Supplemental Appendix

Effective post-exposure prophylaxis of Covid-19 is associated with use of hydroxychloroquine: Prospective re-analysis of a public dataset incorporating novel data.

David M. Wiseman, PhD, MRPharmS; Pierre Kory, MD, MPA; Samir A Saidi, PhD, MB ChB; Dan Mazzucco, PhD.

TABLE OF CONTENTS

Authorship Contributions	1
Abbreviations	
Supplemental Background	2
Supplemental Methods	2
Supplemental Results	3
Supplemental Results	

Table S 1: Demographic and clinical characteristics, stratified into Early and Late Cohorts	6
Table S 2: Clarification of Exposure Risk Definition	9
Table S 3: Distribution of days for drug receipt days within strata for study enrollment	10
Table S 4: Stratification of effect associated with hydroxychloroquine by gender based on time from exposure to	
drug receipt (ITT population)	11
Table S 5: Stratification of effect associated with hydroxychloroquine by exposure risk type based on time from	
exposure to drug receipt (ITT population)	12
Table S 6: Summary of subjects forming "Responding Population"	13
Table S 7: Effect of adherence to study drug on development of Covid-19 within Responding Population (RP)	14
Table S 8: Effect associated with folate placebo in Responding Population	15
Table S 9: Effect associated with folate placebo in Responding Population (fully and partially adherent study	
subjects), stratified by time and gender.	16
Table S 10: Effect of ex-protocol use of Zinc or Vitamin C on effect associated with hydroxychloroquine stratified	by
time from exposure to drug receipt	17
Table S 11: Effect of comorbidities on effect associated with HCQ	18

Authorship Contributions

DMW conceived of the study with additional input from PK and DM. Statistical analysis was performed by DMW and DM. DMW wrote the first draft of the manuscript and is overall study guarantor, with contributions from PK and DM. SAS provided critical comments and contributed to analysis. All authors reviewed, revised, and approved the manuscript.

Abbreviations

- 95%CI 95% Confidence Intervals
- aHR adjusted Hazard Ratio
- CDC Centers for Disease Control
- CQ Chloroquine (and it salts)
- EUA Emergency Use Authorization
- FDA United States Food and Drug Administration
- HCQ Hydroxychloroquine (and its salts)
- HCW Health Care Worker
- HR Hazard Ratio
- IRB Institutional Review Board
- ITT Intent to Treat
- LTF Lost to Follow Up
- NIH National Institutes of Health

- NNT Number Needed to Treat
- NO Nitric oxide
- OR Odds Ratio
- OSF Open Science Framework
- PCR Polymerase Chain Reaction
- PEP Post-Exposure Prophylaxis
- PET Post Exposure Treatment
- PPE Personal Protective Equipment
- PrEP Pre-exposure prophylaxis
- RCT Randomized Clinical Trial
- RP Responding Population
- RR Risk Ratio
- SOC Standard of Care

Supplemental Background

Folate, Zinc and Covid-19

Possibly confounding the study is the use of folate for the placebo. In silico, folate may interact with SARS-Cov-2.^{1,2} Blood folic acid levels were significantly lower in severe Covid-19 patients.³ There may be an association between folate and severity or prevention of disease with other viruses.⁴⁻⁷ Modulation of endothelial function may a fruitful approach in Covid-19 by improving pulmonary perfusion and reducing hypoxemia. High doses of folic acid (with Vitamin B6) improve NO mediated vasodilation in diabetic children⁸ at doses of a similar order of magnitude (5mg) as those used in the PEP study (2.8mg initially, then 1.2mg daily, confirmed by Boulware et al., personal communication). Folate has been proposed to be a protective factor for Covid-19 in pregnant women.⁹

Conversely, there may be a negative effect of folate in Covid-19. The folate receptor on macrophages is upregulated in inflammation.¹⁰ *In vitro* inhibition of viral replication by methotrexate^{11,12} is synergistic with remdesivir and rescued by folinic acid.¹¹ Folate deficiency inhibits the proliferation of CD8+ T cells in vitro.¹³ Methotrexate may be useful in Covid-19¹⁴ (with folinic acid rescue^{15,16}) possibly via effects on lymphocytes.¹⁷

Given the much-discussed effect of zinc as a treatment for viral infections in general and Covid-19 in particular,^{18,19} and the action of CQ as a zinc ionophore,²⁰ we considered that the ex-protocol use of zinc supplements may have confounded the data. A similar case can be made for the ex-protocol use of Vitamin C.²¹⁻²³

Supplemental Methods

Protocol History

Our protocol was registered on August 13, 2020 (v1.0, osf.io/fgd53/) and revised August 19, 2020 (v1.1, osf.io/9rpyt) before accessing the initial PEP dataset. We issued version v1.2 (September 27, 2020, osf.io/vz8a7/²⁴) prior to receiving additional data regarding the time to drug receipt in the 10/6 revision.

Clarifications to Dataset

In reviewing the PEP study dataset, we verified variable tallies with the published account. A revision (9/9) resolving most discrepancies was provided. We performed similar checks on the 9/9, 10/6, and 10/30 revisions. Several of the original analyses were replicated to verify data importation and processing. A record of our questions and clarifications received was appended to our protocol registration (osf.io/udx28/).

There were four main areas requiring clarification (see Supplemental Methods) related to (i) tallies and definition of high- and moderate- risk exposure; (ii) tallies for subjects adhering to study medication; (iii) estimation of time from exposure to receipt of study medication; and (iv) nomenclature describing timing of study events.

Firstly, from the various combinations of reported use of different PPE items, we were unable to recreate the tallies for the number of subjects noted as having high or moderate risk exposures. We were informed that the published risk definitions had changed over time, and that an erratum would be submitted (Table *S 2*).

Secondly, we could not recreate the tallies for subjects adhering fully, partially or not at all to the study medication. The authors provided a variable (9/9 revision) from which, combined with other variables, we could recreate these tallies.

