using the (A and D) mode, (B and E) median, and (C and F) round of 

the mean of the crowd worker responses. The ROC curves are shown for both the LR6 (A 

- C) and LR10 (D - F) classifiers. 

 

The lowest AUROC for any aggregation method, classifier, and privacy condition 

was 0.8928, using the mode aggregation strategy (Fig. 3a). By contrast, the lowest median 

AUROC was 0.9480 (Fig. 3e) and the lowest mean AUROC was 0.9488 (Fig. 3). Using 

all three aggregation methods, all privacy conditions lowered the AUROC of both the LR6 
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and LR10 classifiers compared to the baseline unaltered condition (Fig. 3). The robustness 

of the ROC curve against privacy alterations appears to vary across aggregation strategies. 

While the unaltered ROC curves are nearly identical for the unaltered conditions 

regardless of aggregation strategy used (Fig. 2), the privacy conditions introduce variance 

in curve shape and AUROC values across privacy mechanisms, highlighting the 

importance of the aggregation strategy chosen when using privacy-preserved videos.  

 

Fig. 4. PR curves of the classifiers trained on aggregated features from the filtered 

crowd raters under each privacy condition. The color of the curve represents the 

privacy condition: blue represents unaltered video, green represents face obfuscation, red 

represents pitch shift, and purple represents face obfuscation and pitch shift. Plots show 

aggregated results using the (A and D) mode, (B and E) median, and (C and F) round of 

the mean of the crowd worker responses. The ROC curves are shown for both the LR6 (A 

- C) and LR10 (D - F) classifiers. 
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The lowest AUPRC for any aggregation method, classifier, and privacy condition 

was 0.8980 (Fig. 4) for the mode aggregation strategy. The relative effects of the privacy 

conditions on AUPRC were nearly identical to the effects on AUROC (Fig. 3). All privacy 

conditions lowered the AUPRC with respect to the baseline unaltered condition (Fig. 4). 

Like with AUROC, the PR curves varied across aggregation strategies (Fig. 4), with the 

lowest AUPRC for mode aggregation (0.8980; Fig. 4a) manifesting noticeably lower than 

the lowest AUPRC under any privacy condition for both median (0.9500; Fig. 4b) and 

mean (0.9476; Fig. 4f) aggregation strategies. 

Mean and median crowd worker aggregation strategies appear more robust to 

privacy-altering modifications than the majority-rules (mode) strategy in terms of both 

AUROC (Fig. 3) and AUPRC (Fig. 4). This effect is likely due to the cumulative effect of 

multiple cases where there were no consensus answers between crowd raters on an 

individual question. In particular, there were 69 (video, question) pairs (out of a total 390 

possibilities) where there was not a consensus category chosen by the 3 raters, 64 pairs in 

the face box conditions, 96 pairs in the pitch shift condition, and 125 pairs in the 

combined case.  

When using the median and mean aggregation methods, the sensitivity (recall) of 

both the LR6 and LR10 classifiers was not degraded with any privacy condition, 

regardless of the classifier used (Tables 2 and 3). This protective effect against sensitivity 

was not present with mode aggregation. With the LR10 classifier, the accuracy, precision, 

and specificity from any privacy condition was lower than or equal to the unaltered 

condition using all aggregation methods (Table 2), except that the face box resulted in 

higher specificity when using mean aggregation. With the LR6 classifier, the accuracy, 

precision, and specificity from any privacy condition was lower than or equal to the 

unaltered condition using all aggregation methods (Table 3). There is no clear difference 
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in the face box and pitch privacy mechanisms in terms of severity of classifier 

performance degradation; the effect is highly dependent on the aggregation methods used. 

Dramatic differences in classifier performance using different aggregation methods but 

with all else held equal appeared in several instances: the largest differences across 

aggregation strategies for LR10 were 12.0% for accuracy (face box), 22.3% for precision 

(face box), 20.0% for sensitivity (pitch shift), and 24.0% for specificity (pitch shift and 

combined conditions) (Table 2). The largest differences for LR6 were 12.0% for accuracy 

(combined condition), 9.3% for precision (combined condition), 20.0% for sensitivity 

(combined condition), and 16.0% for specificity (combined condition) (Table 3). 

