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Abstract 
Covid-19 mitigation commonly involves contact tracing (CT) and social distancing. Due to its 
high economic toll and its impact on personal freedom, we need to ease social distancing and 
deploy alternative measures, while preventing further waves of infections. While reliable mass 
testing (for virus RNA) would require too many resources to be effective, CT, which focuses 
on isolating symptomatic cases and their contacts, has been implemented in many countries. 
However, the latter approach has reduced efficiency when high numbers of positive patients 
are burdening the tracing centers. Moreover, CT misses transmissions by asymptomatic cases. 
Therefore, its effect in reducing the reproduction number has a theoretical limit.  
To improve effectiveness of contact tracing, we propose to complement it with a strategy 
relying on identifying and testing symptom free subgroups with a significantly higher than 
average virus prevalence. We call this smart testing (ST). By testing everybody in these 
subgroups, in addition to symptomatic cases, also large fractions of pre- and asymptomatic 
persons can be identified, which enhances the effectiveness of contact tracing. High prevalence 
subgroups can be found in different ways, which are discussed in this paper. A particularly 
efficient way is via preselection using cheap and fast virus antigen tests, as proposed recently.  
Mathematical modeling quantifies the potential reduction of the reproduction number by such 
a two-stage ST strategy. In addition to global scenarios, also more realistic local applications 
of two-stage ST have been investigated, that is, within counties, institutions, schools, 
companies, etc., where members have internal as well as external contacts. All involved model 
parameters have been varied within realistic ranges and results are presented with probabilities. 
Even with the most pessimistic parameter set, these results suggest that the effect of two-stage 
ST on the reproduction number would clearly outweigh its economic cost. Two-stage ST is 
technically and logistically feasible. Further, it is locally effective also when only applied 
within small local subpopulations. Thereby, two-stage ST efficiently complements the 
portfolio of mitigation strategies, which allow easing social distancing without compromising 
public health.  
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Introduction 
The Covid-19 pandemic has evaded containment measures, both initially and after the first 
wave. Current responses have therefore shifted towards mitigating the effects. However, 
proven vaccines and therapies are still months to years away and the current capacity for 
detecting the virus via its genomic RNA is limited [1]. Thus, mitigation in many countries 
relies on a broad portfolio that includes not only hygiene measures, but also physical distancing 
(termed social distancing, hereafter) to reduce transmission, diagnosing virus (SARS-CoV2) 
infections in infected people showing mild to severe symptoms and tracing of their recent 
contacts. In combination, these measures slow down pandemic spread and help to avoid 
overburdening healthcare systems by easing the demand for intensive care. However, this 
strategy has two major shortcomings. First, it leaves many infected people with mild or no 
symptoms undetected [2], and therefore renders them more likely to infect others. Second, as 
social distancing measures limit non-essential business, it imposes severe economic 
consequences. A broad social-distancing-based approach is therefore not sustainable, but 
mitigation measures need to stay in place until effective therapies or vaccines become available 
to avoid further waves of virus spread. As these options are still months to years away, we need 
to consider alternative mitigation strategies. 
Classical contact tracing and bluetooth-based smartphone apps can help to identify individuals 
that have recently had an infection-relevant contact (i.e., one that confers a risk of transmission) 
with known Covid-19 cases and might therefore have been infected. Self-quarantine of these 
contacts can help to mitigate the pandemic [3,4]. However, the effectiveness of contact tracing 
is limited by the participation, the efficiency in identifying infected people and relevant 
contacts, the delays in alerting contact persons and by important epidemiological 
characteristics, e.g. the fraction of asymptomatic cases and their infectiousness [3,4]. Infectious 
people who are not showing symptoms are limiting the efficiency of both, classical and app-
based contact tracing: for example, the study of the COVID-19 outbreak in the municipality of 
Vo’, Italy conducted by Lavezzo et al. [5], performed two virus tests two weeks apart, and 
observed that 43.2% of infected people were asymptomatic and that their viral loads were as 
high as those of symptomatic cases. Contact tracing of symptomatic cases by bluetooth apps 
or traditional methods would have missed these cases and failed to detect and quarantine their 
contacts. Infectiousness of asymptomatic cases has been estimated to be between 10% and 
100% of symptomatic ones [4-6] (based on differences in viral load), and the fraction of 
asymptomatic cases has been reported to be between 11.5% and 43.2% of all infected cases [6-
8]. Asymptomatic cases are therefore a particular problem, as contact tracing detects them 
insufficiently and thereby limits the efficiency of this approach in breaking transmission chains 
and reducing the likelihood and impact of super-spreader events. In fact, we have recently 
shown analytically that contact tracing alone is insufficient to reduce Reff to 1 even for the most 
optimistic assumptions [9]; contact tracing can therefore be a valuable mitigation tool for 
mitigation, but it needs to be complemented by other mitigation measures. We argue here, that 
this can be done efficiently, by focusing such efforts on detecting asymptomatic and 
presymptomatic infected people. 
 
