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Distribution of degrees
Evaluating the number of contacts per device we find that the degree of nodes, i.e., the
number of contacts of each person, is broadly distributed with a long tail before the
lockdown (Fig. 1, blue line) while at later dates after the first wave, the distribution has
a much shorter tail and is highly concentrated around few contacts (compare brown and
green lines). Thus initially there are many individuals with large numbers of contacts who
would be potential ’super-spreaders’ (called hubs in network theory), but the lockdown
clearly led to a reduction of the number of such individuals at later weeks. The same
pattern is observed before and after the second wave and lockdown (red and purple dots).

�� �� �� �� ��
����������	�����������������

��
�

��
�

��
�

��
�

��
�

��
�

	
��
��


�����

�����
������
������
������

Figure 1: Histogram of number of contacts per person on three days before and after the
first wave (solid lines) and two days before and during the second wave (dots): March
5, March 12 before official lockdown, March 19 (histogram cut off at 30 contacts) after
ban of large gatherings and local regulations closing restaurant and other public venues.
October 3 was a Saturday and also the national holiday with public gatherings. November
1 was one day before the second lockdown.
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Local mapping of CI
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Figure 2: The CI can be locally calculated by only evaluating cell phones located mostly
in a specific county (while keeping all contacts, as well outside of the county, of that cell
phone for the calculation). The map shows the CI on March 1, 2020, a Sunday. Several
soccer matches were hold on that day. The circles show cities that took part in the games
from the two top tiers.
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Theory and Methods
In this Appendix, we describe our specially designed algorithm that identifies “contacts”
from the traces based on the following rationale: If GPS pings arrive from two distinct
cell phones that are close in space and time, then we denote this event as a “contact” and
use it as a proxy for a human physical contact.

Our data allows estimating the number of real-world contacts for the entire population
of Germany. However, a large part of these real contacts is missing from our cell phone
sampling for two main reasons: (A) We only cover a fraction of devices. (B) We only cover
times when the cell phone is sending a ping. In more detail regarding (A), we cover about
800,000 GPS-enabled devices per day, so that the majority of contacts for an individual
goes undetected. As there are about 83 million persons in Germany, we can expect to
cover about 1% of persons. Regarding (B), a typical cellphone sends about 200 pings per
day. In order to cover the entire day, one ping every two minutes i.e. 720 pings per day
are needed. Thus, only about 28% of the time of the day is covered for the average device.
Assuming for simplification that the time of pings are independent for different devices, a
lower bound estimate of the probability that a contact between two devices was observed
is 0.28 × 0.28 ≈ 0.1. So, according to this rough calculation, we can expect to track at
least 0.012 × 0.1 = 0.001% of all contacts between any two persons living in Germany.

The average number of cell phones registered during a day was about 800,000. Per
day we find between 20,000 and 160,000 devices that had at least one match. The total
number of matched pairs varied between 150,000 (before lockdown) and 12,000 (during
lockdown) per day.

Sampling of nodes
We now describe more formally how measures of the sampled network, such as mean
contacts and second moment of contacts, relate to the respective measures of the original
full contact network for all cell phones. We focus on sampling of devices described in
restriction (A) in section ??, and ignore restriction (B) for simplification, since it is similar
to the sampling of nodes in restriction (A) and would just require a re-scaling of the
parameter p in equation (14).

In the following, let G denote the full network or graph of all cell phones and let M
denote the maximal degree of a node in G. As a reminder, the degree of a node (i.e.
person) equals the number of contacts of this person. Following Zhang et al. [7] we let
N denote the vector containing the degree counts of the nodes (an alternative way of
deriving our results is based on the Horvitz-Thompson estimate [2, 3]). N has length
M + 1 and the k-th entry of N contains the number of nodes that have degree k, i.e. the
number of devices that have k contacts. Thus N contains the counts of the number of
cell phones having k links (contacts) to other cell phones.