Thirdly, the published data had been stratified according to the days from the reported date of highest risk exposure to enrollment, rather than the time from exposure to first dose. Requesting further detail, additional data were provided (9/9 revision) describing the time from enrollment to receipt of study drug. These data did not account for time zone differences, delivery times for Canadian participants or biases introduced because of estimates of the time from exposure to receipt of drug, likely self-correcting for time zone differences. This included data for the Canadian subjects.

Fourthly, the authors notified us of a third dataset (10/30) revision clarifying the previously used nomenclature describing the timing of study events. The word "Day" was clarified to represent the day on which enrollment (Days 1-4) or study drug receipt (Days 1-7) occurred, with the date of highest reported exposure being "Day 1." Accordingly, to calculate the elapsed time between exposure and enrollment or receipt of study drug, one day must be subtracted from the stated "Day." In the 10/30 revision, the definition for the variable describing the time from exposure to enrollment was partially clarified, but not that describing time from exposure to receipt of study drug. A derivative version of this variable was provided whose individual values were all smaller than for its primary version by one day.

Adopting this clarification, we note its inconsistency with some statements made in the original paper that indicated the occurrence of some study events to be one day later. This clarification does not alter the relative time stratification we present here.

Provision of outcome data, adherence to study drug, use of folate and comorbidities

We also analyzed the data according to adherence to taking study medication, whether subjects provided outcome data and the use of the folate placebo. We constructed a "Responding Population" (RP) by excluding those subjects who were lost to follow up (LTF) or withdrew consent and who provided no outcome data (Table S 6).

To examine the effect of folate and adherence to study drug, we constructed three treatment arms. In addition to the HCQ treatment arm (fully and partially adherent) we constructed a "folate only" control arm (fully or partially adherent) and a "no folate" control arm consisting of the Canadian subjects randomized to lactose placebo pooled with subjects identified as taking neither HCQ or placebo. Within the ITT population, we examined the effect of co-morbidities on any possible effect of HCQ. Due to the low incidence of most of the co-existing conditions, we examined only the three most frequent conditions (asthma, diabetes, hypertension), in addition to subjects reporting no co-existing conditions or conditions not otherwise listed in the screening questionnaire.

Confirmation of findings by Luco

We performed several analyses to replicate the findings of Luco²⁵ who conducted his own re-analysis of the same PEP dataset, related to the effect of age, exposure risk and co-morbidities. These analyses also serve as a verification of our calculations as appropriate.

Supplemental Results

Verification of primary time stratification

As a further quality control check we verified the performance of our primary stratification by time by comparing spreadsheet output with two calculations provided by the original authors. These calculations used the new data we had requested describing the time between exposure and receipt of study drug provided in the 10/6 revision.

Both calculations referred to subjects receiving study drug on Day 3 or earlier, with Day 1 = day of exposure.

The first calculation provided was: "By ITT analysis for those <=3 days from exposure to med delivery, the actual Odds Ratio = 0.53 (95%Cl, 0.23 to 1.22, P=0.14)." We replicated this calculation with OR=0.5310 (95%Cl 0.2302-1.2246; p=0.149).

The second calculation provided was: "By modified intent-to-treat (limiting to those who took a dose of the study drug within <=3 days of exposure), Odds Ratio = 0.57 (95%CI, 0.24 to 1.34, P=0.20)". We again replicated this calculation (OR 0.5704, 95%CI 0.2433-1.3375; p=0.2073).

Effect of exposure risk on outcomes

There were differences in the response associated with HCQ noted according to the level of risk exposure (Table S 5). A statistically significant effect associated with Early HCQ prophylaxis was observed in subjects experiencing high (RR 0.48, 95%CI 0.28-0.85, p=0.013, NNT 10.9) but not moderate (RR 1.73, 95%CI 0.48-6.23) risk exposures. The population size for the moderate risk level was small, especially for the Late prophylaxis cohort.

We verified the findings of Luco²⁵ who found reductions in Covid-19 associated with HCQ when all patients (not stratified by time) below 50 years were considered (RR 0.71; 95%Cl 0.48-1.05, p=0.089), with a significant reduction associated with HCQ in the cohort younger than 50 years experiencing a high-risk exposure (RR 0.63; 95%Cl 0.41-0.95, p= 0.293).

Severity of symptoms reported on day 14 from drug receipt

We did not detect differences in the severity (median, IQR, n) of symptoms associated with HCQ use reported on day 14 from drug receipt for both Early (HCQ 3.13; 1.95-4.58, n=10 vs. placebo 3.0; 1.9-4.1, n=21) and Late prophylaxis (HCQ 2.5; 1.65-4.1, n=23 vs. placebo 2.4; 1.4-5.1, n=13). This result is limited by the small number of subjects (n=67) reporting symptom scores.

Provision of outcome data, adherence to study drug and use of folate

Considering only the "Responding Population" (Table S 6), the effect associated with HCQ on the development of Covid-19 was similar to that seen in the whole population (Table S 7). Any small effect associated with HCQ observed (RR 0.82) was attenuated when only those subjects who were fully (RR 0.93) and fully or partially (RR 0.89) adherent to study medication were considered (Table S 7).

We examined how using the folate placebo might influence outcomes. The "no folate control" cohort had a slightly reduced (RR 0.93) development of Covid-19 compared with the "folate only placebo" cohort (Table S 8), resulting in a small change in the estimation of the effect associated with HCQ in the overall Responding Population. Stratifying these data by time reveals no discernible effect of the folate placebo (Table S 9). Combining the "folate only placebo" and "no folate control" cohorts, there was a directionally similar effect associated with HCQ (full plus partial adherence) to that observed in the ITT population for the Early prophylaxis cohort (RR 0.65, 95%CI 0.39-1.08; p=0.11).

