DIFFERENTIAL EXPRESSION OF CB₁ CANNABINOID RECEPTOR AND CANNABINOID RECEPTOR INTERACTING PROTEIN 1A IN LABOR

Melissa L. KOZAKIEWICZ, MD⁠ᵃ, Jie ZHANG, MD⁠ᵇ, Sandra LEONE-KABLER, BA⁠ᶜ, Liliya M. YAMALEYEVA, MD, MS⁠ᵈ, Brian C. BROST, MD⁠ᵉ, Allyn C. HOWLETT, PhD⁠ᶠ

ᵃDepartment of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine
Wake Forest School of Medicine
Medical Center Blvd.
Winston-Salem, NC 27157
mkozakie@wakehealth.edu

ᵇDepartment of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine
Wake Forest School of Medicine
Medical Center Blvd.
Winston-Salem, NC 27157
jzhang@wakehealth.edu

ᶜDepartment of Physiology and Pharmacology
Wake Forest School of Medicine
Medical Center Blvd.
Winston-Salem, NC 27157
skabler@wakehealth.edu

ᵈDepartment of Surgery/Hypertension and Vascular Research Center
Wake Forest School of Medicine BioTech Place
575 N. Patterson Avenue, Suite 340
Winston-Salem, NC 27101
lyamaley@wakehealth.edu

ᵉDepartment of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine
Wake Forest School of Medicine
Medical Center Blvd.
Winston-Salem, NC 27157
bbrost@wakehealth.edu

ᶠDepartment of Physiology and Pharmacology
Wake Forest School of Medicine
Medical Center Blvd.
Winston-Salem, NC 27157
ahowlett@wakehealth.edu

Running Title: CB₁ and CRIP1A in labor

Corresponding Author:

Keywords: anandamide, labor, cannabinoid receptor, endocannabinoid, myometrium, placenta
Abstract

Background

The endocannabinoid system is present in multiple organ systems and is involved in smooth muscle regulation, immune function, neuroendocrine modulation and metabolism of tissues. Limited data are available regarding the presence and role of this system in reproductive tissues. Components of the endocannabinoid system have been identified in myometrial and placental tissues. However, no study has investigated differential expression of the endocannabinoid system in labor.

Objectives

The purpose of this study was to identify and quantify two components of the endocannabinoid system, the CB₁ cannabinoid receptor and cannabinoid receptor interacting protein 1a, in uterine and placental tissues, and to determine if there is differential expression in tissues exposed to labor. We hypothesized that CB₁ cannabinoid receptor concentration would be altered in uterine and placental tissue exposed to labor as compared to tissues not exposed to labor.

Study Design

Uterine and placental tissue samples were collected in nine laboring and 11 non-laboring women undergoing cesarean delivery. CB₁ cannabinoid receptor and cannabinoid receptor interacting protein 1a presence and quantification were evaluated using western blot and real-time quantitative polymerase chain reaction. Statistical comparisons of laboring and non-laboring subjects were made for uterine and placental tissue using a Mann-Whitney test.

Results
The protein abundance of CB₁ cannabinoid receptor in uterine tissue was significantly lower in tissues exposed to labor (p = 0.01). The protein abundance of cannabinoid receptor interacting protein 1a was lower in uterine tissue exposed to labor but did not reach statistical significance (p = 0.06). mRNA expression of CB₁ cannabinoid receptor (p = 0.20) and cannabinoid receptor interacting protein 1a (p = 0.63) did not differ in labored compared to non-labored uterine tissues.

Conclusions

Our findings of diminished protein density of CB₁ cannabinoid receptor in uterine tissue exposed to labor support the hypothesis that the endocannabinoid system plays a role in parturition. Our data add to the growing body of evidence indicating the endocannabinoid system is of importance for successful reproduction and support the need for additional research investigating this complex system as it pertains to labor.
INTRODUCTION

Multiple pathways leading to parturition have been proposed and investigated yet a complete understanding of the signaling pathways leading to term and preterm labor has yet to be ascertained. The biology of labor is complex and includes interplay among steroid hormones, cytokines and prostaglandins affecting the maternal-fetal interface and smooth muscle regulation.\(^1\text{-}\text{4}\) The most accepted theory of physiologic term labor in humans is that a functional progesterone withdrawal leads to an inflammatory response, causing a cascade to the final labor pathway. It is thought that preterm labor involves several different pathologic processes that lead to a similar cascade culminating in the final labor pathway.\(^5\) However, decades of research targeting the inflammatory response and myometrial contractility have not resulted in effective therapy for preterm labor. Identification of a therapeutic target or marker that precedes this transition of myometrial quiescence to an active contractile state would allow innovative investigation of novel prevention or treatment strategies.

