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A Material and Methods6

Some cities in Texas, including Austin (1) and Houston (2), have staged systems to alert citizens of COVID-19 risks7

and inform mitigating behavior. Each stage has guidelines for the public, such as opening only essential businesses,8

avoiding gatherings of specified size, wearing face coverings, and avoiding dining and shopping. Stages with stricter9

distancing policies reduce disease transmission, but come with a higher socioeconomic cost. We optimize the timing10

of toggling between stages via triggers that monitor daily new hospital admissions while accounting for total hospital-11

izations and ICU hospitalizations. The model recommends a stricter stage of lock-down when the seven-day moving12

average of daily hospital admissions grows to exceed the stage’s optimized threshold. A more relaxed stage is recom-13

mended when the same moving average drops below the stage’s threshold. The sojourn time in each stage must be at14

least two weeks. We call this the “trigger policy.”15

To find the thresholds for each stage, we form a stochastic optimization model, in which disease dynamics are16

characterized by an enhanced SEIR-style model of disease transmission (3). This epidemiological model comprises17

compartments for susceptible, exposed, pre-asymptomatic, pre-symptomatic, infectious-asymptomatic, infectious-18

symptomatic, infected and hospitalized in the general ward, infected and hospitalized in the intensive care unit (ICU),19

recovered, and deceased, which we denote by S, E, PA, PY , IA, IY , IH , ICU , R, and D, respectively. Fig. S120

diagrams the model’s compartments and transitions for a metropolitan area. The population is partitioned into ten21

groups consisting of five age groups of low-risk and another five of high-risk individuals. Each group is represented22

with its own set of ten compartments (susceptible, exposed, etc.) so that in total the epidemiological model has 10023

compartments.24

We assume that the threshold for each stage is constant over time and is denoted by `i for stage i. The goal is to25

determine level `i so that the total expected cost of our trigger policy is minimized, while respecting epidemiological26

dynamics and hospital capacity using a probabilistic constraint. We approximate the expectation and probabilistic27

constraint by using Monte Carlo simulation to form a set of scenarios, indexed by ω, and by using binary variables to28

count the number of paths that violate capacity and to determine the stage for each sample path at each point in time.29

Notation:30

Indices and Sets
t ∈ T set of time periods {1, 2, . . . , |T |} [day]
t ∈ T0 T ∪ {0}
a ∈ A set of age groups {0-4y, 5-17y, 18-49y, 50-64y, 65y+}
r ∈ R risk groups {low, high}
i ∈ I predefined stages {1 (red), 2 (orange), 3 (yellow), 4 (blue)}
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Figure S1: Diagram of the epidemiological model with compartments, transitions, and rates. The model has ten copies of such
diagrams for each age-risk group pair, which interact to determine the (unmarked) rate of transition from compartment S to E.
Such transitions are governed by the transmission rate β but also contact matrices and the current risk stage.

ω ∈ Ω set of scenarios

Parameters
Epidemiological parameters:
β unmitigated transmission rate
σ rate at which exposed individuals become infectious
τ proportion of exposed individuals who become symptomatic
ρA rate at which pre-asymptomatic individuals become asymptomatic
ρY rate at which pre-symptomatic individuals become symptomatic
γA recovery rate from asymptomatic compartment
γY recovery rate from symptomatic compartment
γaH recovery rate from hospitalized compartment for age group a
γaICU recovery rate from ICU compartment for age group a
P proportion of pre-symptomatic transmission
Y HRa,r percent of symptomatic infectious that go to the hospital for age-risk group a, r
ηH hospitalization rate after symptom onset
ωA infectiousness of individuals in IA relative to IY
ωa,rP

P
1−P

τ(Y HRa,r/ηH+(1−Y HRa,r)/γY )+(1−τ)ωA/γA
τ/ρY +(1−τ)ωA/ρA

: infectiousness of pre-symptomatic
individuals relative to IY for age-risk group a, r

πa,r γY ·Y HRa,r
[ηH−(ηH−γY )Y HRa,r] : rate-adjusted proportion of symptomatic individuals who go to the
hospital for age-risk group a, r

pIH percent of patients directly going to the general ward of the hospital
HICUR percent of general ward patients who get transferred to ICU
ηaICU ICU admission rate after admission to the general ward for age group a
νaH

γaH ·HICUR
[ηaICU−(ηaICU−γaH)HICUR] : rate-adjusted proportion of general ward patients transferred
to ICU for age group a
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µa rate from ICU to death for age group a
ICUFRa percent of hospitalized that die for age group a
νaICU

γaICU ·ICUFR
a

[µa−(µa−γaICU )ICUFRa] : ICU fatality rate-adjusted proportion for age group a

φa
′,r′,a,r
i,t expected number of daily contacts from (a′, r′) to (a, r) at time t under stage i
Na,r population of age-risk group a, r
Additional parameters:
B number of hospital beds, including general ward and ICU, for COVID-19 patients
BICU number of ICU beds for COVID-19 patients
ε violation probability for probabilistic constraint
Ci daily cost of being in stage i

Variables
Epidemiological variables (for scenario ω ∈ Ω):
Sa,rt,ω number of susceptible people of age group a, risk group r at time t [persons]
dSa,rt,ω Sa,rt,ω − S

a,r
t+1,ω [persons]

Ea,rt,ω number of exposed people of age group a, risk group r at time t [persons]
PAa,rt,ω number of pre-asymptomatic people for a, r, t [persons]
PY a,rt,ω number of pre-symptomatic people for a, r, t [persons]
IAa,rt,ω number of infectious-asymptomatic people for a, r, t [persons]
IY a,rt,ω number of infectious-symptomatic people for a, r, t [persons]
IHa,r

t,ω number of infected-hospitalized people in the general ward for a, r, t [persons]
ICUa,rt,ω number of infected-hospitalized people in the ICU for a, r, t [persons]
Ra,rt,ω number of recovered people for a, r, t [persons]
Da,r
t,ω number of deceased people for a, r, t [persons]

Ht,ω daily hospital admissions, from infectious-symptomatic to the general ward and ICU,
at time t [persons/day]

Ht,ω seven-day moving average of Ht,ω [persons/day]
Ut,ω daily ICU admissions (from infectious-symptomatic and the general ward)

at time t [persons/day]
Intervention variables:
`i the stage-specific threshold (level) for the daily hospitalization rate
Xi,t,ω 1 if the system is in stage i at time t for scenario ω; 0 otherwise
Yi,t,ω 1 if the trigger statistic lies in range of stage i at time t for scenario ω; 0 otherwise
Vi,t,ω 1 if Yi,t,ω = 1 prior to spending 14 days in the previous stage for scenario ω; 0 otherwise
Zω 1 if healthcare capacity is exceeded in scenario ω; 0 otherwise
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We refer to Table S10 for further details on model parameters. We first define the epidemiological transition
dynamics in the following equations for all ω ∈ Ω:

Sa,r
t+1,ω − S

a,r
t,ω =− dSa,r

t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1a]

Ea,r
t+1,ω − E

a,r
t,ω =dSa,r

t,ω − σE
a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1b]

PAa,r
t+1,ω − PA

a,r
t,ω =σ(1− τ)Ea,r

t,ω − ρAPA
a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1c]

IAa,r
t+1,ω − IA

a,r
t,ω =ρAPA

a,r
t,ω − γAIA

a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1d]

PY a,r
t+1,ω − PY

a,r
t,ω =στEa,r

t,ω − ρY PY
a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1e]

IY a,r
t+1,ω − IY

a,r
t,ω =ρY PY

a,r
t,ω − (1− πa,r)γY IY

a,r
t,ω −π

a,rηHIY
a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1f]

IHa,r
t+1,ω − IH

a,r
t,ω =pIHπ

a,rηHIY
a,r
t,ω − (1− νaH)γa

HIH
a,r
t,ω − ν

a
Hη

a
ICUIH

a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1g]

ICUa,r
t+1,ω − ICU

a,r
t,ω =(1− pIH)πa,rηHIY

a,r
t,ω + νaHη

a
ICUIH

a,r
t,ω− [1h]

(1− νaICU )γa
ICUICU

a,r
t,ω − ν

a
ICUµ

aICUa,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1i]

Ra,r
t+1,ω −R

a,r
t,ω =γAIA

a,r
t,ω + (1− πa,r)γY IY

a,r
t,ω + (1− νaH)γa

HIH
a,r
t,ω + [1j]

(1− νaICU )γa
ICUICU

a,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1k]

Da,r
t+1,ω −D

a,r
t,ω =νaICUµ

aICUa,r
t,ω ∀t ∈ T0, a ∈ A, r ∈ R [1l]

dSa,r
t,ω =Sa,r

t,ω

∑
a′∈A

∑
r′∈R

∑
i∈I

βφa′,r′,a,r
i,t Xi,t,ω

Na′,r′

(
IY a′,r′

t + ωAIA
a′,r′

t +

ωa′,r′

P ωAPA
a′,r′

t + ωa′,r′

P PY a′,r′

t

)
∀t ∈ T0, a ∈ A, r ∈ R. [1m]

The initial conditions, for analysis in both Austin and Houston, have all variables indexed by t = 0 as zero except the31

following:32

IY 18-49,low
0,ω = 1, S18-49,low

0,ω = N18-49,low − 1, and Sa,r0,ω = Na,r∀(a, r) ∈ A×R \ {(18-49, low)}. [2]

The epidemiological dynamics largely follow the formulation used in (4) with the addition of three compartments to33

improve model fidelity and to distinguish beds in the ICU and general ward. The initial conditions specify a single34

infectious individual in the 18-49 age group with low risk. The age-risk groups are initialized with the rest of the35

population in their respective susceptible compartments. Eqs. [1a]-[1m] then provide a sample path, indexed by ω, for36

the progression of the disease in the community. For the moment, the indicator variables Xi,t,ω ∈ {0, 1} are taken37

as input, and select the current stage and, in turn, the expected number of daily contacts via φa
′,r′,a,r
i,t . The contact38

matrices are indexed by t because they capture whether school is currently open and if so, the school calendar; they39

further capture weekdays versus weekends and the level of cocooning, which can vary with time; and they capture40

contacts at school, home, work, and another catch-all category. We assume that sufficient precautions are taken in41

hospitals so that hospitalized cases do not contribute to infecting others via Eq. [1m]. The most significant updates42

of the model from that in (4) are in additional compartments. We use constructs similar to He et al. (5) for a pre-43

symptomatic period to more accurately model the profile of infectiousness of individuals by including pre-symptom44

onset transmission. We also model the ICU compartment explicitly for two reasons. First, patients in the ICU have45

different durations in the hospital than those in the general ward, and second it allows us to account for ICU capacity46

as a resource. We let pIH denote the probability a hospitalized patient is admitted to a general ward bed and the47

remaining fraction go directly to the ICU. As Fig. S1 and Eq. [1h] indicate, it is possible to transfer general ward48

patients to the ICU later if needed. All deaths are recorded from the ICU.49
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The optimization model can be formulated as follows:

min
1

|Ω|
∑
ω∈Ω

∑
i∈I

∑
t∈T

CiXi,t,ω [3a]

s.t. Equations [1] and [2] [3b]

Ht,ω =
∑
a∈A

∑
r∈R

πa,rηHIY
a,r
t,ω ∀t ∈ T , ω ∈ Ω [3c]

Ht,ω =
1

7

t∑
t′=max{t−6,1}

Ht,ω ∀t ∈ T , ω ∈ Ω [3d]

`i −M(1− Yi,t,ω) ≤ Ht,ω ≤ `i+1 +M(1− Yi,t,ω) ∀i ∈ I, t ∈ T , ω ∈ Ω [3e]
2Vi,t,ω − 1 ≤ Xi,t−1,ω −Xi,max{t−14,0},ω ≤ Vi,t,ω ∀i ∈ I, t ∈ T , ω ∈ Ω [3f]
Xi,t,ω ≥ Vi,t,ω ∀i ∈ I, t ∈ T , ω ∈ Ω [3g]
Xi,t,ω ≤ Yi,t,ω + Vi,t,ω ∀i ∈ I, t ∈ T , ω ∈ Ω [3h]∑
i∈I

Xi,t,ω = 1 ∀t ∈ T , ω ∈ Ω [3i]

Xi,0,ω = 0 ∀i ∈ I, ω ∈ Ω [3j]∑
a∈A

∑
r∈R

ICUa,rt,ω ≤ BICU +MZω ∀t ∈ T , ω ∈ Ω [3k]∑
ω∈Ω

Zω ≤ bε|Ω|c [3l]

0 ≤ `i ≤ `i−1 ∀i ∈ I \ {1} [3m]
Xi,t,ω, Vi,t,ω, Yi,t,ω ∈ {0, 1} ∀i ∈ I, t ∈ T , ω ∈ Ω [3n]
Zω ∈ {0, 1} ∀ω ∈ Ω. [3o]