Ex-protocol use of zinc and Vitamin C

The doses, duration of use, or reasons for self-medication with zinc or Vitamin C are unknown. The number of subjects was small in most of the sub-groups representing the different combinations of use of both agents, the largest of which (n=504) reported taking neither agent. Time stratified data for these subjects reveal an effect similar to that found in the ITT population, but without achieving statistical significance (Table S 10).

Influence of co-morbidity on HCQ-associated outcomes

Small population sizes (Table S 11) within the subgroups representing the three most frequent co-morbidities (hypertension, asthma, diabetes) prompt cautious analysis. However, for subjects reporting no co-existing conditions (72.6% of population) there was a reduction signal in Covid-19 associated with HCQ in the whole cohort (RR 0.7, 95%CI 0.46-1.06, p=0.094). Confirming the analysis by Luco,²⁵ when asthma and "other" co-morbidities are excluded, there was similar signal (RR 0.72, 95%CI 0.49-1.05, p=0.097). Removing only asthma subjects yields a slightly weaker signal (RR 0.77, 95%CI 0.53-1.11, p=0.198). It must be noted that the incidence of Covid-19 observed for the asthma and the "other" co-morbidity sub-groups (6.5%) was much lower than that for the other groups (10.4-15.9%).

Stratifying by time and with no effects associated with Late HCQ prophylaxis, these trends achieved statistical significance associated with Early HCQ prophylaxis with no co-morbidity (RR 0.49, 95%CI 0.27-0.88, p=0.015, NNT 10.2), excluding asthma and "other" co-morbidity (RR 0.52, 95%CI 0.3-0.9, p=0.023) or excluding just subjects with asthma (RR 0.54, 95%CI 0.32-0.92, p=0.026).

Stratifying by age and considering only subjects with no co-morbidities, reveals a stronger response associated with Early HCQ prophylaxis for the younger (18-45) (RR 0.44, 95%CI 0.23-0.85, p=0.016) age group. Although a stronger

signal was observed in older subjects (>45 years) (RR 0.7, 95%CI 0.21-2.3, p= 0.739) that had not been seen in other age-related stratifications, this did not reach statistical significance.

Table S 1: Demographic and clinical characteristics, stratified into Early and Late Cohorts

The data for the original cohort recreates data from the original paper, for comparison and quality control purposes. Several variables have been added. The data are stratified into the Early (1-3 days) and Late (4-6 days) post exposure prophylaxis cohorts.

(I/S/%) - Shown in parentheses are interquartile ranges (1st and 3rd quartile), or standard deviations where indicated. All other parentheses indicate the percent contribution to the cohort total.

		Origir	al Cohort		-	Early (<= 3 days from exposure)				Late Cohort (4-6 days from exposure)			
Characteristic	HCQ		Placebo		HCQ		Placebo		HCQ		Placebo		
n	414		407		208		218		205		189		
Age		(I/S/%))		(I/S/%))		(I/S/%))		(I/S/%))		(I/S/%))		(I/S/%))	
Median Age (IQR)	41	(33-51)	40	(32-50)	40	(33-49)	39	(32-49)	42	(32-52)	41	(33-51)	
Average age (SD)	42.3	(12.7)	41.8	(12.0)	42.1	(12.3)	41.1	(11.7)	42.6	(13.2)	42.7	(12.3)	
Age distribution (%) of coh	ort)												
Age 18-35	151	(36%)	145	(36%)	75	(36%)	84	(39%)	76	(37%)	61	(32%)	
Age 35-50	159	(38%)	171	(42%)	89	(43%)	93	(43%)	69	(34%)	78	(41%)	
Age >50	104	(25%)	91	(22%)	44	(21%)	41	(19%)	60	(29%)	50	(26%)	
Median weight (kg)	75	(64-86)	76	(64-91)	75	(64-89)	77	(64-93)	75	(63-84)	74	(62-86)	
Biologic Sex													
Female	218	(52.7%)	206	(50.6%)	102	(49.0%)	106	(48.6%)	116	(56.6%)	100	(52.9%)	
Male	192	(46.4%)	197	(48.4%)	104	(50.0%)	111	(50.9%)	87	(42.4%)	86	(45.5%)	
Not stated	4	(1.0%)	4	(1.0%)	2	(1.0%)	1	(0.5%)	2	(1.0%)	3	(1.6%)	
Ethnicity (all that apply)													
White or Caucasian	245	(59.2%)	262	(64.4%)	128	(61.5%)	146	(67.0%)	117	(57.1%)	116	(61.4%)	
Black or African American	19	(4.6%)	18	(4.4%)	9	(4.3%)	11	(5.0%)	10	(4.9%)	7	(3.7%)	
Asian	92	(22.2%)	83	(20.4%)	45	(21.6%)	37	(17.0%)	47	(22.9%)	46	(24.3%)	
Native Hawaiian or Pacific						(4.00())				(0,00())			
Islander	2	(0.5%)	2	(0.5%)	2	(1.0%)	1	(0.5%)	0	(0.0%)	1	(0.5%)	
Hispanic or Latino Native American or Alaska	22	(5.3%)	23	(5.7%)	10	(4.8%)	11	(5.0%)	12	(5.9%)	12	(6.3%)	
Native	2	(0.5%)	1	(0.2%)	1	(0.5%)	0	(0.0%)	0	(0.0%)	1	(0.5%)	
Middle Eastern	11	(2.7%)	2	(0.5%)	4	(1.9%)	1	(0.5%)	7	(3.4%)	1	(0.5%)	
South Asian	18	(4.3%)	20	(4.9%)	9	(4.3%)	12	(5.5%)	9	(4.4%)	8	(4.2%)	
Other	6	(1.4%)	3	(0.7%)	2	(1.0%)	3	(1.4%)	4	(2.0%)	0	(0.0%)	
Current Smoker	-	(,	-	((110,0)	-	(,)		()	-	(0.0.70)	
Current Smoker	15	(3.6%)	12	(2.9%)	6	(2.9%)	9	(4.1%)	8	(3.9%)	3	(1.6%)	
Non-smoker	395	(95.4%)	391	(96.1%)	200	(96.2%)	208	(95.4%)	195	(95.1%)	183	(96.8%)	
Not stated	4	(1.0%)	4	(1.0%)	200	(1.0%)	1	(0.5%)	2	(1.0%)	3	(1.6%)	
Country		(()	_	(()	-	(2	(,)	