 

Privacy 
Mechanism 

Accuracy (%) Precision (%) Sensitivity [Recall] (%) 

 

Specificity (%) 

Mode Median Mean Mode Median Mean Mode Median Mean Mode Median Mean 

Unaltered 96.0 92.0 90.0 100.0 88.9 85.7 92.0 96.0 96.0 100.0 88.0 84.0 

Face Box 94.0 88.0 82.0 95.8 85.2 73.5 92.0 92.0 100.0 96.0 84.0 96.0 

Pitch Shift 82.0 82.0 88.0 83.3 73.6 71.4 80.0 100.0 100.0 84.0 64.0 60.0 

Face Box 
and Pitch 
Shift 

86.0 78.0 80.0 84.6 70.1 71.4 88.0 96.0 100.0 84.0 60.0 60.0 

Table 2. Performance of the LR10 classifier on aggregated crowd labels across 

privacy-preserving mechanisms when using the mode, median, and mean 

aggregation methods, respectively. Sensitivity of the classifier is retained even with the 
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most stringent privacy-preserving mechanisms. A probability threshold of 0.5 was used to 

distinguish the autism and neurotypical classes. 

 

Privacy 
Mechanism 

Accuracy (%) Precision (%) Sensitivity [Recall] (%) 

 

Specificity (%) 

Mode Median Mean Mode Median Mean Mode Median Mean Mode Median Mean 

Unaltered 92.0 92.0 98.0 95.7 92.0 100.0 88.0 92.0 96.0 96.0 92.0 100.0 

Face Box 86.0 88.0 86.0 87.5 82.8 80.0 84.0 96.0 96.0 88.0 80.0 76.0 

Pitch Shift 84.0 92.0 88.0 84.0 86.2 82.8 84.0 100.0 96.0 84.0 84.0 80.0 

Face Box 
and Pitch 
Shift 

76.0 82.0 88.0 74.1 73.5 82.8 80.0 100.0 96.0 72.0 64.0 80.0 

 

Table 3. Performance of the LR6 classifier on aggregated crowd labels across 

privacy-preserving mechanisms when using the mode, median, and mean 

aggregation methods, respectively. Sensitivity of the classifier is retained even with the 

most stringent privacy-preserving mechanisms. A probability threshold of 0.5 was used to 

distinguish the autism and neurotypical classes. 

 

DISCUSSION 

Our results confirm the hypothesis that a qualified crowd of non-expert workers 

from paid platforms can efficiently tag features needed to run machine learning models for 

accurate detection of autism. We demonstrate the first crowdsourced study of human-in-

the-loop machine learning methods for diagnosing any behavioral health condition, 

focusing on pediatric autism as a challenging case study. When aggregating the 

categorical ordinal behavioral features provided by the crowd, the classifiers perform at a 

clinical-grade level, with the best classifier using the optimal aggregation strategy for this 

dataset (mean) yielding >=96% performance for accuracy, precision, sensitivity (recall), 
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and specificity, demonstrating promise for crowd-powered telemedicine diagnostics of 

pediatric mental health conditions. This method performs at levels that exceed alternative 

classification methods that do not employ crowdsourcing or filtration of human 

annotators, with notable prior results achieving an accuracy of 88.9%, sensitivity of 

94.5%, and specificity of 77.4% on the best-performing classifier (14). This suggests that 

when privacy-preserving mechanisms are not applied to video, the methods described here 

can be leveraged for diagnostics in addition to screening. 

Even with privacy mechanisms in place, the results perform slightly higher than 

AI-based video phenotyping of autism absent of crowdsourcing and privacy protection 

(14). The LR6 classifier achieved 88.0% accuracy, 96.0% sensitivity, and 80.0% 

specificity using mean aggregation; these results exceed the best-performing unaltered 

video classifiers in prior work (14). In an age where privacy of personal data is at the 

forefront of geopolitical issues and public discourse, trust is paramount for effective data 

sharing. We found that those parents who would not share raw videos of their children 

would share the videos after our privacy-preserving steps were applied. Importantly, 

applying these mechanisms to the videos did not degrade the sensitivity of the classifier 

but did degrade the specificity (by a certain percentage).  More work on trustworthy AI 

will be needed to maximize both trust and the clinical value of data being shared.  

