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Bayesian methodology 

The Bayesian estimation model in this paper simulates the probability distribution of 

a set of parameters θ based on observed data y using Bayes formula p(θ|y) = p(θ) p(y|θ) / p(y). 

In this equation, p(θ|y), the probability distribution of the parameters given the observed data, 

is called the posterior distribution, which is the function the model simulates. p(θ) is the 

prior distribution, containing prior information about the parameters, such as earlier data on 

mortality. p(y|θ) is the likelihood function, which encodes how likely it is to observe certain 

outcomes given parameter estimates, such as the negative binomial distribution that we 

assume for observing a certain number of reported deaths given a level of infection rates. 

Finally, p(y) is constant in θ and commonly disregarded in Bayesian analysis as it does not 

contain any further information about the inference of the parameters of interest. Further 

details on Bayesian estimation can be found in standard textbooks such as [1].  

The detailed specification of the Bayesian model is described below. The distribution 

of the posterior is p(θ|y) estimated using a so-called Markov Chain Monte Carlo (MCMC) 

simulation. Essentially, this technique calculates the likelihood of many different parameters 

θ to simulate a set of draws taken from the posterior distribution. The MCMC simulation is 

implemented through the R-version of Stan, a state-of-the-art programming language to 

estimate complex Bayesian models, which uses  [2].  

We estimate a total of 1000 posterior samples for each variable in θ. These are drawn 

from four independent MCMC chains, consisting of 1000 simulations each, of which the first 

500 are discarded as warm-up, and the sampled chains are thinned by 2 to conserve space.  

The purpose is for the model to find the variable combinations with highest likelihood. This 

leads to four groups of 250 independent draws from the posterior distributions. Sampling 

takes several hours on a high-end dedicated computer. 

Table S1 shows posterior inference for several key parameters of interest. The 

effective sample size neff and the Rhat statistics support assessments of the proper convergence 

of the MCMC estimates. According to Gelman et al. [2: p.287], the effective sampling size 

should be at least 10 times the number of chains (40 in this case), and the Rhat statistic close 

to 1, preferably below 1.1. These conditions are met for all the variables in Table S1. The role 

of each of these parameters in the model will be discussed further below. 

Table S2 shows the variance inflation factors the policy fixed effects δipt by policy p. 

The highest value is 5.19, which is well below the typically recommended maximum of 10. 

This ensures that posterior intervals are not overly inflated due to multi-collinearity of the 

policy implementations. 

 

Further details to the model 

Analogous to the negative binomial distribution for reported cases (Equation (2) in 

the main text), we assume similar distributions for reported COVID deaths as well as total 

deaths: 
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In these equations, αipt
(death) represents the fraction of total COVID deaths that is reported in 

jurisdiction i with testing policy (H2) p in week t; m the mortality of a COVID infection; 

ws
(death) the fraction of cases that is reported with a lag of s weeks; ϕ the overdispersion 

parameters as compared to a Poisson distribution; Eit the number of expected deaths by 

jurisdiction-week, and Ai a time-constant adjustment factor by jurisdiction.  All these 

parameters are estimated by the model, except for the expected deaths Eit, which is included 

from The Economist excess mortality database.  The expected deaths are estimated based on 

weekly observed deaths in prior years and population developments.  Full methodological 

details are available from the GitHub repository provided by The Economist (see weblink 

provided in the main text under Data and materials availability).  For the mortality m we 

assume a log-normal prior with parameters based on prior literature. We use μ = exp(0.01) 

and σ = 0.5, implying a 95% interval for mortality between 0.3% and 2.7%, in line with 

estimates by Wilson et al. [5, main text]. 

 For all other parameters we use uninformative priors.  This ensures that the posterior 

distributions are due to the observed data.  Unless specified otherwise, we use uniform or flat 

priors for each variable on its potentially admissible range.  For instance, for Δgp we use a 

U(0,2) distribution (it is constrained to be non-negative, and growth rates of 2 per week are 

well out of range; see Figure 2 of the main text).  For parameters with no clear upper and/or 

lower bound we use an improper flat prior, for instance for the dispersion parameters ϕ, 

which are only constrained to be positive.  