Recently, we have analyzed how mass testing random samples of the population and quarantine 
of positive cases could work to mitigate the pandemic. Importantly, by testing for virus RNA, 
a marker for active infections, also asymptomatic but infectious people can be detected. We 
estimated how many tests would be needed per day do mitigate the pandemic, i.e. to reduce the 
basic reproduction number R0 of the pandemic from 2.4-3 [10,11] to an effective reproduction 
number of Reff =1. Unfortunately, however, the model shows that applying this approach non-
selectively to the whole population at a reasonable frequency would require too many 
resources.  
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In this paper, we analyze an option to target the available numbers of virus RNA tests to high-
prevalence subpopulations, a strategy we term smart testing (ST). These high-prevalence 
subpopulations are identified by prescreening with quick and cheap virus antigen tests, which 
detect structural components of the virus particles (not its RNA); This two-stage testing 
approach has recently been proposed [12], but has not yet been quantitatively analyzed. Our 
quantitative analyses indicate that such a two-stage ST strategy greatly reduces the required 
number of virus RNA tests and increases the mitigation power of testing in a tunable fashion. 

Model 
To estimate how different mitigation strategies affect Reff, we use a mathematical model that 
employs a set of ordinary differential equations to describe the dynamics of the infections in a 
susceptible population. The model is an extension of the one used in [9]. The graph of the 
model is shown in Fig. S1, and it is described in detail in the SI, section 1. The model differs 
from standard epidemiological models in that individual compartments represent 
subpopulations before, during and after infection with respect to the detection of their current 
(or previous) infection. The gray field on the right represents those infected people that are 
already efficiently detected by current mitigation approaches. The insert on the top right shows 
a parallel graph of infected individuals which could be detected in addition, if virus testing is 
applied to subpopulations with no symptoms (or only mild symptoms). To obtain realistic 
simulation results, we parametrized our model using published data [6,13-18] (see SI section 
2). Infection of susceptible people will lead to a latency phase. The exposed will later become 
transmissive, and either remain asymptomatic and recover or become pre-symptomatic and 
later develop mild symptoms. These two transmissive groups do not know that they are 
infected, and thus remain unidentified in current mitigation approaches. Some people with mild 
symptoms of disease will self-isolate. Due to self-isolation, they will have a reduced probability 
to infect others (we assume a 90% reduction). Infected people with severe symptoms are 
hospitalized, immediately isolated under strict quarantine and do not infect others. The same 
applies for anyone else who is tested virus-positive; which is indicated by the dashed arrows 
in Fig. S1. As our model consists of a set of ordinary differential equations, which become 
linear in the early stages of the pandemic (when nearly the whole population still is 
susceptible), we can now analytically test how particular mitigation strategies affect Reff. We 
would like to point out that the aim of this study is not to predict the course of the pandemic 
and associated uncertainties for certain countries or regions, but rather to serve as realistic 
proxy for possible scenarios, for which the effects of different mitigation strategies (and their 
combinations) can be investigated and demonstrated.  