Country

Wiseman et al. Exploratory reanalysis – HCQ: COVID-19 post-exposure prophylaxis SUPPL 112920

Canada	10	(2.4%)	11	(2.7%)	7	(3.4%)	10	(4.6%)	3	(1.5%)	1	(0.5%)	
United States	404	(97.6%)	396	(97.3%)	201	(96.6%)	208	(95.4%)	202	(98.5%)	188	(99.5%)	
Regularly Taking Any of Th	ese Meo	dications											
Losartan	14	(3.4%)	15	(3.7%)	8	(3.8%)	9	(4.1%)	6	(2.9%)	6	(3.2%)	
Aspirin	10	(2.4%)	13	(3.2%)	4	(1.9%)	10	(4.6%)	6	(2.9%)	3	(1.6%)	
lbuprofen/naproxen	8	(1.9%)	8	(2.0%)	1	(0.5%)	4	(1.8%)	7	(3.4%)	4	(2.1%)	
Tylenol	8	(1.9%)	11	(2.7%)	2	(1.0%)	5	(2.3%)	6	(2.9%)	6	(3.2%)	
No medications	290	(70.0%)	269	(66.1%)	133	(63.9%)	125	(57.3%)	156	(76.1%)	144	(76.2%)	
Taking zinc in study	100	(24.2%)	85	(20.9%)	47	(22.6%)	46	(21.1%)	53	(25.9%)	39	(20.6%)	
Taking Vitamin C in study	140	(33.8%)	130	(31.9%)	68	(32.7%)	71	(32.6%)	71	(34.6%)	59	(31.2%)	
Contact type													
HCW	275	(66.4%)	270	(66.3%)	147	(70.7%)	152	(69.7%)	128	(62.4%)	118	(62.4%)	
Household	125	(30.2%)	120	(29.5%)	54	(26.0%)	56	(25.7%)	71	(34.6%)	64	(33.9%)	
High-risk exposure	365	(88.2%)	354	(87.0%)	186	(89.4%)	180	(82.6%)	179	(87.3%)	174	(92.1%)	
No PPE worn	258	(62.3%)	237	(58.2%)	126	(60.6%)	116	(53.2%)	132	(64.4%)	121	(64.0%)	
Days from exposure to receipt of study drug (Day 1 = exposure. As %) of cohort													
1	0		0		0		0						
2	32	(7.7%)	20	(4.9%)	32	(15.4%)	20	(9.2%)					
3	91	(22.0%)	92	(22.6%)	91	(43.8%)	92	(42.2%)					
4	85	(20.6%)	106	(26.0%)	85	(40.9%)	106	(48.6%)					
5	123	(29.8%)	119	(29.2%)					123	(60.0%)	119	(63.0%)	
6	62	(15.0%)	62	(15.2%)					62	(30.2%)	62	(32.8%)	
7	20	(4.8%)	8	(2.0%)					20	(9.8%)	8	(4.2%)	
Coexisting conditions/ Chro	onic hea	alth condit	ions (all th	at apply)									
None	306	(73.9%)	290	(71.3%)	159	(76.4%)	156	(71.6%)	146	(71.2%)	134	(70.9%)	
High blood pressure	51	(12.3%)	48	(11.8%)	25	(12.0%)	28	(12.8%)	26	(12.7%)	20	(10.6%)	
Asthma	31	(7.5%)	31	(7.6%)	15	(7.2%)	15	(6.9%)	16	(7.8%)	16	(8.5%)	
Diabetes	12	(2.9%)	16	(3.9%)	6	(2.9%)	7	(3.2%)	6	(2.9%)	9	(4.8%)	
Cardiovascular disease	4	(1.0%)	2	(0.5%)	4	(1.9%)	1	(0.5%)	0	(0.0%)	1	(0.5%)	
Cancer or malignancy	1	(0.2%)	2	(0.5%)	0	(0.0%)	2	(0.9%)	1	(0.5%)	0	(0.0%)	
Chronic kidney disease	0	(0.0%)	3	(0.7%)	0	(0.0%)	3	(1.4%)	0	(0.0%)	0	(0.0%)	
Other chronic lung disease	3	(0.7%)	0	(0.0%)	1	(0.5%)	0	(0.0%)	2	(1.0%)	0	(0.0%)	
Chronic liver disease	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	
HIV	1	(0.2%)	0	(0.0%)	1	(0.5%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	
Transplant recipient	0	(0.0%)	1	(0.2%)	0	(0.0%)	1	(0.5%)	0	(0.0%)	0	(0.0%)	

Corticosteroids, chemotherapy,												
immunosuppressive	2	(0.5%)	1	(0.2%)	0	(0.0%)	1	(0.5%)	2	(1.0%)	0	(0.0%)
Hepatitis B or C	1	(0.2%)	0	(0.0%)	0	(0.0%)	0	(0.0%)	1	(0.5%)	0	(0.0%)
Other	25	(6.0%)	31	(7.6%)	13	(6.3%)	16	(7.3%)	12	(5.9%)	15	(7.9%)

Table S 2: Clarification of Exposure Risk Definition

The published account of the PEP²⁶ study defines the risk of exposure as household or occupational exposure to someone with confirmed Covid-19 at a distance of less than 6 ft for more than 10 minutes while:

- High-risk exposure: wearing neither a face mask nor an eye shield
- Moderate-risk exposure: wearing a face mask but no eye shield

The principal investigator (personal communication) informed us that due to changing CDC HCW risk guidance, the risk score changed over time (March 17, March 19, and April 3, 2020) and that there was more nuance than was captured in the database. There was also discussion with some of the participants regarding their risk definition (example – HCW who wore PPE but then removed it in the presence of the patient). From March 19 onward, the risk definition was:

Contact Type Household Household Household	Risk type High Moderate Low	Distance/Time < 6ft + > 10 min < 6ft + > 10 min > 6ft or < 10 min	PPE None Any	Eye protection	Face protection
HCW HCW HCW HCW HCW HCW	High High High High Moderate Moderate Low	< 6ft + > 10 min < 6ft + > 10 min > 6ft or < 10 min	"less than optimal" Full	No No Yes Yes	No Yes No Yes

Table S 3: Distribution of days for drug receipt days within strata for study enrollment

Day of drug receipt													
Enrollment day		1	2	3	4	5	6	7	Total				
	1	0	52	70	18	0	0	0	140				
	2	0	0	113	67	26	0	0	206				
	3	0	0	0	98	94	23	0	215				
	4	0	0	0	8	122	101	28	259				
Car agab of the ar	a roll		at day	in dear	ام م ما اس			***	بملم مطد				

For each of the enrollment days described in the original report, the days on which drug receipt occurred are shown. Day 1 = day of exposure.

Note time-related data for one subject (#308) are missing. In the original, the 10/6 and the 10/30 datasets, data for subject #308 for the variables describing the time from exposure to enrollment or drug delivery were missing. Although data for time between enrollment and shipping (1.58 days) were provided in the 9/9 dataset for this subject, it was not possible to assign this subject to any time stratum. We have therefore retained the exclusion of this subject from the applicable analyses, as in the original work.

Table S 4: Stratification of effect associated with hydroxychloroquine by gender based on time from exposure to drug receipt (ITT population)

	Hyd	roxychlor	oquine		Placebo				
	n Pos	N Total	%Pos	n Pos	N Total	%Pos	RR	CI Low	CI Up
Early prophylaxis	1-3 days	s post exp	osure						
Male	7	104	6.7%	14	111	12.6%	0.53	0.22	1.27
Female	13	102	12.7%	21	106	19.8%	0.64	0.34	1.22
Late prophylaxis	4-6 days	post-expo	osure						
Male	12	87	13.8	10	86	11.6%	1.19	0.54	2.60
Female	17	116	14.7%	12	100	12.0%	1.22	0.61	2.43
The number (and p	,	•		•				• •	•
with the total numbe	r of subje	cts for that	group, stra	tified by tir	ne from ex	posure to d	rug rece	eipt. The ela	apsed

time range in days is shown for Early and Late cohorts.

See note in Table S 3 regarding tallies for time-stratified data.

Table S 5: Stratification of effect associated with hydroxychloroquine by exposure risk type based on time from exposure to drug receipt (ITT population)

	Hyd	roxychlor	oquine		Plac						
	nPos	N Total	%Pos	nPos	N Total	%Pos	RR	CI Low	Cl Up	NNT	р
All times											
High	43	365	11.8%	54	354	15.3%	0.77	0.53	1.12	28.8	0.191
Moderate	6	48	12.5%	4	53	7.5%	1.66	0.50	5.52		
Early prophy	/laxis 1-	3 days po	ost expos	ure							
High	16	186	8.6%	32	180	17.8%	0.48	0.28	0.85	10.9	0.013
Moderate	4	22	18.2%	4	38	10.5%	1.73	0.48	6.23		
Late prophy	laxis 4-6	ວ days po	st-exposi	ure							
High	27	179	15.1%	22	174	12.6%	1.19	0.71	2.01		
Moderate	2	26	7.7%	0	15	0.0%					

The number (and percent) of subjects with a Covid-19 positive outcome are shown for each group along with the total number of subjects for that group, stratified by time from exposure to drug receipt. The elapsed time range in days is shown for Early and Late cohorts.

See note in Table S 3 regarding tallies for time-stratified data.

Table S 6: Summary of subjects forming "Responding Population"

	Total	HCQ P	lacebo
Original ITT Cohort	821	414	407
Excluded will be subjects:			
Withdrew Consent	8	4	4
LTF, no survey data per Table S1 in PEP study	55	25	30
LTF, noted as "Some Survey Data", but no symptoms	s 9	5	4
Totals for exclusion	72	34	38
Total included in Responding Population	749	380	369

Of the 88 LTF patients, 52 were reported as not completing any surveys and were unresponsive to follow up. Another 36 had: some survey data with vital status after day 14 known (16), no survey with vital status after day 14 known (3) or no survey with vital status after day 14 unknown (17). We examined the 33 patients noted as having some survey data and found that there were 9 with no symptom data. There was a total of 72 patients with no symptom data at all which we excluded from the Responding Population. The remaining 24 patients had incomplete symptom data for days 3, 5, 10 and 14 in various combinations and we considered their outcomes as includable using the "last observation carried forward" (LOCF) method using the endpoint adjudication of the original authors.

Table S 7: Effect of adherence to study drug on development of Covid-19 within Responding Population (RP)

	Hydro	Hydroxychloroquine			Placebo				
Adherence	n Pos	N Total	%	n Pos	N Total	%	RR	CI Low	CI Up
ITT Cohort, as published	49	414	11.8%	58	407	14.3%	0.83	0.58	1.18
All subjects (RP)	49	380	12.9%	58	369	15.7%	0.82	0.58	1.17
Fully adherent (RP)	43	312	13.8%	50	336	14.9%	0.93	0.64	1.35
Partially adherent (RP)	4	36	11.1%	3	12	25.0%	0.44	0.12	1.71
Not adherent (RP)	2	32	6.3%	5	21	23.8%			
Fully + Partial adherence (RP)	47	348	13.5%	53	348	15.2%	0.89	0.62	1.28

The number (and percent) of subjects with a Covid-19 positive outcome are shown for each group along with the total number of subjects for that group, stratified by adherence to study medication. The data from the ITT cohort from the original paper are shown for reference.