 The lines in Figure S1 exhibit the model inference and 95% intervals for the inferred 

infection rates Xit as well as the model fit for reported COVID cases, reported COVID deaths, 

and total deaths (μit
(case/death/deathTot)). The dots represent the actually observed numbers 

(Yit
(case/death/deathTot)) that the model is fitted to. 

There are 13 observations that have a posterior probability above 0.5 of being an 

outlier (all of these probabilities are in fact above 0.8 and most are very close to 1). Seven of 

them are zeros or negative numbers (due to ex post reporting adjustments). Six of them are 

otherwise extreme values; these are noted with an X instead of dot in Figure S1: two reported 

case rates and one reported death rate in the early days of the pandemic in Italy; two reported 

death rates in Spain around a time when this country had significant reporting delays and 

adjustments; and one reported death rate in the US state of Washington, early on in the 

pandemic. 

 Finally, we assume an AR(2) model for the progression of the idiosyncratic term in 

the growth rate Δgit
(id): 
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The AR(2) persistence parameters θk are included in the model based on earlier estimates of 

the eigenvalues λk (θ1 = λ1 + λ2 and θ2 = -λ1 λ2).  We assume λ1,2 = 0.9 in the main 

specification of the model and eigenvalues of 0.8 and 0.85 as a sensitivity check.  These 

values are based on the range of estimated values in an earlier version of the model (for 



reasons of estimation speed and stability we take these values fixed in our reported 

estimations, ensuring that the choice of λ1,2 does not materially affect our results in the 

sensitivity analysis reported below).  The variable εit follows a standard normal distribution.  

The standard deviation σ is difficult to identify in the model, so it is provided as an 

assumption, representing the speed with which idiosyncratic changes in the growth rate tend 

to play out.  Lower numbers make the model more sensitive to changes in policies.  We 

assume σ = 0.02 / week, confirming in the robustness checks (Figure S2) that key outcomes 

do not significantly change by taking lower or higher values. 

 

Robustness checks 

We perform several tests to check the robustness of the model. First, we calculate the 

autocorrelation of the residuals εit of the AR(2) model for the growth rate. The lag 1 

autocorrelation is around 0.1 (corresponding to an R2 of around 0.01). The higher lags are 

even smaller in magnitude. 

Second, we perform sensitivity checks on key inputs to the model: the population cut-

off points for inclusion of jurisdictions; the probability of outliers poutlier; the standard 

deviation σ of the AR(2) process in Equation (S3); the exclusion of jurisdictions outside 

Europe and the US (in casu Brazil, Chile, Mexico, and South Africa); the value of the AR(2) 

eigenvalues λ1,2; and allowing small negative values of Δgp (with a minimum of -0.05).  For 

each of these changes versus the base specification, we assess the resulting impact on the 

policy effectiveness estimates Δgp as reported in Figure 2.  Figure S2 displays the results.  

Results in red denote cases for which the base estimate is outside of the 95% posterior 

interval of changed specification. This situation occurs in three instances.  One instance is the 

effect of level 2 information campaigns in jurisdictions with more than 10 million residents; 

apparently these campaigns might be more effective in smaller jurisdictions. The other two 

instances are the level 2 and level 3 testing policies (H2) when allowing negative effects Δgp.  

These results suggest that these policies could be associated with a negative impact on the 

growth of COVID cases.  Given that many of these testing policies were implemented when 

lockdowns were lifted, it appears likely that this negative association is due to other policy 

changes that were not fully captured in the OxCGRT policy database.  This potential for 

omitted variables to affect our results is a fundamental limitation of observational studies, as 

discussed in the main text.  Because it is plausible that the effect of increased testing is at 

least non-negative, we maintain that assumption in the prior for Δgp in our base specification. 