The endocannabinoid system is present in multiple organ systems and is involved in smooth muscle regulation, immune function, neuroendocrine modulation and metabolism of tissues.\(^6\text{-}\text{14}\) It includes CB\(_1\) and CB\(_2\) cannabinoid receptors, the endocannabinoid agonists anandamide and 2-arachidonoylglycerol (2-AG), and the enzymes that synthesize and metabolize the endocannabinoid ligands.\(^14\text{-}\text{15}\) The CB\(_1\) cannabinoid receptor is a G protein-coupled receptor with cell specific activity and is encoded by the CNR1 gene. Activation leads to coupling predominantly with G\(_{\text{i/o}}\) proteins with effects on calcium channels, mitogen-activated protein kinases and adenylyl cyclase.\(^14\text{-}\text{16}\) Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB\(_1\)
cannabinoid receptor-associated protein that is known to modulate CB₁ cannabinoid
receptor activity.¹⁷,¹⁸ The CB₁ cannabinoid receptor specifically has been shown to
influence myometrial contractility in vitro,¹⁹ and has been associated with the onset of
labor in a mouse model.²⁰,²¹

The ECS is of importance in sustaining the microenvironment necessary for early
pregnancy success and maintenance.²²-²⁷ It plays a significant role in embryo
development, transport and implantation as well as placentation.²²-³⁵ Limited data are
available regarding the presence and role of this system in the mid- and late-trimesters.
Components of the ECS have been identified in uterine and placental tissues.¹⁹,³⁵-³⁶

However, to our knowledge, no study has investigated differential expression of the
ECS in labor. The aims of this study were to identify and quantify CB₁ cannabinoid
receptor and CRIP1a in uterine and placental tissues and to determine if there is
differential expression in those tissues exposed to labor. We hypothesized that CB₁
cannabinoid receptor concentration would be altered in uterine and placental tissue
exposed to labor as compared to tissues not exposed to labor.

MATERIALS AND METHODS

This was an observational study of women undergoing cesarean section. It was
conducted after Institutional Review Board approval at Wake Forest Baptist Medical
Center (Winston-Salem, NC) and Novant Forsyth Medical Center (Winston-Salem, NC).
Written informed consent was obtained from each participant. Pregnant women with
singleton gestations between 22 weeks, 0 days through 42 weeks, 0 days undergoing
cesarean section were eligible to participate. Exclusion criteria included cannabinoid
use during pregnancy, illicit drug use during pregnancy, nonsteroidal anti-inflammatory
drug use within 7 days of delivery, pre-existing diabetes, pre-existing hypertension, hypertensive disorders of pregnancy, epilepsy currently treated with antiepileptic medication, intraamniotic infection and fetal anomalies.

Baseline demographics were collected from each subject’s medical record. Labor was defined as cervical change with regular contractions. Uterine and placental samples were collected at the time of cesarean section by a single surgeon. A 2 x 0.5-inch uterine sample was obtained from the superior edge of the lower uterine segment incision following delivery of the placenta. The placental samples were taken medial to the placental edge and did not include the cord insertion site. For the placental sample, the fetal surface was removed and the tissue was cut into 4 or 5 pieces (1cm sq). All tissue samples were thoroughly rinsed in sterile normal saline, placed in RNase-free sterile containers, flash frozen in the operating room and stored at -80°C immediately after delivery.