Results and Discussion 
Testing-based mitigation strategies to replace social distancing 
In order to compare different mitigation strategies to a baseline, we first re-capitulate what the 
model predicts, if we omit any mitigation, that is, for the worst-case scenario without any 
measures. We assume a value for R0 (the basic reproduction number in the unmitigated case) 
that is in the mid-range of published estimates, i.e., that one infected person infects 2.4 others 
in average (see Fig. 1A). Under these circumstances, 87% will either recover or die from the 
disease within ≈250 days, which compares well to the 81% predicted by Ferguson et al. [6] for 
UK and US populations in the absence of mitigation plans. If alternative (but plausible) values 
are assumed for R0, these numbers are going to change only by a factor 2 or less for the 
unmitigated case (data not shown). Thus, our basic predictions are robust, even if input 
parameters for the virus infection dynamics might be subject to change when more precise 
parameters became available. Importantly, we show that there always is a considerable 
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population of infectious but undetected people (Fig. 1A, dashed blue curve), for who targeted 
mitigation measures such as contact tracing or self-quarantine will be ineffective, and who are 
thus more likely to transmit the disease. 
As the reproduction number scales linearly with the infection rate, reducing the infection rate 
by 71% via a generalized mitigation strategy such as social distancing leads to a decrease of 
the reproduction number by a factor of 3.4 (Reff = 0.7). Figure 1B shows the course of the 
epidemic, if social distancing is imposed at this intensity for a period of 150 days (day 50-200 
of the pandemic), whereas it is assumed that the basic reproduction number without any 
mitigation is R0=2.4. As expected, the number of infections decreases during the social 
distancing phase, but a new wave of infections starts as soon as mitigation is abandoned. These 
results are in line with current observations [3,4].  
We have recently shown that testing random samples of the population with concomitant 
isolation of detected cases has a qualitatively identical effect as social distancing ([9] SMW 
manuscript, and SI section 3.1). For realistic assumptions of test processing times and quality 
of testing results, we found that 37'300 virus RNA tests per 100'000 people per day are required 
to reduce the reproduction number by a factor of 3.4, i.e., to achieve a similar effect on the 
epidemiological dynamic as reducing the infection rate by 71% via social distancing (compare 
Figs. 1B and 1C; Fig. S2 shows more generally how many tests are needed to achieve a given 
reduction factor in Reff, depending on test speed and quality). Deploying this number of tests 
every day is currently impossible for a variety of reasons, including availability of reagents, 
testing infrastructure, and compliance of the population. However, these results show that 
testing alone can mitigate the pandemic and that we can get a quantitative estimate for the 
number of tests needed in order to curb pandemic spread by testing alone.  
 
Mitigation via smart testing 
Importantly, the number of tests needed to achieve the same result can be dramatically reduced, 
if the tests are not distributed randomly, but only subpopulations with higher infection 
prevalence are tested, and people who test positive are quarantined ([9], and SI section 3.2). 
We call such a strategy Smart Testing (ST).  
For such a strategy to be successful in achieving Reff=1, the ratio of the subpopulation 
prevalence to the overall prevalence needs to be sufficiently high. In fact, the factor by which 
the number of required virus RNA tests can be reduced is equal to the ratio of prevalence in 
the test subpopulation to the overall prevalence [9]. Figure 2 shows the number of required 
virus RNA tests per 100'000 people per day to achieve a specified reproduction number 
reduction factor for different prevalence ratios. For example, if the tested subpopulation has a 
32 times higher prevalence than the overall population (a prevalence ratio of 32, then only 246 
virus RNA tests per 100'000 people per day would be required to reduce the reproduction 
number by a factor of two (a 5% false negative rate and one day delay is assumed here for virus 
RNA tests). ST can be a realistic mitigation strategy, as the number of tests needed to achieve 
a sufficient reduction in Reff is already available in several countries. The remaining key 
question, of course, is how to detect a subpopulation with a significantly increased prevalence.  
In general, such subpopulations can be identified based on correlations between infection 
probability and observable quantities. As these observables are often highly sensitive personal 
information, the type and amount of data needed to achieve the goal of identifying the high-
prevalence subpopulation is crucial for it to be accepted by the citizens. 
 