For simplicity, we write the finite-difference Eqs. [1] in a deterministic form. They become stochastic, and require50

indexing by ω, because binomial random variables replace terms like σEa,rt,ω ; here the binomial random variable has51

parameter n = Ea,rt,ω and σ serves as the “success” probability. This construct is pervasive throughout right-hand side52

terms in Eqs. [1]. In addition to these “micro” stochastics there are “macro” stochastics because we model σ, ωA, γA,53

and γY as random variables that are subject to a Monte Carlo draw at time 0 of the simulation. We discuss this further54

in Appendix C.55

For each sample path, ω, we record the number of daily hospital admissions and its seven-day moving average56

in constraints [3c] and [3d], aggregated across the general ward and ICU. At time t, the stage is decided using two57

criteria. We are nominally in stage i if the trigger statistic lies between the threshold of stage i, `i, that of stage58

i + 1, `i+1. This occurs unless we would spend fewer than 14 days in our current stage, in which case we cannot59

yet switch stages. This logic is enforced by constraints [3e]-[3j]. Constraint [3e] identifies the would-be stage based60

on the trigger statistic, which is the seven-day moving average of the hospital admissions. The big-M coefficient61

in constraint [3e] stands for a sufficiently large number. Constraint [3f] forces variable Vi,t,ω to take value 1 if we62

switched to stage i in the previous 14 days and value 0 otherwise, and thus it forces the system to stay in the same63

stage through constraint [3g]. If Vi,t,ω = 0 then constraint [3h] means that the stage is decided by the trigger statistic64

through variable Yi,t,ω . Constraint [3i] states that only one stage can be selected at any time-scenario (t,ω) pair.65

The expected cost is calculated in the objective function [3a] by summing the daily socioeconomic costs over the66

time horizon. Constraint [3k] identifies scenarios for which, at some time point, the number of ICU patients exceeds67

the ICU capacity, where M is again sufficiently large so the constraint is vacuous if Zω = 1. Constraint [3l] ensures68

the probability such a violation occurs is at most fraction ε of the total scenarios. Here we use the number of ICU69

patients in the probabilistic constraint, but it can be replaced by the number of total hospitalized patients, respectively70

replacing ICUa,rt,ω and BICU by ICUa,rt,ω + IHa,r
t,ω and B.71
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We have formulated the model with daily time periods, which simplifies notation for computing the seven-day72

moving average of new admissions, the logic behind the rule of spending two weeks in a stage, etc. That said, in73

implementation we use ten time steps per day, which suffices for the fidelity of the epidemiological dynamics in74

Eqs. [1].75

We generate 300 scenarios for Ω according to the procedure described in Appendix C. After obtaining a set of76

optimal triggers, we generate another 300 scenarios, Ω′, to assess performance. Those two sets of scenarios are77

similar to “training” and “testing” data used in statistics and machine learning. As a result, it is possible to obtain78

thresholds that meet the probabilistic constraint under Ω, but violate that constraint when tested using Ω′, although in79

our experience such violations are both rare and modest.80

Model [3] is a large-scale stochastic mixed-integer nonlinear program. Problems of the scale we consider cannot81

currently be solved using commercial integer programming software. We approximately solve the model using a grid82

search procedure. For a fixed set of thresholds, `i, i ∈ I, which satisfy inequalities [3m], we can run the simulation83

model for all ω ∈ Ω in parallel, applying transition dynamics [1]-[2] and using the logic of [3c]-[3k] and [3n]-[3o]84

to compute the binary variables which indicate the stages, Xi,t,ω , and the scenarios with capacity violations, Zω .85

For each set of thresholds that we consider in our grid search, we select the configuration that yields the minimum86

expected cost [3a] while satisfying the probabilistic constraint [3l]. Our grid search considers all configurations of the87

thresholds `i, i ∈ I, using increments of 10 that satisfy [3m] after computing an upper bound on `i necessary to satisfy88

the probabilistic constraint [3l].89

B Model Parameters90

Tables S1 and S2 partition the population of the Austin and Houston MSAs based on age groups (0-4 years old, 5-1791

years old, 18-49 years old, 50-64 years old, and 65 years and older) and risk groups (low risk and high risk). The92

high-risk group proportions are estimated based on the population with chronic conditions listed by the CDC 50093

cities data (6). Population data processing is detailed in the appendix of (4) and here we present only the final numbers94

used for this paper’s analysis.

Na,r 0-4 5-17 18-49 50-64 65 and older

Low risk 128527 327148 915894 249273 132505
High risk 9350 37451 156209 108196 103763

Table S1: Austin age-risk group populations.

95

Na,r 0-4 5-17 18-49 50-64 65 and older

Low risk 503894 1101232 2701594 778587 373036
High risk 38695 136609 624121 395585 344031

Table S2: Houston age-risk group populations.

We define four baseline contact matrices, H,S,W , and O, to describe the contact frequency between age groups96

at home, at school, at work, and at other locations. These baseline matrices assume there is no difference in contacts97

among the low- and high-risk groups. Each row and column represents an age group, in the order of 0-4 years old, 5-1798

years old, 18-49 years old, 50-64 years old, and 65 years old and above, with the row-column value corresponding to99

a “from-to” transmission contact:100
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H =


0.5 0.9 2.0 0.1 0.0
0.2 1.7 1.9 0.2 0.0
0.2 0.9 1.7 0.2 0.0
0.2 0.7 1.2 1.0 0.1
0.1 0.7 1.0 0.3 0.6

 S =


1.0 0.5 0.4 0.1 0.0
0.2 3.7 0.9 0.1 0.0
0.0 0.7 0.8 0.0 0.0
0.1 0.8 0.5 0.1 0.0
0.0 0.0 0.1 0.0 0.0



W =


0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.4 0.0 0.0
0.0 0.2 4.5 0.8 0.0
0.0 0.1 2.8 0.9 0.0
0.0 0.0 0.1 0.0 0.0

 O =


0.7 0.7 1.8 0.6 0.3
0.2 2.6 2.1 0.4 0.2
0.1 0.7 3.3 0.6 0.2
0.1 0.3 2.2 1.1 0.4
0.0 0.2 1.3 0.8 0.6

 .

The contact matrices φa
′,r′,a,r
i,t are calculated in the same way as Table S6 in (4), considering the effect of weekends,101

holidays, school closures, and physical distancing and cocooning of high-risk populations based on the risk stage.102

Stages correspond to distancing stages of different strictness, which govern the reduced number of daily contacts103

people make relative to baseline. In our model, this is reflected by a coefficient κi, i ∈ I, where κi = 0.75 would104

reduce the expected number of contacts to 25% of the baseline value. For the age group of 65 years and older and for105

the high-risk group, we use reductions based on cocooning, which are represented by coefficients ci, i ∈ I:106

φa
′,r′,a,r
i,t =


(1− κi)

[
(1− 1{off day}) · (1− 1{school closure}) · Sa′,a+ if a′, a ∈ {0-4yr, 5-17yr, 18-49yr, 50-64yr},

(1− 1{off day}) · Wa′,a +Ha′,a +Oa′,a
]

r′, r 6= high-risk
(1− ci)

[
(1− 1{off day}) · (1− 1{school closure}) · Sa′,a+

(1− 1{off day}) · Wa′,a +Ha′,a +Oa′,a
]

otherwise.