In the sampling of phones according to (A), we assume that each phone is sampled
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from G with the same probability p, resulting in the sampled graph G∗. This situation is
also described as induced network sampling in network theory [7]. The induced network
G∗ includes all sampled nodes as well as all links from G that connect the sampled nodes
in G∗.

The vector of the expected values of the degree counts of the sampled network, N∗, is
E(N∗) = PN , Here, P is a matrix of entries P (k, k′) that describe the probability that a
node of degree k′ in G is selected and has degree k in G∗. For induced sampling, P is:

Pind(k, k
′) =

{(
k′

k

)
pk+1(1− p)k

′−k for 0 ≤ k ≤ k′ ≤ M,

0 for 0 ≤ k′ < k ≤ M.
(1)

Thus the k-th entry E(N∗(k)) =
∑

k′,k≤k′ N(k′)
(
k′

k

)
pk+1(1− p)k

′−k.
In the following we assume that the particular sampling given by our mobile phone

records gives rise to a N∗
ind, which can be approximated by E(N∗) for large networks,

from which we can calculate the degree moments for the original network.

Derivation of the contact index C

Let ⟨k⟩ denote the mean degree of nodes in G: ⟨k⟩ =
∑M

k=0 kN(k)/(
∑M

k=0N(k)). We first
show that the mean ⟨k⟩ind of the sampled graph is linearly related to the mean of the
original graph:

⟨k⟩ind ≈
∑M∗

k=0 kE(N∗(k))∑M∗

k=0 E(N∗(k))
(2)

=

∑
k,k′,k≤k′ kN(k′)

(
k′

k

)
pk+1(1− p)k

′−k∑
k,k′,k≤k′ N(k′)

(
k′

k

)
pk+1(1− p)k′−k

(3)

=
p
∑

k′ N(k′)
∑

k,k≤k′ k
(
k′

k

)
pk(1− p)k

′−k

p
∑

k′ N(k′)
∑

k,k≤k′

(
k′

k

)
pk(1− p)k′−k

(4)

=
p2

∑
k′ k

′N(k′)

p
∑

k′ N(k′)
(5)

= p⟨k⟩ (6)

The equality of (4) and (5) follows since
∑

k,k≤k′ k
(
k′

k

)
pk(1 − p)k

′−k is the mean value of
the binomial distribution B(k′, p) which equals k′p, and

∑
k,k≤k′

(
k′

k

)
pk(1 − p)k

′−k is the
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sum of all probabilities in B(k′, p) which is 1. Similarly, we find for the second moment:

⟨k2⟩ind ≈
∑

k k
2E(N∗(k))∑

k E(N∗(k))
(7)

=

∑
k,k′,k≤k′ k

2N(k′)
(
k′

k

)
pk+1(1− p)k

′−k∑
k,k′,k≤k′ N(k′)

(
k′

k

)
pk+1(1− p)k′−k

(8)

=
p
∑

k′ N(k′)
∑

k,k≤k′ k
2
(
k′

k

)
pk(1− p)k

′−k

p
∑

k′ N(k′)
∑

k,k≤k′

(
k′

k

)
pk(1− p)k′−k

(9)

=
p
∑

k′(k
′(k′ − 1)p2 + k′p)N(k′)

p
∑

k′ N(k′)
(10)

= p2⟨k2⟩ − (p2 − p)⟨k⟩ (11)

Here, (7) is the definition of the second moment, (10) follows from (9) since the second
moment for the binomial distribution B(k′, p) is p2k′2 + k′(p− p2) and

∑
k,k≤k′

(
k′

k

)
pk(1−

p)k
′−k = 1, and (11) follows from (10) because of the definitions of the first and second

moments of N(k′). Finally, we describe how the ratio ⟨k2⟩/⟨k⟩ of the original graph can
be obtained from the sampled graph via ⟨k⟩ind and ⟨k2⟩ind:

⟨k2⟩
⟨k⟩

≈
1
p2
(⟨k2⟩ind − (p− p2)⟨k⟩)