Table S 8: Effect associated with folate placebo in Responding Population

	Hydr	oxychloroc	quine						
	n Pos	N Total	%	n Pos	N Total	%	RR	CI Low	CI Up
HCQ vs. Folate only placebo	47	348	13.5%	51	337	15.1%	0.89	0.62	1.29
HCQ vs. no Folate control	47	348	13.5%	9	64	14.1%	0.96	0.50	1.86
HCQ vs. Combined control	47	348	13.5%	60	401	15.0%	0.90	0.63	1.29
		No folate		Fol	0				
No Folate control vs. Folate only Placebo	9	64	14.1%	51	337	15.1%	0.93	0.48	1.79

Shown is the percent (n/N) of subjects with Covid-19 positive outcome for the fully and partially adherent subgroups combined.

Table S 9: Effect associated with folate placebo in Responding Population (fully and partially adherent study subjects), stratified by time and gender.

				95% CI					
	n Pos	N Total	% Pos	RR	Lower	Upper	р		
Early prophylaxis 1-3							P		
Male + Female									
HCQ	19	173	11.0%						
Folate Placebo	31	183	16.9%	0.65	0.38	1.10	p=0.127		
No Folate	6	35	17.1%	0.64	0.28	1.49			
Combined Control	37	218	17.0%	0.65	0.39	1.08	p=0.11		
MALE									
HCQ	83	7	8.4%						
Folate Placebo	90	12	13.3%	0.63	0.26	1.53			
No Folate	21	2	9.5%	0.89	0.20	3.96			
Combined Control	111	14	12.6%	0.67	0.28	1.58			
FEMALE									
HCQ	89	12	13.5%						
Folate Placebo	92	18	19.6%	0.69	0.35	1.35			
No Folate	14	4	28.6%	0.47	0.18	1.26			
Combined Control	106	22	20.8%	0.65	0.34	1.24			
Late prophylaxis 4-6	days post-ex	posure							
Male + Female									
HCQ	28	174	16.1%						
Folate Placebo	20	154	13.0%	1.24	0.73	2.11			
No Folate	3	29	10.3%	1.56	0.51	4.79			
Combined Control	23	183	12.6%	1.28	0.77	2.13			
MALE									
HCQ	77	11	14.3%						
Folate Placebo	73	9	12.3%	1.16	0.51	2.63			
No Folate	12	2	16.7%	0.86	0.22	3.40			
Combined Control FEMALE	85	11	12.9%	1.10	0.51	2.40			
HCQ	95	17	17.9%						
Folate Placebo	79	11	13.9%	1.29	0.64	2.58			
No Folate	17	1	5.9%	3.04	0.43	21.37			
Combined Control	96	12	12.5%	1.43	0.72	2.83			

RR - Risk Ratios vs. HCQ shown

Shown is the percent (n/N) of subjects with Covid-19 positive outcome for the fully and partially adherent subgroups combined, stratified by control group type and gender. See note in Table S 3 regarding tallies for time-stratified data.

Table S 10: Effect of ex-protocol use of Zinc or Vitamin C on effect associated with hydroxychloroquine stratified by time from exposure to drug receipt

	Vitamin C											
Zinc	None	d5 only	d14 only	both	any							
None	504 *	24	49	59 *	132 *							
d5 only	6	8	0	6	14							
d14 only	19	1	32	13	46							
both	22 *	4	4	70 *	78 *							
any	47*	13	36	89 *	138*							

	Part A: Numbers of sub	pjects reporting at two sub	ject surveys to be taking	zinc or Vitamin C.
--	------------------------	-----------------------------	---------------------------	--------------------

Subject surveys were carried out on days 5 and 14 numbering from day of receipt of study drug. The number of subjects reporting taking either agent at either or both days 5 and 14 are shown. Detail for use of either agent at these time points was provided at our request in the 9/9 revision. The combinations marked with an asterisk * are subject to further analysis below, representing use of neither agent, both agents at both times either agent at any or both times time. Note that the total number of subjects reporting use of zinc is 185, which corrects a typographic error in the original paper.

Part B: Effect of ex-protocol use of zinc or vitamin C on effect associated with hydroxychloroquine stratified by time from exposure to drug receipt and by reported use of zinc or vitamin C.

The number (and percent) of subjects with a Covid-19 positive outcome are shown for each group along with the total number of subjects for that group, stratified by time from exposure to drug receipt (as Early to Late Prophylaxis cohorts).

			HCQ			Placebo				95% CI		
Zinc	Vit C		n Pos	N Total	%Pos	n Pos	N Total	%Pos	RR	CI Low	CI Up	
ITT population		Early	20	208	9.6%	36	218	16.5%	0.58	0.35	0.97	
ITT population		Late	29	205	14.1%	22	189	11.6%	1.22	0.72	2.04	
None	None	Early	9	128	7.0%	18	137	13.1%	0.54	0.25	1.15	
None	None	Late	16	120	13.3%	10	119	8.4%	1.59	0.75	3.35	
Both	Both	Early	2	18	11.1%	1	13	7.7%	1.44	0.15	14.29	
Both	Both	Late	3	19	15.8%	2	20	10.0%	1.58	0.30	8.43	
Both	None	Early	1	6	16.7%	1	3	33.3%	0.50	0.05	5.51	
Both	None	Late	1	5	20.0%	1	8	12.5%	1.60	0.13	20.22	
None	Both	Early	2	11	18.2%	3	13	23.1%	0.79	0.16	3.90	
None	Both	Late	0	15	0.0%	4	19	21.1%	0.00			
None	Any	Early	4	33	12.1%	10	35	28.6%	0.42	0.15	1.22	
None	Any	Late	5	32	15.6%	7	31	22.6%	0.69	0.25	1.95	
Any	None	Early	1	12	8.3%	2	10	20.0%	0.42	0.04	3.95	
Any	None	Late	3	14	21.4%	1	11	9.1%	2.36	0.28	19.66	
Both	Any	Early	3	20	15.0%	1	15	6.7%	2.25	0.26	19.55	
Both	Any	Late	3	23	13.0%	2	20	10.0%	1.30	0.24	7.04	
Any	Both	Early	2	19	10.5%	2	17	11.8%	0.89	0.14	5.68	
Any	Both	Late	4	27	14.8%	4	26	15.4%	0.96	0.27	3.45	
Any	Any	Early	6	35	17.1%	6	36	16.7%	1.03	0.37	2.89	
Any	Any	Late	5	39	12.8%	4	28	14.3%	0.90	0.26	3.05	