[4]

The indicator 1{off day} takes value 1 if the day is a weekend or holiday and is otherwise 0, and a similar indicator107

accounts for school closures. When a high-risk group, along with those 65 years and older, is involved either on the108

“giving” or “receiving” end of a contact, Eq. [4] assumes reduced transmission via the cocooning coefficient, ci.109

The following are key dates during the pandemic in Texas, and some define time blocks, which we use in estimating110

time-varying transmission reduction factors and other key model parameters as we describe shortly:111

• February 19, 2020: Seed date for simulation of Houston, assuming seeding by a single symptomatic individual112

age 18-49y. This corresponds to 14 days prior to the first detected COVID-19 case in Houston on March 4,113

2020.114

• February 28, 2020: Seed date for simulation of Austin, assuming seeding by a single symptomatic individual115

age 18-49y. This corresponds to 14 days prior to the first detected COVID-19 case in Austin on March 13, 2020.116

• March 24, 2020: Austin’s Stay Home-Work Safe Order is enacted at midnight (7). On the same day, Harris117

County (Houston) issues Stay Home, Work Safe Order (8).118

• May 1, 2020: The Governor of Texas relaxed physical distancing orders statewide (9).119

• May 21, 2020: Just prior to Memorial Day Weekend.120

• June 26, 2020: The Governor of Texas issued an executive order limiting service at bars and restaurants, and121

Travis County (which includes Austin) banned gatherings of more than 100 people (10, 11).122

• July 17, 2020: Time point in hospitalization data suggesting a change in dynamics.123

• August 9, 2020: The last day of observed data from the Seton Ascension hospital system used in estimating124

changes in ICU dynamics.125

• August 20, 2020: First day students returned to residence halls at the University of Texas at Austin.126
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• October 7, 2020: The last day of observed data used in estimating model parameters.127

We assume that there are six time blocks denoted by Tj for j ∈ {1, 2, 3, 4, 5, 6} as defined in Table S3. They guide128

fitting of transmission-reduction parameters, κ and c, and certain dynamics in use of the ICU and hospital duration, as129

detailed below.130

Time Block Start Date End Date Definition
T1 2/28/20 (Austin) 3/23/20 unmitigated transmission before first stay-home order

2/19/20 (Houston) 3/23/20
T2 3/24/20 5/20/20 effective period for first stay-home order
T3 5/21/20 6/25/20 relaxed period starting with Memorial Day weekend
T4 6/26/20 7/16/20 period of effective physical distancing
T5 7/17/20 8/19/20 period distinguished by changes in ICU dynamics
T6 8/20/20 10/7/20 period of effective physical distancing

Table S3: The five time blocks, T1, T2, T3, T4 ∪T5, and T6 correspond to different rates of spread, as estimated using transmission-
reduction factors κ and c. The fourth and fifth time blocks, T4 and T5, differ only in dynamics involving the ICU, both the admission
probability and the sojourn time in the general ward prior to ICU admission.

We model the hospitalization dynamics, including proportions of hospitalized requiring the ICU and durations
in the general ward and ICU, using data from Seton Ascension (“Seton data”). Seton Ascension operates a system
of hospitals in central Texas anchored by Seton Main Hospital and Dell Seton Medical Center in Austin. While we
model differences based on five age groups, we assume the same hospital dynamics in different hospital systems after
a patient is admitted across Austin and Houston due to similar medical standards. Conditional on being admitted to
the hospital, we observe a decreasing trend in the probability a patient is admitted to the ICU throughout the time
horizon, which holds for both direct admissions to the ICU and patients who are first admitted to the general ward.
Among patients who enter the general ward and are then admitted to the ICU, their duration of stay in the general ward,
determined by ηICU , grows over time. For each time block, Tj , we assume a constant ηICU,j and further assume a
constant daily decrease, rj , on both of the fractions, pIH and HICUR:

pIH,t+1 = rjpIH,t ∀j ∈ {1, 2, 3, 4, 5, 6}, t ∈ Tj [5a]
HICURt+1 = rjHICURt ∀j ∈ {1, 2, 3, 4, 5, 6}, t ∈ Tj , [5b]

along with a similar decrement across boundaries of the blocks. We use duration times for each time block from the131

Seton data to estimate ηaICU,j and fit rj , with the estimated parameters in Table S4.132

age group T1 T2 T3 T4 T5 ∪ T6

ηaICU,j

0-4 yr
5-17 yr

18-49 yr
50-64 yr
≥ 65 yr

0.5882
0.5882
0.5882
0.6273
0.6478

0.5882
0.5882
0.5882
0.6273
0.6478

0.3885
0.3885
0.3885
0.4143
0.4278

0.2640
0.2640
0.2640
0.2815
0.2907

0.2589
0.2589
0.2589
0.2761
0.2851

rj 0.9973 0.9973 0.9932 0.9921 1

Table S4: Estimates of ICU admission probability parameters, ηICU , pIH , andHICUR; see Fig. S1 and accompanying parameter
definitions. For each age group, a, and each time block, j, we specify ηICU , and we give the daily decrement factor, rj , used in
Eq. [5].

Using the Seton data, and consistent with the transition diagram in Fig. S1, we define the ICU duration for a patient
as the time between their admission to the ICU and their discharge from the hospital. The reality is more complex
as ICU patients typically return to the general ward prior to discharge from the hospital, and iterations between the
two units, driven by a patient’s health status, can also occur. Therefore, the reported duration in the ICU leads to over
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estimating ICU utilization and under-estimating that of the general ward. To handle this in our model, we introduce
two constant parameters, αICU and αH , to better estimate durations in the ICU and general ward and better represent
their respective utilization:

γH = (1− αH)γ0
H

γICU = (1 + αICU )γ0
ICU

µ = (1 + αICU )µ0,

where γ0
H , γ0

ICU , and µ0 are obtained from Seton data, with each row corresponding to an age group in ascending
order:

γ0
H =


0.2399
0.2399
0.2399
0.2222
0.2124

 , γ0
ICU =


0.0700
0.0700
0.0700
0.0575
0.0518

 , µ0 =


0.0749
0.0749
0.0749
0.0766
0.0799

 ,

with units of day−1.133

The bulk of the epidemiological and hospitalization parameters are specified above or are detailed in Tables S10134

and S11, with the latter obtained from the literature or information collected from local healthcare agencies. The time135

blocks are specified in Table S3. Given these, we estimate 14 parameters, but with 7 degrees of freedom, as we detail136

below. We perform the fit of the deterministic SEIR model in Eqs. [1] using: (i) daily COVID-19 admissions, denoted137

Ht and available for Austin only; (ii) a daily COVID census in the general ward, IHt; and (iii) a daily COVID census138

in the ICU, ICUt, all on day t. The fit is performed separately for the Austin MSA and Houston MSA. By minimizing139

a weighted sum of least-square errors, we estimate κ̂j and ĉj , j = 1, 2, . . . , 6, αH , and αICU , using SciPy/Python (12)140

via scipy.optimize.least_squares. We use the “hat” notation on κ and c to distinguish, for example, κ̂j141

for time block j (see Table S3) from κi, which corresponds to stage i per Eq. [4], and show the mapping shortly.142