Third, we compare actually reported COVID case numbers with out of sample 

predictions from the model. In order to do so, we perform an additional model run excluding 

the final 6 weeks of epidemiology data. Then we compare reported data of Yit
(case) and Yit

(death) 

for these 6 weeks with the posterior 95% intervals for this variable based on the model 

predictions excluding these data as inputs.  We calculate the percentage of jurisdictions for 

which the actual numbers were within the 95% interval.  Figure S3 shows the results.  The 

actual data are indeed within the range of the out-of-sample predictions in close to 95% of the 

cases in the first weeks, with slightly lower values in some later weeks.  Figure S4 shows the 

predicted posterior intervals for the held-out data as well as the actually reported numbers.  

The few instances in which the reported numbers are outside of the 95% posterior prediction 

range occur primarily around major policy changes.  The reported numbers can be either 

higher (e.g. in Austria) or lower (e.g. in Belgium) than the predictions.  These results are 

consistent with the fact that our estimates represent average effects across jurisdictions. 
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Supporting Information: Tables & Figures 

 

Table S1. Posterior median and 95%-interval estimates for key variables of interest, as well 

as Bayesian estimate statistics neff and Rhat. 

  

Median  95% interval  neff  Rhat  

w1
(case) 0.974 0.875 0.999 771 1.00 

w2
(case) 0.026 0.001 0.125 771 1.00 

w1
(death) 0.096 0.071 0.122 715 1.00 

w2
(death)  0.438 0.376 0.508 430 1.01 

w3
(death)  0.318 0.236 0.395 729 1.00 

w4
(death)  0.149 0.086 0.204 665 1.00 

φ(case) 6.996 6.137 7.994 707 1.00 

φ(death) 7.447 6.285 8.866 712 1.00 

φ(deathTot)  345.9 307.8 390.7 594 1.00 

 

  



Table S2. Variance inflation factors for the policy fixed effects δipt by policy p. 

 

C1 - School closing - 2 3.05 

C1 - School closing - 3 1.91 

C2 - Workplace closing - 2 2.00 

C2 - Workplace closing - 3 1.91 

C3 - Cancel public events - 2 1.84 

C4 - Restrictions on gatherings - 2 5.19 

C4 - Restrictions on gatherings - 3 4.89 

C4 - Restrictions on gatherings - 4 1.57 

C5 - Close public transport - 1 1.53 

C6 - Stay at home requirements - 1 2.78 

C6 - Stay at home requirements - 2 2.06 

C7 - Restrictions on internal movement - 1 3.15 

C7 - Restrictions on internal movement - 2 1.55 

C8 - International travel controls - 2 2.58 

C8 - International travel controls - 3 2.79 

C8 - International travel controls - 4 1.19 

H1 - Public information campaigns - 1 2.16 

H1 - Public information campaigns - 2 3.80 

H2 - Testing policy - 1 1.79 

H2 - Testing policy - 2 2.51 

H2 - Testing policy - 3 1.57 

H3 - Contact tracing - 1 2.01 

H3 - Contact tracing - 2 1.67 

C1 - School closing - 2 3.05 

C1 - School closing - 3 1.91 
  



Figures 

 
Figure S1.  Newly identified COVID cases, COVID deaths, total deaths, and infections per 

week (log scale). Dots = reported; X = outlier; Solid lines = model fit; Dashed lines = 95% 

intervals 

  



 

 
Figure S2.  Sensitivity of policy effect estimates (as reported in Figure 2 of the main text) to 

different model specifications.  Dots = median estimates; Lines = 95% intervals; Red = Base 

estimate outside of 95% posterior interval of changed specification. 

  



 
 

Figure S3. Percentage of weekly reported COVID cases and deaths within 95% interval of 

out-of-sample predictions from a model using input data up to 6 weeks prior to present. 

  



 
Figure S4. Out of sample estimates of newly identified COVID cases and deaths (log scale), 

with reported numbers. Dots = reported; Solid lines = model prediction; Dashed lines = 95% 

intervals 

 

 