Western Blotting

Tissue specimens (150 mg) were pulverized then homogenized with a Dremel 300 tissue homogenizer in 1.5 mL RIPA buffer (Thermo Fisher Scientific, Waltham, MA) containing proteinase inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA). Samples were then centrifuged at 1,000 x g for 10 minutes at 4°C. The supernatant was centrifuged at 25,000 x g for 20 min at 4°C. Protein concentrations were measured using a BCA assay. Samples were prepared in the loading buffer at 2 µg/µL and heated at 65°C for 8 min. Samples (60 µg) were loaded onto a 4-20% Novex wedgewell gel (Thermo Fisher Scientific, Waltham, MA) and electrophoresed at 60 v for 5 min followed by 100 v for 90 min, and transferred to a polyvinylidene fluoride
membrane (Millipore, Burlington, MA). Blots were allowed to dry completely and were stored in the dark at room temperature until antibody incubation. Blots were rewetted in methanol for 15 sec, rinsed for 1 min in PBS, and blocked for 60 min with Odyssey blocking buffer (LI-COR Biosciences Lincoln, NE) at 21-23°C. Blots were probed with primary antibodies (4°C for 18 hours) for CB₁ cannabinoid receptor (Catalog # EB10961; Everest Biotech, Oxfordshire, UK), CRIP1a (Catalog # sc-515504; Santa Cruz Biotechnology, Santa Cruz, CA) and β-Actin (Catalog # 66009; Proteintech, Rosemont, IL). Blots were washed and incubated with an appropriate Li-COR IR dye-conjugated secondary antibody. Bands were imaged using the Odyssey CLx Infrared Imaging System and quantified by densitometry using Image Studio software (LI-COR Biosciences, Lincoln, NE). Band densities were normalized to β-actin as a loading control and then normalized to the mean of all samples being assigned a value of 1.0.

Quantitative Real-Time Polymerase Chain Reaction (qPCR)

Ribonucleic acid (RNA) was isolated using the RNeasy mini kit (Qiagen, Santa Clarita, CA). RNA yield and purity were determined spectrophotometrically using a NanoDrop (Thermo Fisher Scientific, Waltham, MA). The RNA was reverse transcribed to cDNA using a high capacity cDNA kit (Catalog # 4368814, Thermo Fischer Scientific, Waltham, MA).

GAPDH and HPRT1 were first evaluated for variability between sample groups. Because their expression did not differ between labored and non-labored samples in uterine or placental tissues, these genes were used for normalization in the present studies. The primers used were as follows: CNR1 5’-AGCAGACCAGGTGAACATTAC-3’ and 3’-GACCATGAAACACTCTATG-5’; CRIP1a 5’-
CCAGTTGTTCTCGGTCATACTT-3′ and 3′-AAAGAGCGGAGCTGTTTATAGG-5′;
GAPDH 5′-ACATCGCTCAGACACCATG-3′ and 3′-TGATGGGAGGTCAATGAAGGG-5′;
HPRT1 5′-TTGTTGTAGGATATGCCCTTGA-3′ and 3′-
GCGATGTCAATAGGACTCCAG-5′ (Integrated DNA Technologies, Coralville, IA).
cDNA was diluted to 5 ng/mL. qPCR was performed using SYBR Green Master Mix
(Catalog # QP001-01; GeneCopoeia, Rockville, MD) in triplicate with the Applied
Biosystems StepOne Real-Time PCR System (Applied Biosystems, Foster City, CA).
The comparative threshold cycle method was used to calculate relative gene
expression.38

Statistical Analysis
Statistical comparisons for uterine and placental tissue were made using a Mann-
Whitney test, looking at differences in receptor concentration among tissues exposed to
labor compared to those not exposed to labor. Significant difference was considered to
be p<0.05. All analyses were performed using GraphPad Prism version 8.3.0 for
Windows (GraphPad Software, San Diego, CA, USA). Data are presented as mean
±SEM. Sample size calculation was not performed as there was no published literature
to determine what effect size would be significant.

RESULTS
Twenty healthy subjects were enrolled in the study. The median gestational age
was 38 weeks, 5 days in the labor group (n = 9) and 39 weeks, 0 days in the non-labor
group (n = 11). Additional characteristics are listed in Table 1. There was no significant
difference in age, body mass index, race, gestational age, tobacco use or birth weight.
There was a significant difference in parity with the labor group having more nulliparous
Subjects (p = 0.02). Cesarean deliveries were performed in the non-labor group for history of cesarean section with desire for repeat cesarean, previous shoulder dystocia, breech presentation and fetal growth restriction with non-reassuring antenatal testing. Cesarean deliveries were performed in the labor group for non-reassuring fetal heart rate tracing, history of cesarean section with desire for repeat, and arrest of descent. All subjects received either epidural or spinal anesthesia.