We minimize ∑
t

(IHt − ÎHt)
2 + w2

ICU

∑
t

(ICUt − ÎCU t)2 + w2
H

∑
t

(Ht − Ĥt)
2,

where ÎHt, ÎCU t, and Ĥt denote the estimated IHt, ICUt, and Ht obtained through Eqs. [1]; wICU and wH are143

scaling constants; and the sum is over t ∈ T1 ∪ · · · ∪ T6. We assume wICU = 1.50 and wH = 7.58, as those144

values approximate magnitudes relative to that of the general ward. To obtain a parsimonious model, we use ĉ1 = 0,145

ĉ2 = ĉ3 = κ̂2, ĉ4 = ĉ5 = κ̂4 = κ̂5 and ĉ6 = κ̂6, which reduces the number of estimated parameters from 14 to 7. The146

rationale is that there was effectively no cocooning during the initial time block T1, and thus we set ĉ1 = 0. Because147

physical distancing was stricter over time block T2 than time block T3, and the cocooning effectiveness parameters are148

expected to be at least that of the distancing parameters, we use ĉ2 = ĉ3 = κ̂2. Because of behavioral changes over149

time, including increased use of face-masks, when we perform the fit we observe greater reduction in transmission150

in time blocks 4 and 5 than we do in block 2, and so we use ĉ4 = κ̂4. Finally, while hospitalization parameters151

differ over time blocks T4 and T5, rates of transmission do not appear to differ significantly, and so we consider152

ĉ4 = ĉ5 = κ̂4 = κ̂5.153

We use the trust region reflective algorithm (trf) in scipy.optimize.least_squares, with lower and154

upper bounds on each parameter of 0 and 1, respectively. The algorithm obtains locally optimal values of the param-155

eters, the quality of which has been validated by comparing projections with the observed data. All the remaining156

parameters are set to their default values (see above and Tables S10 and S11). The fitted values for κ̂j and ĉj and αH157

and αICU are given in Table S5 for both Austin and Houston.158

The physical distancing parameters for each stage are mapped to κi and ci for i ∈ I based on the historical
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Austin Houston
j κ̂j ĉj κ̂j ĉj
1 0.0613 0.0000 0.1168 0.0000
2 0.7436 0.7436 0.7304 0.7304
3 0.6026 0.7436 0.5643 0.7304
4 0.7815 0.7815 0.7553 0.7553
5 0.7815 0.7815 0.7553 0.7553
6 0.7544 0.7544 0.7118 0.7118
αH 0.2862 0.4858
αICU 0.5621 0.4876

Table S5: Fitted transmission reduction parameters, κ̂j , and cocooning effectiveness parameters, ĉj , for each time block Tj , along
with estimated hospitalization duration adjustment parameters, αH and αICU , for both Austin and Houston.

implementation of the policy. We set:

κ1 = κ̂4 c1 = κ̂4 [6a]

κ2 =
κ̂4 + κ̂3

2
c2 = κ̂2 [6b]

κ3 = κ̂3 c3 = κ̂2 [6c]

κ4 = κ̂3 −
κ̂4 − κ̂3

2
c4 = 1− 1.25 · (1− c2). [6d]

In Eq. [6a] we set κ1 (red) to the strictest observed level of transmission reduction, June 26–August 19, 2020.159

In Eq. [6c] we set κ3 (yellow) to the relaxed period of relatively high transmission, roughly from Memorial Day160

weekend through June 25, 2020. Eq. [6b] forms κ2 (orange) as the average between these two levels of reduction. The161

most relaxed stage of transmission reduction we consider (blue), uses the same increment between the red and orange162

stages and between orange and yellow in Eq. [6d]. We do not separately estimate cocooning, but assume it matches163

the strictest level of reduction in the low-risk population when in the red stage, that observed during the stay-home164

period after March 24th for the orange and yellow stages, and then in the blue stage relaxes by a 25% increment, as165

shown in Eq. [6d], so that a reduction of 0.75 would drop to 0.6875.166

Algorithm 1: Pseudo-code for the sampling procedure

1 Initialize Ω = ∅
2 while |Ω| < 300 do
3 for j = 1, . . . , 6 do
4 if j == 1 then
5 Generate a scenario (sample path) ω over time block T1

6 else
7 Continue simulating scenario ω over time block Tj

8 Compute R2 = 1−

∑
t∈T1∪···∪Tj

(IHt−ÎHt)2∑
t∈T1∪···∪Tj

(IHt−IH)2

9 if R2 < 0.85 then
10 break and initiate next ω and j = 1

11 Ω← Ω ∪ {ω}

10



C Selection of Scenarios167

After fitting the parameters via least-squares minimization using the procedure just described, we simulate a set of168

scenarios, Ω. There are macro stochastics, involving modeling σ, ωA, γA, and γY as random variables; see Table S10.169

And, micro stochastics govern a binomially distributed number of transitions between compartments. Inevitably, some170

stochastic sample paths will yields hospitalizations that diverge from observed data, including sample paths in which171

spread quickly terminates after initializing with a single infectious person.172

Here we describe how we select scenarios, sampled from the marginal distributions of σ, ωA, γA, and γY , and
from the micro-stochastics process, in order to generate a set of 300 scenarios, indexed by ω ∈ Ω and used in Eqs. [1].
Because the projections at earlier time points guide the trigger optimization model at later time points, the goal is to
start the latter with scenarios, ω ∈ Ω, that are consistent with observed hospitalizations up to that point in time. In
order to evaluate the quality of scenario ω in this sense, we use

R2 = 1−
∑
t(IHt − ÎHt)

2∑
t(IHt − IH)2

,

where IH is the mean of the IHt values. Algorithm 1 summarizes the sampling procedure to generate |Ω| = 300173

scenarios.174

Algorithm 1 uses the six time blocks Tj , j = 1, 2, 3, 4, 5, 6, given in Table S3. We start with simulating a sample175

path ω during the first time block T1 (see line 4–5), and compute the corresponding R2 value at the end of T1. If176

the scenario, ω, has the desired quality over T1, i.e., R2 ≥ 0.85, we continue simulating the path ω. At the end of177

each time block, we compute the corresponding R2 value as shown in line 8, and decide whether the path is kept or178

discarded, as shown in lines 9–10. Here, the threshold value 0.85 of R2 is a tuning parameter, which we return to179

below. Once Algorithm 1 provides 300 scenarios at the end of time block T6, we continue simulating them for use in180

the stochastic optimization model [3] over the rest of the time horizon.181

Fig. S2 show histograms of the resulting marginal distributions from Algorithm 1 for σ, ωA, γA, and γY . The scat-182

ter plots of Fig. S3 again use the scenarios, Ω, obtained by Algorithm 1 to give insight to bivariate dependencies. We183

generate random variables from the independent nominal triangular distributions given in Table S10, and Algorithm 1184

“accepts” those that are consistent with observed hospitalizations. The resulting marginal distributions can differ from185

the nominal distribution; see the distribution of ωA in Fig. S2. In addition, even though we sample independently from186

the nominal distributions, Algorithm 1 can induce dependence; see the strong negative correlation between ωA and187