Table S 11: Effect of comorbidities on effect associated with HCQ

Part A: Stratification by time only

	nPos	N Total	%	nPos	N Total	%	RR	CI Low	CI Up	NNT	р
Whole Cohort	Hyd	roxychloro	quine		Placebo						
All subjects	49	414	11.8%	58	407	14.3%	0.83	0.58	1.18	41.4	0.351
No co-morbidity	34	306	11.1%	46	290	15.9%	0.70	0.46	1.06	21.0	0.094
Hypertension	7	51	13.7%	5	48	10.4%	1.32	0.45	3.87		
Asthma	5	31	16.1%	2	31	6.5%	2.50	0.52	11.93		
Diabetes	2	12	16.7%	2	16	12.5%	1.33	0.22	8.16		
Other	4	25	16.0%	2	31	6.5%	2.48	0.49	12.45		
Excl. asthma or other	40	361	11.1%	54	349	15.5%	0.72	0.49	1.05	22.8	0.097
Exclude asthma only	44	383	11.5%	56	376	14.9%	0.77	0.53	1.11	29.4	0.198
Early prophylaxis 1-3	days p	ost expos	ure								
All	20	208	9.6%	36	218	16.5%	0.58	0.35	0.97	14.5	0.044
No co-morbidity	15	159	9.4%	30	156	19.2%	0.49	0.27	0.88	10.2	0.015
Hypertension	2	25	8.0%	2	28	7.1%	1.12	0.17	7.37		
Asthma	2	15	13.3%	1	15	6.7%	2.00	0.20	19.78		
Diabetes	1	6	16.7%	0	7	0.0%					
Other	1	13	7.7%	1	16	6.3%	1.23	0.08	17.83		
Excl. asthma or other	17	181	9.4%	34	189	18.0%	0.52	0.30	0.90	11.6	0.023
Exclude asthma only	18	193	9.3%	35	203	17.2%	0.54	0.32	0.92	12.6	0.026
Late prophylaxis 4-6 days post exposure											
All	29	205	14.1%	22	189	11.6%	1.22	0.72	2.04		0.548
No co-morbidity	19	147	12.9%	16	134	11.9%	1.08	0.58	2.02		0.857
Hypertension	5	26	19.2%	3	20	15.0%	1.28	0.35	4.74		
Asthma	3	16	18.8%	1	16	6.3%	3.00	0.35	25.87		
Diabetes	1	6	16.7%	2	9	22.2%	0.75	0.09	6.55		
Other	3	12	25.0%	1	15	6.7%	3.75	0.44	31.62		
Excl. asthma or other	23	180	12.8%	20	160	12.5%	1.02	0.58	1.79		1
Exclude asthma only	26	190	13.7%	21	173	12.1%	1.13	0.66	1.93		0.755

	nPos	N Total	%	nPos	N Total	%	RR	CI Low	CI Up	NNT	р
Whole Cohort	Hydr	oxychlorod	quine		Placebo						
All ages	34	306	11.1%	46	290	15.9%	0.70	0.46	1.06	21.0	0.094
18-45	26	188	12.1%	38	167	18.5%	0.65	0.41	1.04	15.7	0.078
45-90	8	84	8.7%	8	77	9.4%	0.92	0.36	2.35	1	139.6
Early prophylax	kis 1-3 d	ays post e	exposure								
All ages	15	159	9.4%	30	156	19.2%	0.49	0.27	0.88	10.2	0.015
18-45	11	117	9.4%	24	112	21.4%	0.44	0.23	0.85	8.3	0.016
45-90	4	42	9.5%	6	44	13.6%	0.70	0.21	2.30	24.3	0.739
Late prophylax	is 4-6 da	iys post ex	kposure								
All ages	19	146	13.0%	16	134	11.9%	1.09	0.58	2.03		0.857
18-45	15	96	15.6%	14	93	15.1%	1.04	0.53	2.03		1
45-90	4	50	8.0%	2	41	4.9%	1.64	0.32	8.51		0.686

Shown is the percent (n/N) of subjects with Covid-19 positive outcome for subjects reporting the co-existing condition specified, stratified by time from exposure to drug receipt. The elapsed time range in days is shown for Early and Late cohorts.

See note in Table S 3 regarding tallies for time-stratified data.

Supplemental References

Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: two Natural Compounds and Folic acid 1. as Potential Inhibitors of 2019-novel coronavirus Main Protease (2019-nCoVMpro), molecular docking and computer-aided design 2020 Apr Epub SAR study. Current drug 24. Apr 24 http://doi.org/10.2174/1573409916666200422075440

2. Micholas S, Jeremy C. S. Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. ChemRxiv 2020; 2020:11871402. Epub Feb 27 <u>http://doi.org/10.26434/chemrxiv.11871402.v3</u>

3. Itelman E, Wasserstrum Y, Segev A, et al. Clinical Characterization of 162 COVID-19 patients in Israel: Preliminary Report from a Large Tertiary Center. Isr Med Assoc J 2020; 22:271-4. Epub May 8

4. Simanjuntak Y, Ko HY, Lee YL, Yu GY, Lin YL. Preventive effects of folic acid on Zika virusassociated poor pregnancy outcomes in immunocompromised mice. PLoS Pathog 2020; 16:e1008521. Epub May 12 <u>http://doi.org/10.1371/journal.ppat.1008521</u>