Identifying high-prevalence subpopulations 
One possible strategy that could, in theory, be implemented in a privacy preserving way, relies 
on the fact that some individuals will have many more infection-relevant contacts than most 
others [19], and these high contact people are known to be highly important for epidemiological 
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dynamics ([20], referred to as super-spreaders). Along these lines it was suggested to extend 
smartphone apps used for contact tracing by adding contact counting functionality for 
identifying high prevalence subpopulations. Mathematical modeling shows that smart testing 
with contact counting (STeCC) could work in realistic epidemiological scenarios [21], but the 
efficiency of such an approach is limited by the number of people using the app and by data 
privacy concerns. 
Therefore, we investigate another way to identify high prevalence subpopulations. This 
approach is based on a preselection by virus antigen tests. Due to their relatively high false 
negative and false positive rates, these tests are controversial as stand-alone tests. However, if 
used as a pre-screening tool to identify high-prevalence subpopulations for subsequent virus 
RNA testing, they could be extremely useful despite their low specificity. In a strategy we call 
two-stage smart testing, random groups of people (i.e. those without disease symptoms or only 
mild symptoms at best) would be tested using the relatively cheap and easy to use virus antigen 
tests, and only people who are tested positive in this first stage would then be tested using a 
virus RNA test. 
Depending on the false positive and false negative rates of the antigen test (fp and fn, 
respectively), we can calculate the fraction of the population which gets preselected in the first 
round of tests as rs=p(1-fn)+(1-p)fp, where p is the prevalence in the undetected overall 
population. The factor by which the prevalence increases in the preselected subpopulation (the 
prevalence ratio) is then rp=(1-fn)/rs. For example, with the realistic values of fn=30% and 
fp=1%, and with p=0.3%, one obtains rs=0.012 and rp=58. Both values increase for lower false 
negative and false positive rates. Further, the prevalence ratio decreases for a higher p, which 
underlines the value of starting with this mitigation measure early in the pandemic. In the 
example considered here, merely 136 virus RNA tests per 100'000 people per day (a processing 
time of one day and a false negative rate of 5% for the virus RNA tests are assumed) would be 
required to reduce the reproduction number by a factor of two. Applying these 136 virus RNA 
tests to people from the preselected subpopulation has the same effect as virus RNA-testing 
7'870 random persons without pre-selection. This dramatically smaller number of required 
virus RNA tests (rp=58 times fewer compared to blind mass testing) makes two-stage smart 
testing a promising mitigation strategy, if a high enough rp can be achieved. 
Should there be an antigen test with lower false positive and false negative rates, it could in 
theory be used as a stand-alone test for mass testing. However, developing tests that can detect 
low virus titers without an amplification step is expected to be challenging. If low-specificity 
antigen tests are used as a stand-alone solution to decide whether people should quarantine, 
this would lead to a large population of healthy people being forced to self-isolate (Fig. S6), 
potentially depressing overall compliance with mitigation measures. Therefore, tests with 
significant false-positive rates will in most cases have to be applied in two-stage testing 
schemes, as analyzed herein.  
 
Requirements for successful two-stage smart testing 
The next obvious question is, how many virus antigen tests are required per day to achieve 
this?  
We can estimate the most economical number of antigen tests by setting the condition that the 
thereby detected high-prevalence subpopulation has to be of exactly the right size to achieve 
the desired reduction in Reff: first, if rag is the fraction of the total population we need to pre-
select for testing by antigen tests, and a fraction rs of these will be tested positive and makes 
up the high prevalence subpopulation to be tested using RNA tests, the fraction of the total 
population that makes up the high prevalence subpopulation is ragrs. Second, if rmt is the fraction 
of the population that would need to be RNA tested in a random mass testing strategy to achieve 
the desired reduction in Reff (based on our modeling results), and rp is the factor by which 
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prevalence increases in the high prevalence subpopulation (see above), the fraction of the 
population that needs to be tested in a two-stage smart testing strategy to achieve the same 
reduction in Reff is rmt/rp. Third, we set the condition that the population fractions ragrs (the high 
prevalence subpopulation detected using antigen tests) and rmt/rp (the population fraction that 
needed to achieve the desired reduction in Reff) need to be equal, and resolve for rag. This leads 
to the simple expression rag=rmt/(rp rs)=rmt/(1-fn).  
In summary, this elegant result implies that the fraction of the overall population to be tested 
with virus antigen tests every day is rmt/(1-fn) and the fraction of the overall population to which 
virus RNA tests have to be applied is rmt/rp=rmt rs/(1-fn)=rmt(p+(1-p)fp/(1-fn)).  
To give a concrete and realistic example, with an overall prevalence of 0.3%, this means that 
11'240 antigen tests and 136 virus RNA tests are required per 100'000 people per day to reduce 
the reproduction number by a factor of two. If the overall prevalence is 0.1% (or 0.9%), then 
120 (or 182) virus RNA tests per 100'000 people per day suffice to have the same effect on the 
reproduction number. The number of required antigen tests, on the other hand, is not affected 
by the overall prevalence. Assuming respective costs of 57.5CHF and 114.5CHF (current 
values for Switzerland [22], including all involved personnel charges) for each antigen and 
RNA test, one calculates that merely 6.6CHF have to be spent in average per person per day. 
This cost is extremely low considering the enormous gain in mitigation and the economic costs 
of alternative mitigation strategies. Figures 3A and 3D show the numbers of required virus 
antigen and RNA tests per 100'000 people per day as functions of the reproduction number 
reduction factor and the overall prevalence p. Note that the number of required antigen tests is 
independent of the overall prevalence (Fig. 3A), while more virus RNA tests are required as p 
increases (Fig. 3D).  
 