⟨k⟩
(12)

=
⟨k2⟩ind
p⟨k⟩ind

−
(
1

p
− 1

)
(13)

=
1

p

(
⟨k2⟩ind
⟨k⟩ind

− 1

)
+ 1. (14)

This ratio ⟨k2⟩/⟨k⟩ is of interest, since it describes the growth rate of an infection phase in
an uncorrelated network [5]. Since ⟨k2⟩ind is larger or equal to ⟨k⟩ind, (14) is non-negative
and since p is small in our sampling, we can ignore the addition of the constant 1. Thus
we define the contact index C as

CI :=
Ntot

Nobs

(
⟨k2⟩ind
⟨k⟩ind

− 1

)
,

where p has been replaced by the ratio Nobs/Ntot, where Nobs is the number of devices
observed during a day and Ntot is the total number of devices/consumers in the considered
area.
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Effective R calculation
The effective reproduction number R values in our analysis have been obtained from the
RKI Nowcasting website 1. For a given day d, R is calculated as the ratio of the sums
of infections for days d to d + 6 and d − 7 to d − 1 [6]. This number is then attributed
to day d. For regional evaluations, confirmed cases are counted by the district where the
individual has their home address.

Statistical analysis
In the analysis, we estimate the contact index from a sample of nodes from the full network
of cell phones in Germany. We present descriptive statistics and temporal trends of the
number of contacts as well as of the contact index. Finally, we investigate their association
with infection rates assessed by R by estimating their Pearson correlation coefficient. The
Pearson correlations and their p-values were determined using Python’s Scipy package,
version 1.3.1.

GPS location data
The investigation relies on GPS location history data that is collected via a Software
Development Kit (SDK) developed for the primary purposes of assessing the quality of
cell phone networks. Cell phone data is collected by the SDK implemented in more than
one million cell phones in Germany. Per day data was received from 1.15 to 1.4 million
cell phones during March to July 2020. The legal conditions for the processing of the data
were described in a report by A. Böken on May 11, 2020. Data records are anonymous.
In a first step the number of contacts for each device is determined so that no positional
information is retained. Then the data is aggregated by the number of devices that have a
certain number of contacts. Only these aggregated numbers are used for further analysis.

Probability of contact detection and real distance between individuals
The epidemiology of SARS-CoV-2 indicates that most infections are caused by close con-
tacts through respiratory droplet transmission with a short range, e.g. 1.5 to 2 m [4] A
feasible algorithm for contact detection from GPS data needs to have acceptable accu-
racy, while still providing efficacy in regards to computation time. Since GPS pings of
several million individuals are assessed over a longer time span, a vast amount of data
needs to be analyzed. Therefore, we map GPS positions to an 8m x 8m grid and assign a
time stamp with a resolution of 2 minutes. Each tile within the grid has a unique identi-
fication number (tile ID). If entries have identical tile IDs and time stamps (which were

1https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting_
Zahlen.xlsx?__blob=publicationFile
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rounded to two minutes), this is accounted as a contact. Contact detection might fail in
dependence of the choice of grid placement, if GPS positions get mapped to different tiles
even though they are in close proximity. This effect becomes more likely with increasing
distance between GPS coordinates.

For evaluation of this algorithm, we used a numerically approach: we set a point p1
to the origin coordinates and a point p2 to random coordinates and distance d to p1. We
then create a tile with random positions which includes p1. If p2 is also within the tile, the
contact with distance d was successfully detected. By repeating this algorithm, a curve
for the probability of contact detection in relation to distances between GPS positions
can be calculated (Fig. 3A). To calculate a similar graph for the real positions between
individuals, the inaccuracy of GPS has to be taken into consideration. In order to do this,
we randomly shifted p1 and p2 according to the known inaccuracy of GPS (mean error
0.95 m +- 1.05 m standard deviation [1] The result can be seen in Fig. 3B.
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Figure 3: Probability of contact detection. See text for a details.
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