Uterus

CB₁ cannabinoid receptor and CRIP1a were both identified in uterine samples. The protein abundance of CB₁ cannabinoid receptor in uterine tissues was significantly lower in laboring subjects compared to non-laboring subjects (Figure 1). Band intensity of CB₁ cannabinoid receptor normalized to β-actin was 0.79 ± 0.118 (n = 9) for all laboring subjects and 1.19 ± 0.093 (n = 11) for all non-laboring subjects (p = 0.01). Relative band intensity of CRIP1a was 0.76 ± 0.125 (n = 9) for all laboring subjects and 1.17 ± 0.126 (n = 11) for all non-laboring subjects (p = 0.06). Subgroup analysis of term laboring subjects (n = 6) compared to term non-laboring subjects (n = 9) identified less CB₁ cannabinoid receptor protein in tissue exposed to labor compared to tissue not exposed to labor (p = 0.02). CRIP1a protein abundance was also significantly lower in labored uterine tissue in the term subgroup (p = 0.03). While there were significantly more nulliparous subjects in the laboring group, there was no significant difference in the CB₁ cannabinoid receptor (p = 0.17) or CRIP1a (p = 0.38) protein density between nulliparous and multiparous laboring subjects in uterine tissue.

There was no significant difference in mRNA expression of CB₁ cannabinoid receptor (p = 0.20) or CRIP1a (p = 0.63) in labored compared to non-labored uterine
tissues (Figure 3). Subgroup analyses including only term subjects and term subjects in spontaneous labor also showed no significant difference in mRNA expression of CB₁ cannabinoid receptor or CRIP1a.

Placenta

CB₁ cannabinoid receptor and CRIP1a were both identified in human placental samples. There was no significant difference in band density of the western blots when comparing the labor and non-labor groups (Figure 1). Band intensity of CB₁ cannabinoid receptor normalized to β-actin was $1.13 \pm 0.306 \ (n = 9)$ for all laboring patients and $0.89 \pm 0.035 \ (n = 11)$ for all non-laboring patients ($p = 0.40$). Relative band intensity of CRIP1a was $1.56 \pm 0.549 \ (n = 9)$ for all laboring patients and $0.55 \pm 0.083 \ (n = 11)$ for all non-laboring patients ($p = 0.06$). No significant difference in CB₁ cannabinoid receptor ($p = 0.36$) or CRIP1a ($p = 0.30$) mRNA expression was identified between the two groups (Figure 3).

DISCUSSION

Our data confirm that the components of the ECS are present in human uterine and placental tissues by using both western blot to confirm protein presence and qPCR to confirm mRNA presence. The most prominent finding was that CB₁ cannabinoid receptor levels are significantly diminished in uterine tissue exposed to labor. However, no significant difference was identified between labored and non-labored placental tissue. These findings add to the evidence that the ECS is involved in uterine and placental function.

Previous studies have demonstrated cannabinoid receptor presence in myometrial and placental tissues.19, 35–36 A study evaluating myometrial cells obtained CB₁ and CRIP1A in labor
from segments of term human myometrial tissue identified CB₁ and CB₂ cannabinoid receptors. In the same study, the effects of cannabinoids on uterine contractility were evaluated in vitro and a CB₁ cannabinoid receptor-mediated relaxant effect of endogenous and exogenous cannabinoids on myometrial contractility was demonstrated. Additionally, a mouse model has previously been used to evaluate the effect of CB₁ cannabinoid receptor inactivation on parturition. Mice lacking the CB₁ cannabinoid receptor were found to experience earlier onset of labor compared to wild type mice. In wild type mice in the same study, CB₁ cannabinoid receptor silencing in late gestation also resulted in labor. Our findings of reduced CB₁ cannabinoid receptor protein in laboring uterine tissue are concordant with these previously published findings.

Despite decades of research, preterm labor remains a significant cause of maternal-fetal morbidity and economic strain. Complications related to premature birth include neurodevelopmental disorders, retinopathy of prematurity, bronchopulmonary dysplasia and hearing impairment among others. Physiologic and pathologic mechanisms leading to the initiation of the final labor pathway have been implicated in the etiology of term and preterm birth, but a clear understanding of the pathophysiology has not been ascertained. The major challenge in the development of treatment and preventative therapies is the lack of a clear understanding of the processes responsible for shifting the myometrium from quiescence to an active contractile state. Identifying the ECS as a system that contributes to events preceding the labor cascade may open the door to therapeutic...
modalities not previously studied and would help to better understand the physiology of labor.