5. Yang J, Yang A, Wang Z, et al. Interactions between serum folate and human papillomavirus with cervical intraepithelial neoplasia risk in a Chinese population-based study. Am J Clin Nutr 2018; 108:1034-42. Epub Sep 25 <u>http://doi.org/10.1093/ajcn/nqy160</u>

6. Xiao S, Tang YS, Kusumanchi P, et al. Folate Deficiency Facilitates Genomic Integration of Human Papillomavirus Type 16 DNA In Vivo in a Novel Mouse Model for Rapid Oncogenic Transformation of Human Keratinocytes. J Nutr 2018; 148:389-400. Epub Mar 17 <u>http://doi.org/10.1093/jn/nxx060</u>

7. Fletcher H, Figueroa P, Brathwaite A, Hylton-Kong T. Poverty, folate deficiency, human immunodeficiency virus and ulcerated vulval sexually transmitted diseases in Jamaica. The West Indian medical journal 2011; 60:137-40. Epub Sep 29

8. Wiltshire E, Peña AS, MacKenzie K, Shaw G, Couper J. High dose folic acid is a potential treatment for pulmonary hypertension, including when associated with COVID-19 pneumonia. Med Hypotheses 2020; 143:110142. Epub Jul 26 <u>http://doi.org/10.1016/j.mehy.2020.110142</u>

9. Acosta-Elias J, Espinosa-Tanguma R. The Folate Concentration and/or Folic Acid Metabolites in Plasma as Factor for COVID-19 Infection. Frontiers in pharmacology 2020; 11:1062. Epub Aug 9 http://doi.org/10.3389/fphar.2020.01062

10. Müller C, Schibli R, Maurer B. Can Nuclear Imaging of Activated Macrophages with Folic Acid-Based Radiotracers Serve as a Prognostic Means to Identify COVID-19 Patients at Risk? Pharmaceuticals (Basel, Switzerland) 2020; 13. Epub Sep 13 <u>http://doi.org/10.3390/ph13090238</u>

11. Stegmann KM, Dickmanns A, Gerber S, et al. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. bioRxiv 2020:2020.07.18.210013. Epub Jul 20 <u>http://doi.org/10.1101/2020.07.18.210013</u>

12. Caruso A, Caccuri F, Bugatti A, et al. Methotrexate inhibits SARS-CoV-2 virus replication "in vitro". J Med Virol 2020. Epub Sep 15 <u>http://doi.org/10.1002/jmv.26512</u>

13. Courtemanche C, Elson-Schwab I, Mashiyama ST, Kerry N, Ames BN. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. J Immunol 2004; 173:3186-92. Epub Aug 24 http://doi.org/10.4049/jimmunol.173.5.3186

14. Misra DP, Gasparyan AY, Zimba O. Benefits and adverse effects of hydroxychloroquine, methotrexate and colchicine: searching for repurposable drug candidates. Rheumatology international 2020:1-11. Epub Sep 4 <u>http://doi.org/10.1007/s00296-020-04694-2</u>

15. Frohman EM, Villemarette-Pittman NR, Cruz RA, et al. Part II. high-dose methotrexate with leucovorin rescue for severe COVID-19: An immune stabilization strategy for SARS-CoV-2 induced 'PANIC' attack. Journal of the neurological sciences 2020; 415:116935. Epub May 21 http://doi.org/10.1016/j.jns.2020.116935

16. Frohman EM, Villemarette-Pittman NR, Melamed E, et al. Part I. SARS-CoV-2 triggered 'PANIC' attack in severe COVID-19. Journal of the neurological sciences 2020; 415:116936. Epub May 21 http://doi.org/10.1016/j.jns.2020.116936

17. Safavi F, Nath A. Silencing of immune activation with methotrexate in patients with COVID-19. Journal of the neurological sciences 2020; 415:116942. Epub May 31 http://doi.org/10.1016/j.jns.2020.116942

18. Vogel M, Tallo-Parra M, Herrera-Fernandez V, et al. Low zinc levels at clinical admission associates with poor outcomes in COVID-19. medRxiv 2020:2020.10.07.20208645. Epub Oct 11 http://doi.org/10.1101/2020.10.07.20208645

Yao JS, Paguio JA, Dee EC, et al. The minimal effect of zinc on the survival of hospitalized patients with Covid-19: an observational study. Chest 2020. Epub Jul 22 <u>http://doi.org/10.1016/j.chest.2020.06.082</u>
Xue J, Moyer A, Peng B, et al. Chloroquine is a zinc ionophore. PLoS One 2014; 9:e109180. Epub Oct 2 <u>http://doi.org/10.1371/journal.pone.0109180</u>

21. Holford PC, A.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.; Smith, D. Vitamin C—An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Preprints 2020:2020100407. Epub Oct 20 http://doi.org/10.20944/preprints202010.0407.v1

22. Marik PE, Kory P, Varon J, Iglesias J, Meduri GU. MATH+ protocol for the treatment of SARS-CoV-2 infection: the scientific rationale. Expert Rev Anti Infect Ther 2020:1-7. Epub Aug 19 http://doi.org/10.1080/14787210.2020.1808462

23. Hemila H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care 2020; 8:15. Epub Feb 13 http://doi.org/10.1186/s40560-020-0432-y

24. Wiseman DM, Kory P, Mazzucco D, Ramesh MS, Zervos M. Treatment and prevention of early disease before and after exposure to COVID-19 using hydroxychloroquine: A protocol for exploratory reanalysis of age and time-nuanced effects: Update based on initial dataset review. medRxiv 2020:2020.08.19.20178376. Epub Oct 9 http://doi.org/10.1101/2020.08.19.20178376

25. Luco J. Hydroxychloroquine as Post-Exposure Prophylaxis for Covid-19: Why simple data analysis can lead to the wrong conclusions from well-designed studies. ResearchGate 2020. Epub Sep http://doi.org/10.13140/RG.2.2.24214.98880

26. Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med 2020. Epub 2020 June 4 <u>http://doi.org/10.1056/NEJMoa2016638</u>