1/γY in Fig. S3.188

In Algorithm 1, we use a threshold of 0.85 for R2, through each time block, to decide whether the generated path189

satisfies the desired quality through October 7, 2020. Of course, different thresholds are possible. To understand how190

sensitive the optimized policies are for different threshold values, we also obtain optimized policies using the scenarios191

generated with two more thresholds for R2, 0.65 and 0.75, for Austin. Fig. S4 illustrates the projections of new daily192

hospitalizations and ICU hospitalizations. Analogs of the projections for those thresholds are also visualized in Fig. 1193

in the main text for a threshold of 0.85. There are not dramatic differences across these three thresholds for R2. The194

optimized policies are the same for thresholds of 0.65 and 0.75, and we observe a slightly smaller trigger (120 versus195

130) for the red stage for an R2 threshold of 0.85. As the threshold values shrink from 0.85 to 0.75 to 0.65: the196

expected number of days in the most stringent red-stage lock-down are 7.6, 5.4, and 5.8; the 95th percentiles of peak197

hospitalizations are 993, 1033, and 1028 (capacity is 1500); and the 95th percentiles of peak ICU demand are 317,198

327, and 347 (capacity is 331). Here, the trigger policy is optimized for ICU capacity, and we observe occasional199

non-monotonic behavior due to statistical noise. That said, these results, along with Fig. S4, suggest that our results200

are not overly sensitive to our choice of 0.85 for the threshold.201

For the purpose of visualizing results we use spaghetti plots that detail 300 sample paths, and we also use a single202

“representative” path. A simple least-squares selection of a path from the collection of 300 paths arguably does not203

yield a representative path. Because the timing of peaks in paths differs, the simple least-squares path is “flatter”204

through the cloud than most paths. Here we describe how we select a representative path from the collection of 300.205
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Figure S2: Histogram of the random variables σ, ωA, γA, and γY for the scenario set Ω obtained by Algorithm 1. The first and
second row represent the set of scenarios for Austin and Houston, respectively. Rather than showing the rates, we show 1/σ, 1/γA,
and 1/γY , which correspond to durations in days. We sample from the marginal distributions of each of the four parameters, and
Algorithm 1 accepts sample paths consistent with hospitalizations, while also sampling a binomial number of transitions between
compartments in the SEIR-style model. While there are modest deviations from the nominal triangular distributions for durations
(1/σ, 1/γA, and 1/γY ), the distribution of the relative infectiousness of an asymptomatic individual (ωA) deviates significantly
from its nominal distribution.

We define a selection criterion based on metrics of interest, such as the total number of people hospitalized in the
general ward over the duration, the peak number of people in the hospital, and the time of that peak. We let ÎHt,ω ,
ÎCU t,ω , and Ĥt,ω denote the estimates of IHt, ICUt, and Ht for each sample path, ω ∈ Ω, and we first obtain the
squared deviations from the observed data, defining Zω,obs as follows:

Zω,obs =
∑
t

(ÎHt,ω − IHt)
2 + w2

ICU

∑
t

(ÎCU t,ω − ICUt)2 + w2
H

∑
t

(Ĥt,ω −Ht)
2,

where wIH and wICU are scaling constants. Here, t ranges over all days up to October 7, 2020, for which we have206

observed data. We then define metrics to represent the statistical properties of the scenarios as in Table S6.207

Metric Definition Standardized Metric

IHω,tot =
∑T
t=1 IHt,ω Total number of patient-days Zω,IHtot = (IHω,tot − µ̂IHtot)/σ̂IHtot

IHω,max = maxt IHt,ω Peak hospitalization Zω,IHmax = (IHω,max − µ̂IHmax)/σ̂IHmax
IHω,med = mediantIHt,ω Median hospitalization Zω,IHmed = (IHω,med − µ̂IHmed)/σ̂IHmed
tω,IHmax = arg maxt IHt,ω Timing of hospitalization peak Ztω,IHmax = (tω,IHmax − µ̂tIHmax )/σ̂tIHmax

Table S6: Metrics for hospitalized patients in the general ward under each sample path ω. Note that µ̂ and σ̂ represent the sample
mean and sample standard deviation for each metric, across the |Ω| = 300 sample paths.

Analogs of the standardized metrics for those hospitalized in the general ward (IH) from Table S6 are also com-208

puted for those hospitalized in the ICU (ICU ), and new daily hospital admissions (H) to form a total of 12 such209
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Figure S3: Scatter plot of the random variables 1/σ, ωA, 1/γA, and 1/γY for the scenario set Ω selected by Algorithm 1. The left
and right scatter plots represent the set of scenarios, Ω, for Austin and Houston, respectively. We sample independently from the
marginal distributions of each of the four parameters, and the algorithm accepts sample paths consistent with hospitalizations. This
can induce dependencies as shown, for example, between 1/γY and ωA.

metrics. We select the representative scenario ω′ such that210

ω′ ∈ arg min
ω∈Ω

(
wstd
12

Zω,std + wobsZω,obs

)
[7]

where

Zω,std = Z2
ω,IHtot + Z2

ω,IHmax + Z2
ω,IHmed

+ Z2
ω,tIHmax

+ Z2
ω,ICUtot + Z2

ω,ICUmax + Z2
ω,ICUmed

+ Z2
ω,tICUmax

+ Z2
ω,Htot + Z2

ω,Hmax + Z2
ω,Hmed

+ Z2
ω,tHmax

,

where wstd and wobs are positive weights that sum to one. This method is used to select the representative paths211

plotted in Fig. 1 in the main text, and Figs. S4-S5 and Figs. S8-S9. Moreover, when we have paired plots of total212

hospitalizations, or ICU hospitalizations, along with daily admissions (see Fig. 1 in the main text and Figs. S4-S5)213

then the cyan and black curves correspond to the same scenario.214

D Test Settings215

D.1 Benchmark Policies216

In Section 2 of the main text we compare four alternative policies to our optimized four-stage trigger policy. First, we217

test a benchmark which is again optimized and differs from the four-stage policy only in that it has access to just two218

stages of mitigation, red and yellow. In this case, we require a single threshold to identify when to toggle between the219

two stages. In our second benchmark, we again optimize in the same way as the four-stage policy, but we do so using220

a 0.95-level probabilistic constraint to respect total hospital capacity rather than ICU capacity.221

13



2020 2021
 Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep 0

50

100

150

200

250
CO

VI
D-

19
 H

os
pi

ta
l A

dm
iss

io
ns

(S
ev

en
-d

ay
 A

ve
ra

ge
)

(a) Daily Hospital Admissions: Austin (R2 ≥ 0.65)
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(b) ICU Hospitalizations: Austin (R2 ≥ 0.65)
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(c) Daily Hospital Admissions: Austin (R2 ≥ 0.75)
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(d) ICU Hospitalizations: Austin (R2 ≥ 0.75)