We emphasize that we are testing the ability of workers recruited from the crowd 

to adequately and fairly score the features we care about without knowing anything about 

the underlying diagnostic task; the workers are not directly providing a diagnosis or 

answering any questions mentioning autism. We are able to derive accurate diagnoses 

through feeding the crowd workers’ responses into a machine learning classifier. 

However, the recruitment of the crowd workforce was a crucial part of the process, as 
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prior studies have shown that most crowd workers do not perform particularly well at 

labeling behavioral features from unstructured videos (54-56). 

This work involves a structured process of applying feature selection on electronic 

medical record data to determine the behaviors most predictive of a particular condition, 

training machine learning classifiers to predict a diagnosis with the minimal feature set on 

the electronic medical record data, building a diagnostically and demographically 

balanced training library of videos enriched for those features, applying privacy 

transformations to those videos, recruiting a curated crowd workforce, assigning members 

of the curated crowd to behaviorally tag subsets of the videos, and finally, providing a 

diagnosis by feeding in the aggregated crowd responses as input to the machine learning 

classifier. This process can likely be applied to other developmental and psychiatric 

conditions, enabling scalable telemedical practice. Further, the crowdsourced labeling of 

video in this process creates a training library for AI in healthcare that can be used to train 

classifiers of behavior from video, a task that is limited only by the lack of sufficient 

labeled datasets. 

We also demonstrate the first published case, to our knowledge, of “human 

imputation”, where humans can fill in the missing data in diagnostic questionnaires using 

their intuition. All videos were short, ranging from 15 seconds to 129 seconds (mean = 

42.4 seconds; SD = 24.9 seconds), and only illustrating a few of the behavioral questions 

used in the classifiers. Nevertheless, raters were capable of rating the missing behaviors to 

a sufficient degree to realize strong classifier performance. Because most clinicians are 

unwilling to label unobserved behavior, this methodology proves promising when 

incomplete data are available for a patient, which is often the case in longitudinal at-home 

data monitoring efforts.  
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There are several limitations of the present study. While the dataset used was 

balanced for gender and diagnosis, the unstructured nature of the videos could introduce 

uncontrolled confounders. Diagnosis was based on self-reporting from parents, 

introducing the potential for discrepancies in the diagnostic reports of the child. Autism is 

a heterogeneous spectrum condition, and the phenotype is not binary. However, the 

analysis performed in the present study treats autism as a binary condition, not capturing 

subtleties in children who may “almost have autism” or “barely have autism”. One 

possible approach for future work would involve using the probabilities emitted from the 

logistic regression classifier as an estimate of autism severity. Another limitation 

introduced by this study design is the inability to attribute the degradation of performance 

to either a lack of ability of workers to “impute” the missing video data or the natural 

degradations that would result by the privacy-preserving mechanisms. Future work 

evaluating the granular effects of video-based privacy techniques on item-level effects 

would result in greater translatability of the results to the clinic. 

 

CONCLUSION 

Crowd-powered machine learning methods for psychiatric diagnostics and 

longitudinal tracking, such as the general pipeline illustrated here, contain the potential to 

revolutionize translational and computational psychiatry, fields yearning for scalable and 

accessible solutions (57). Clinicians may utilize the methods described here during times 

when social distancing restrictions make in-person care infeasible. Machine learning 

solutions alone, without incorporating human insight, are far from providing precise 

behavioral diagnostics at the level of a professional psychiatrist. We demonstrate the first 

crowdsourced study of human-in-the-loop machine learning methods for diagnosing 

autism. We find that when drawing a large but capable subset of the crowd filtered from a 
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short series of preliminary tasks, crowd workers can be sampled to answer diagnostically 

rich multiple-choice questions about unstructured videos of children with potential 

developmental delays. Even with privacy mechanisms in place, the results slightly 

outperform the best performance reported in prior literature. Crowd-powered privacy-

preserved diagnostic systems will enable scalable, accessible, and affordable solutions to 

behavioral healthcare. 
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