Current treatment of preterm labor targets stimulation of fetal maturity with corticosteroids, magnesium sulfate for fetal neuroprotection and the consideration of tocolytic medications targeting uterine contractility. Various classes of medications to decrease uterine contractions have been studied including calcium channel blockers, selective beta 2-adrenergic agonists, prostaglandin-synthase or cyclooxygenase (COX) inhibitors and oxytocin receptor antagonists. Despite their frequent use, no tocolytic therapy has been shown to independently improve neonatal outcomes. First-line tocolytic medications currently recommended include nifedipine (calcium channel blocker) and indomethacin (non-selective COX inhibitor). Their short-term use is indicated to allow for the administration of corticosteroids, magnesium sulfate for fetal neuroprotection and for transfer to a tertiary care center with neonatology capabilities. Indomethacin has been studied as a tocolytic therapy since the 1970’s after it was noted to inhibit prostaglandin activity. Interestingly, a recent study has identified indomethacin as being a positive allosteric modulator of the CB₁ cannabinoid receptor. Modulation of CB₁ cannabinoid receptor signaling pathways has been a target of investigation with significant overlap of the prostaglandin and endocannabinoid pathways noted. Our data demonstrating lower levels of CB₁ cannabinoid receptor in labored uterine tissue suggest that downregulation of the ECS during labor could be important for the mechanisms allowing labor to proceed. Allosteric modulators of the CB₁ cannabinoid receptor are being investigated as possible therapy for various pathologic disorders in non-reproductive organ systems.
ECS-related pathways may elucidate targets for clinical research pertaining to parturition.

Our findings have significant research implications; specifically, they warrant further investigation of the ECS as a system intimately involved in the labor process. One must contemplate if this system contributes to the maintenance of uterine quiescence. While we have determined there is a significant decrease in CB\textsubscript{1} cannabinoid receptor in laboring uterine tissue, there are other components of the ECS still to be studied in this population. The endogenous lipid ligands anandamide and 2-AG bind to the CB\textsubscript{1} and CB\textsubscript{2} cannabinoid receptors.14 Plasma anandamide levels have been correlated with risk of spontaneous pregnancy loss in the first trimester.30-32 Both anandamide and 2-AG have been identified as being of critical importance in early pregnancy events.22-32 Furthermore, plasma levels of anandamide have been shown to increase at term and dramatically increase in labor.49 Recent research has included the endocannabinoids, their precursors and their pathways of degradation as targets for prediction of preterm labor.50 Anandamide is primarily made from N-arachidonyl phosphatidylethanolamine (NAPE) by NAPE-hydrolyzing phospholipase D although other pathways can also contribute to its synthesis.9,10 It is degraded by the enzyme fatty acid amide hydrolase (FAAH). The activity of FAAH has been shown to be an important factor in early pregnancy success.32,35 It has been shown that low levels of anandamide correlate with high levels of FAAH at uterine implantation sites suggesting this is an important factor for successful pregnancy implantation.22 FAAH protein expression as it relates to CB\textsubscript{1} cannabinoid receptor expression has been described using immunohistochemistry in term membranes and placentas.36 Furthermore, mice
without FAAH and thus with increased anandamide have been shown to be more susceptible to inflammation-induced preterm labor regardless of progesterone levels.21

In our study, while the protein levels of CB\textsubscript{1} cannabinoid receptor differed in the uterine tissue exposed to labor compared to that not exposed to labor, mRNA expression did not vary by qPCR. Investigation of the mechanisms explaining the variation in CB\textsubscript{1} cannabinoid receptor and CRIP1\textsubscript{a} protein abundance without a change in mRNA expression is warranted. Mechanisms of interest include receptor desensitization and protein degradation.

To our knowledge, the current study is the first to quantify the CB\textsubscript{1} cannabinoid receptor and CRIP1\textsubscript{a} in laboring uterine and placental tissues. It included a fairly homogenous population of women without significant co-morbidities, and all samples were collected consistently by a single surgeon. A limitation of this study is that the laboring group did include a small number of patients being induced or augmented with oxytocin. However, the vast majority were spontaneously laboring patients. Also, the underlying factors necessitating cesarean section as the mode of delivery could have impacted our results.