Figure S4: COVID-19 healthcare projections for Austin under the optimized staging policy, from October 7, 2020 through Septem-
ber 30, 2021. Each row represents a projection with a different threshold value forR2 in Algorithm 1, and are analogs of Fig. 1 in the
main text, which uses R2 ≥ 0.85. The strategies were derived to minimize the expected days in costly alert stages while respecting
ICU capacity. The light curves indicate 300 stochastic simulations, the single solid curves are representative central projections, the
red points correspond to the reported COVID-19 admissions and ICU census for all Austin area hospitals through October 20, 2020,
and the vertical black line indicates the start of the projection period. (a,c) The optimized policy triggers changes in the COVID-19
alert level when the seven-day moving average of daily COVID-19 hospital admissions crosses optimized thresholds, as indicated
by the colored horizontal bands. The alert stage shifts when the admissions indicator surpasses or recedes below the corresponding
threshold. (b,d) The policy provides a 95% guarantee that the number of COVID-19 ICU patients does not exceed the estimated
local capacity of 331 patients (black horizontal line). The background colors represent the proportion of the simulated scenarios in
each alert stage on each day. Optimized policies that keep us within ICU capacity are identical under thresholds 0.65 and 0.75, and
there is a modest change in the red stage’s trigger (represented by the red horizontal band) for a threshold of 0.85.

We assess two additional benchmarks. Instead of triggering based on the seven-day moving average of daily hos-222

pital admissions, we use the seven-day moving average of (i) daily census in the ICU and (ii) the estimated prevalence223

of infectious individuals. Alternative (i) is currently used in France (13), and in this case we use respective trigger224

thresholds for the red, orange, and yellow stages based on 60%, 30%, and 0% of the ICU capacity. Alternative (ii)225

was proposed by Harvard Global Health Institute (14), and stages red, orange, yellow, and blue correspond to more226

than 25, 10 to 25, 1 to 10, and less than 1 daily confirmed infectious case(s) per 100 000 people. Those thresholds227

are adjusted with the population of Austin MSA (2.2 million) and Houston MSA (7.1 million), and use a 1-in-10 ratio228

between the confirmed infectious cases and total estimated infectious cases.229

D.2 ACS Parameters230

Table S7 details parameters used in the ACS analysis in Section E.2 for the Austin MSA, involving weighted combi-231

nations of transmission reduction between the orange and yellow stages. The stages differ in the physical distancing232

coefficient, κ, but all use the same cocooning coefficient, c, as shown in the table.233

We assume the ACS can be set up within two days; i.e., the ACS will be ready to use two days after the trigger234

threshold is reached. In reality, an ACS is built in phases with staffing being the final phase that allows the facility to235

function. The trigger threshold to operationalize and size the ACS are both selected by a grid search with the grid step236

sizes of 10 and 100, respectively237
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Transmission Reduction κ c
orange yellow

75% 25% 0.6697 0.7436
50% 50% 0.6473 0.7436
25% 75% 0.6250 0.7436
0% 100% 0.6026 0.7436

Table S7: The two left-most columns indicate the relative weight on transmission reduction factors for the orange and yellow stages.
So, the last row corresponds to yellow, while the 50-50% row corresponds to equal weight on the orange and yellow values. The
two right-most columns show the resulting transmission reduction coefficients for the low-risk population (κ) and the high-risk
population (c) for Austin.

E Supplementary Analysis238

E.1 Optimal Triggers: Houston239

We present results for Houston in a parallel format as for Austin in Section 2 of the main text. Houston’s nine-county240

MSA has a population of 7.1 million. We use the estimated transmission rates from February 19–October 7, 2020 as241

given in Tables S3 and S5. Detailed results for our proposed policy and the four benchmarks are shown in Table S8242

and we visualize the disease dynamics associated with the optimal triggers by new daily hospitalizations and the ICU243

daily census in Fig. S5, parallel to Table 1 and Fig. 1 in the main text. We also visualize the benchmark comparison244

results in Fig. S6, like in Fig. 2 in the main text. Qualitatively the results are similar to those for Austin except that for245

Houston the Percent ICU policy is reliable, albeit at a larger socioeconomic cost than the Optimal policy.246

Policies
Optimal Optimal two-stage Optimal hospital Percent ICU Incidence

(ICU capacity) (ICU capacity) (overall capacity) (France) (Harvard)

Indicator data COVID-19 hospital admissions percent ICU beds new cases per 100 000
(seven-day average) occupied by COVID-19 (seven-day average)

Thresholds

blue (new normal) <30 — <30 — <1
yellow (moderate risk) 30-90 <380 30-160 <30% 1-10
orange (high risk) 90-500 — 160-560 30%-60% 10-25
red (very high risk) >500 >380 >560 >60% >25

Median days in red stage [90% PI] 0 [0-0] 15 [14-30] 0 [0-0] 16 [0-23] 0 [0-14]

Probability ICU demand exceeds capacity 2.3% 2.3% 53.7% 0.0% 0.0%

Median peak ICU demand [patients] 780 901 1010 658 303

95th percentile of peak ICU demand 977 984 1187 740 395

Median unserved ICU demand (patient-days) [90% PI] 0 [0-0] 0 [0-0] 15 [0-3915] 0 [0-0] 0 [0-0]

99th percentile of unserved ICU demand (patient-days) 540 24 6843 0 0

Table S8: Performance comparison across five COVID-19 staging policies for Houston. From left to right, the three optimal policies
are derived to prevent overwhelming ICU demand using either a four-level or two-level alert system or to prevent overwhelming
inpatient demand using a four-level system. As benchmarks, we evaluate policies implemented in France (13) and proposed as
gating criteria for relaxing measures and opening schools in (14). For Houston, the orange and red thresholds for the Percent
ICU policy translate to 300 and 600 COVID-19 ICU cases, respectively; the yellow, orange, and red thresholds for the Incidence
policy translate to 710, 7100, and 17750 new cases, respectively, assuming that one in ten cases is reported. We implemented each
policy in our stochastic SEIR model fit to hospitalization data for the Houston, Texas MSA assuming the reported COVID-19 ICU
and inpatient capacities of 1000 and 4500 beds, respectively. Outcomes are based on 300 stochastic simulations of COVID-19
transmission and healthcare burden from October 7, 2020 through September 30, 2021 under each policy.
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(a) Daily Hospital Admissions: Houston
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(b) ICU Hospitalizations: Houston