Two-stage smart testing deployment strategies 
We now have an estimate for the number of antigen and RNA tests needed to achieve a fast 
and strong reduction in Reff. But once the total number of cases in the population has declined 
sufficiently, testing can either be reduced or discontinued for a period of time before a new 
round of tests is initiated. In the following, we study the epidemiological consequences of 
different deployment strategies of two-stage ST. 
 
Figures 4A-C show the overall prevalence and prevalence in the undetected population 
(dashed and solid lines, respectively), and Figs. 4D-F and Figs. 4G-I the number of deployed 
virus antigen and RNA tests per 100'000 people per day, respectively, as functions of time. The 
unmitigated reproduction number is 1.6 and each scenario starts on day 250, when the overall 
prevalence just exceeded 1%. The first scenario (first column) follows a two-stage ST strategy, 
in which for a first period of 50 days 18% of population is virus antigen tested every day. Once 
the prevalence is reduced by almost one order of magnitude, two-stage ST is continued at a 
lower intensity, that is, with 7% of the population being antigen tested every day. The second 
scenario (second column) is identical to the first one, except that the first phase lasts for 100 
days, which leads to a reduction of the prevalence by almost two orders of magnitude. In the 
third scenario (third column), two-stage ST (with 18% of the population being antigen tested 
every day) is applied in cycles; each with 110 days of two-stage ST followed by a pause of 90 
days. Monitoring could be done, for example, by using the relation p=(rs-fp)/(1-fn-fp), where rs 
is the fraction of positive cases when virus antigen testing (with false negative and false positive 
rates of fn and fp, respectively) is applied to a representative subpopulation. 
 
Using the simple analysis above, it is straight forward to plan an effective two-stage ST 
campaign, and it is possible to predict its effect on Reff. The required numbers of antigen and 
virus RNA tests can directly be computed from known quantities (the overall prevalence is not 
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known, but can be estimated based on positive antigen tests). To compensate for statistical 
noise and modeling uncertainties, we would advise, however, to choose slightly higher test 
numbers than the calculated ones. Naturally, the mitigation effect of two-stage ST can further 
be enhanced, if combined with other measures, such as contact tracing, mask wearing, or mild 
forms of social distancing.  
 
So far, our analysis has focused on a closed population. Realistically, however, a two-stage ST 
strategy will always be employed on a subpopulation (e.g. in a country, state, city, school, or 
company), which is in constant exchange with other populations. Next, we therefore investigate 
scenarios in which two-stage ST is applied within subpopulations only, while no such measures 
are taken in the remaining population.  
 
Mitigation via two-stage smart testing within subpopulations 
Generally, in a focal subpopulation in which a fraction rec of all infection relevant contacts 
happens with people external to that subpopulation, the virus reproduction number scales with 
the factor fec=(1+rec(rep-1)), where rep is the ratio of external to internal prevalence. For 
example, if 25% of the infection relevant contacts are with an external population (rec=0.25), 
which has a two times higher prevalence (rep=2), then the reproduction number in the 
subpopulation is fec=1.25 times higher than it would be with only internal contacts. This finding 
is very convenient to quantify the effects of two-stage ST, if restricted to a subpopulation. To 
obtain the numbers of required tests (and the resulting costs), one can simply use the results of 
two-stage ST in isolated populations (first column in Fig. 3) with the modified reproduction 
number (actual reproduction number without external contacts increased by the factor fec). 
Figs. 3B-C and Figs. 3E-F show, for a two times higher external prevalence, the respective 
numbers of required virus antigen and RNA tests per 100'000 people per day as functions of 
the reproduction number reduction factor and the overall prevalence p for rec=12.5% and 
rec=25%. Figure 3G depicts the number of required antigen and Fig. 3H the number of RNA 
tests per 100'000 people per day to reduce the reproduction number by a factor of two, as 
functions of fraction of external contacts and ratio of external to internal prevalence. These 
results suggest that two-stage ST is a viable strategy to mitigate the pandemic, even on a 
relatively small scale. 