Conclusions

There exists significant overlap between prostaglandins, cytokines, steroid hormones and the ECS. A growing body of evidence indicates that appropriate interaction between these pathways is important for successful reproduction and normal labor. Our data underscore the need for additional research investigating this complex system as it pertains to labor.

Acknowledgements
The authors wish to acknowledge Christina Tulbert and Dr. Jorge Figueroa for their assistance in acquisition of equipment for the study.

Author Disclosure Statement: The authors report no conflict of interest. No competing financial interests exist.

Financial Support: This work was supported by National Institute on Drug Abuse (NIDA) grant R01-DA042157 and the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through grant UL1-TR001420. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

39. American College of Obstetricians and Gynecologists’ Committee on Practice

41. Navahe R, Berghella V. Tocolysis for acute preterm labor: where have we been, where are we now and where are we going? Amer J Perinatol 2016;33:229-35.

Figure 1: Western blot band intensities of CB₁ cannabinoid receptor and CRIP in laboring and non-laboring uterus and placenta. A, Uterus - Relative band intensity of CB₁ receptor \((p = 0.01) \) and CRIP1a \((p = 0.06) \) for all subjects in the laboring \((n = 9) \) and non-laboring \((n = 11) \) groups. B, Uterus - Relative band intensity of CB₁ receptor \((p = 0.02) \) and CRIP1a \((p = 0.03) \) for term laboring \((n = 6) \) and non-laboring \((n = 9) \) subjects. C, Uterus - Relative band intensity of CB₁ receptor \((p = 0.11) \) and CRIP1a \((p = 0.11) \) for term spontaneously laboring \((n = 4) \) and non-laboring \((n = 9) \) subjects. D, Placenta - Relative band intensity of CB₁ receptor \((p = 0.87) \) and CRIP1a \((p = 0.05) \) for all subjects in the laboring \((n = 9) \) and non-laboring \((n = 11) \) groups. E, Placenta - Relative band intensity of CB₁ receptor \((p = 0.14) \) and CRIP1a \((p = 0.22) \) for term laboring \((n = 6) \) and non-laboring \((n = 9) \) subjects. F, Placenta - Relative band intensity of CB₁ receptor \((p < 0.01) \) and CRIP1a \((p = 0.71) \) for term spontaneously laboring \((n = 4) \) and non-laboring \((n = 9) \) subjects. Data are presented as means ±SEM, and statistical comparisons were made using a Mann-Whitney test, with significant difference (*) considered to be \(p<0.05 \).

Figure 2: Western Blot Images. CB₁ and CRIP1a immunoblots were visualized using the LI-COR Odyssey system. Bands were normalized to β-actin loading control.

Figure 3: mRNA expression of CB₁ cannabinoid receptor and CRIP1a using qPCR did not differ in uterine or placental tissues exposed to labor. A, Uterine – mRNA expression of CB₁ receptor \((p = 0.37) \) and CRIP1a \((p = 0.08) \) for all subjects in the laboring \((n = 9) \) and non-laboring \((n = 11) \) groups. B, Uterine – mRNA expression of CB₁ receptor \((p = 0.61) \) and CRIP1a \((p = 0.22) \) for term laboring \((n = 6) \) and non-laboring \((n = 9) \) subjects. C, Uterine – mRNA expression of CB₁ receptor \((p = 0.94) \) and CRIP1a \((p = 0.08) \) for term spontaneously laboring \((n = 4) \) and non-laboring \((n = 9) \)
subjects. **D, Placenta** – mRNA expression of CB₁ receptor \((p = 0.88)\) and CRIP1a \((p = 0.66)\) for all subjects in the laboring (n = 9) and non-laboring (n = 11) groups. **E,**

Placenta – mRNA expression of CB₁ receptor \((p = 0.78)\) and CRIP1a \((p = 0.86)\) for term laboring (n = 6) and non-laboring (n = 9) subjects. **F, Placenta** – mRNA expression of CB₁ receptor \((p = 0.83)\) and CRIP1a \((p = 0.26)\) for term spontaneously laboring (n = 4) and non-laboring (n = 9) subjects. The comparative threshold cycle method was used to calculate relative gene expression. Gene expression was normalized to a pooled reference sample. Data are presented as fold difference mean ±SEM, and statistical comparisons were made using a Mann-Whitney test, with significant difference (*) considered to be \(p<0.05\).