Conclusion 
Two-stage ST adds to the portfolio of mitigation strategies for the Covid-19 pandemic, and 
complements approaches like classic contact tracing, hygiene measures, randomized testing of 
cohorts of interest, or other surveillance tools. It could be deployed quickly in countries with 
sufficient testing capacities like Switzerland (capacity ≈230 virus RNA tests per 100'000 per 
day). Importantly, we show that low specificity of the antigen tests is not inhibitory for the 
suggested strategy, opening up options that allow faster and cheaper deployment of such tests 
(e.g. testing by non-expert personnel, saliva instead of nose swabs). The earlier such a strategy 
is adopted, the less logistically and fiscally costly it will be. Once two-stage ST is implemented, 
one can adjust the strategy flexibly in order to ensure the desired performance. Two-stage ST 
offers a realistic approach to help relaxing broad social distancing policies in the near future 
without compromising health, while at the same time providing public health officials with 
much needed actionable information on the success of their interventions. This will be an 
important prerequisite for reclaiming our normal public life and initiating economic recovery. 
 
Materials and Methods: 
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The dynamic model was implemented with Maple 2018. The calculations for mass testing, 
contact tracing and smart testing were implemented with MATLAB and the Statistics 
Toolbox Release 2018b. The corresponding codes are available on GitHub via 
https://github.com/gorjih2/STeCC_preliminary. 
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Figure Captions:  
 
Figure 1. Social distancing and extensive mass testing alone have qualitatively equal 
mitigating effects. (A) Model outcome if no mitigation strategies are in place (R0=2.4). (B) 
Model outcome if extreme social distancing (71% lower infection rate, leading to Reff=0.7) is 
in place between days 50 and 200 of the outbreak. After day 200, social distancing is 
discontinued. (C) Model outcome if mass testing with isolation of detected cases is applied 
between days 50 and 200 of the outbreak (as shown in A). The shown effect is achieved if 
37’400 people per 100’000 are tested every day (5% false negative rate; test speed = 1 day). 
Testing is discontinued after day 200. Solid red lines represent recovered plus infected plus 
deceased, dashed-dotted green lines infected, and dashed blue lines undetected infected people. 
Lower panels show the same data as upper panels, but with a log10-scale for Y-axes. 
Figure 2. Numbers of required virus RNA tests per 100'000 people per day for ST to 
achieve a specified reproduction number reduction factor depending on the ratio of prevalence 
in the preselected test subpopulation and in the overall population.  A 5% false negative rate 
and one day delay is assumed for the virus RNA tests. 
Figure 3. Numbers of required tests per 100'000 people per day as function of reproduction 
number reduction factor and prevalence p in the undetected population. In the first row (A-C) 
the number of antigen tests and in the second row (D-F) the number of virus RNA tests are 
shown. No external contacts are assumed for the results shown in the first column, while 12.5% 
and 25% external contacts are assumed for the plots in the second and third columns, 
respectively, where the external population has a two times higher prevalence. As expected, 
more tests are required to achieve the same reproduction number reduction as the fraction of 
external infection-relevant contacts increases. Also note that the number of required virus RNA 
tests increases with a higher overall prevalence (D-F), while the number of antigen tests is 
independent of p (A-C). Also shown are the effects of fraction of external contacts and ratio of 
external to internal prevalence on the numbers of required antigen (G) and RNA tests (H) per 
100'000 people per day to reduce the reproduction number by a factor of two. A 5% false 
negative rate and one day delay is assumed for the virus RNA tests, and for the antigen tests 
false negative and false positive rates of 30% and 1% are assumed. 
 

 
Figure 4. Different two-stage ST mitigation strategies. Shown are overall prevalence and 
prevalence in the undetected population (A-C; dashed and solid lines, respectively), and 
number of virus antigen and RNA tests per 100'000 people per day (D-F and G-I, respectively). 
The unmitigated reproduction number is 1.6 (already reduced by moderate social distancing) 
and each scenario starts on day 250, when the prevalence just exceeded 1%. The first scenario 
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(first column) follows a two-stage ST strategy, in which for a first period of 50 days 18% of 
population is virus antigen tested every day. Once the prevalence is reduced by almost one 
order of magnitude, two-stage ST is continued at a lower intensity, that is, with 7% of the 
population being antigen tested every day. The second scenario (second column) is identical to 
the first one, except that the first phase lasts for 100 days, which leads to a reduction of the 
prevalence by almost two orders of magnitude. In the third scenario (third column), two-stage 
ST (with 18% of the population being antigen tested every day) is applied in cycles; each cycle 
starts with 110 days of two-stage ST followed by a 90 day pause. A 5% false negative rate and 
one day delay is assumed for the virus RNA tests, and for the antigen tests false negative and 
false positive rates of 30% and 1% are assumed.  
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