Figure S5: COVID-19 healthcare projections for Houston under the optimized staging policy, from October 7, 2020 (marked by
the vertical line) through September 30, 2021. The trigger strategy was derived to minimize the expected days in costly alert
stages while respecting ICU capacity. In both plots, the light curves indicate 300 stochastic simulations, the single solid curve
is a representative central projection, and the red points correspond to the ICU census for all Houston MSA hospitals through
October 20, 2020. (a) The optimized policy triggers changes in the COVID-19 alert level when the seven-day moving average of
daily COVID-19 hospital admissions crosses set thresholds, as indicated by the colored horizontal bands. The alert stage shifts
when the admissions indicator surpasses or recedes below the corresponding threshold. (b) The policy provides a 95% guarantee
that the number of COVID-19 ICU patients does not exceed the estimated local capacity of 1000 patients (black horizontal line).
The background colors represent the proportion of the simulated scenarios in each alert stage on each day.
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(b) Proportion of time per stage and unserved ICU patient-days (95th percentile)

Figure S6: Projected ICU surges and days under lock-down for the optimized strategy versus four alternative policies. Optimal is
the recommended strategy. Optimal two-stage is optimized to respect ICU capacity under a two-level alert system, and Optimal
hospital respects total hospital capacity under a four-level alert system. Percent ICU is based on France’s lock-down policy (13)
and Incidence is based on reopening criteria proposed by Harvard (14). (a) The maximum daily number of COVID-19 patients in
ICUs versus the number of days under the most restrictive alert level of red. Each point represents the result of a single stochastic
simulation under one of the five policies (indicated by color). The plot includes 300 points per policy; the vertical gray line indicates
the estimated COVID-19 ICU capacity of 1000 patients for the Houston area. The Optimal policy is designed to minimize the use
of the strictest stages of mitigation while having 95% of the peak-demand values within ICU capacity. (b) The expected proportion
of days spent in each stage, colored in the same manner as Fig. S5 and the 95th percentile of ICU shortage measured in patient-days
above capacity, in gray with values indicated on the right y-axis.

E.2 Construction of an Alternate Care Site247

The success of trigger-based policies for ICU and hospital capacity depends on public adherence, which is not guaran-248

teed. In case of failure, Austin applied this framework to determine both a threshold for launching an alternate care site249

(ACS) and the required capacity. The city planned to transfer low acuity COVID-19 patients to the ACS when cases250

exceed the city-wide estimated 1500 patient capacity. We consider four scenarios for non-adherence, each assuming a251

constant transmission rate between those estimated for Austin under restrictions of the orange and yellow stages. The252

lowest adherence scenario assumes the transmission rate estimated in Austin from Memorial Day (late-May) through253

late-June of 2020, after Opening Up America Again was promulgated and before the city and state took measures to254
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curb the early summer surges, including strict face-mask requirements. In this situation, the ACS should be stood255

up when the seven-day rolling average of COVID-19 hospital admissions reaches 110; the recommended trigger in-256

creases to 220 under the highest adherence scenario (Table S9 and Fig. S7). Failing to construct an ACS would lead to257

a median of 30519 [90% PI: 11834-62450] and 0.0 [90% PI: 0-255] patient-days of unmet demand, under these two258

scenarios, respectively. We would expect demand for ACS beds to last up to two months, and to decrease with higher259

levels of adherence.260

Scenario Launch Target Probability 95th Percentile
Adherence Transmission rate trigger capacity launched Days used Peak demand

moderate-high 75%-25% 220 100 0.09 41 55
moderate 50%-50% 200 700 0.64 61 640
moderate-low 25%-75% 210 1400 0.97 63 1292
low 0%-100% 110 2000 1.00 65 1906

Table S9: Optimized ACS policies under four adherence scenarios for the Austin area. The scenarios assume that the public do
not fully comply with enacted alert levels, resulting in a constant transmission rate lying somewhere between those expected under
the orange and yellow stages. The percents in the second column indicate the relative weighting of the orange and yellow rates;
for example, the moderate-high rate is obtained via a 75-25 weighting of the two rates, respectively. The ACS policies track the
moving seven-day average of COVID-19 hospital admissions and assume that the ACS will be ready to accept patients two days
after triggering. The launch trigger is the derived threshold for opening the ACS; the target capacity is the estimated total ACS beds
needed, based on the criteria that 95% of projections remain under ACS capacity; probability launched is the fraction of simulations
in which admissions exceed the launch trigger; the 95th percentiles of days used and peak demand provide upper bounds on the
projected demand. Coupled optimization of the the trigger and capacity in discrete steps of 100 beds and 10 daily admissions,
respectively, along with the resulting slack between peak demand and target capacity can produce small non-monotonicities in
optimal triggers, as seen in the middle two rows. We assume the ACS remains open for 100 days once triggered, which is more
than sufficient to cover the estimated 95th percentile of days required (penultimate column).
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Figure S7: Projected COVID-19 hospital census for Austin under optimized ACS policies, from October 7, 2020 through Septem-
ber 30, 2021. In both plots, the light curves indicate 300 stochastic simulations, the single solid curve is a relatively early projection,
light green indicates the baseline COVID-19 hospital capacity, dark green indicates the timing and size of the ACS triggered by the
solid curve, the red points correspond to the reported COVID-19 hospital census for all Austin area hospitals through October 20,
2020, and the vertical black line indicates the start of the projection period. (a) Under a moderate-high adherence scenario, a 100-
bed ACS is launched when the seven-day rolling average of hospital admissions exceeds 220. (b) Under a low adherence scenario,
a 2000-bed ACS is launched when the seven-day rolling average of hospital admissions exceeds 110. Hospital admissions are not
shown.

E.3 Sensitivity Analysis261

We report additional results on the sensitivity associated with public compliance with recommended physical distanc-262

ing, or lack thereof. Figs. S8(a) and S8(b) show results assuming that after October 7th the transmission reduction263
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level stays at that of the yellow stage. The ICU hospitalizations greatly exceed the ICU capacity in all 300 scenarios for264

both Austin and Houston. Median peak ICU hospitalizations are 810 for Austin (capacity 331) and 2574 for Houston265

(capacity 1000) with corresponding 95th percentiles of 1094 and 2920. For Austin and Houston we estimate a median266

20366 and 70274 unserved patient-days in the ICU, with respective 90% prediction intervals of [13505-30575] and267

[55077-84364].268

Figs. S8(c) and S8(d) show results that suppose optimized triggers from Table 1 in the main text are carried out269

but the high-risk population is not cocooned, and is instead subject to transmission rates in the low-risk population. In270

this case, we violate ICU capacity in 4.3% of the 300 out-of-sample scenarios in Austin and 97.3% of the scenarios271

in Houston. The 95th percentile of peak ICU hospitalizations grows to 329 for Austin (capacity 331) and 1231 for272

Houston (capacity 1000). After October 7, 2020, for Austin, we estimate a median 0 unserved patient-days, and for273

Houston, the corresponding estimate is 1626, with respective 90% prediction intervals of [0-0] and [76-4014].274

In Fig. S9 we show results of tests for four situations in which the public complies with the optimal policy up to a275

certain date and after that date, compliance fails and transmission matches that of the yellow stage. The figure shows276

results when such non-compliance respectively begins on February 1, March 1, April 1, and May 1, 2021.277

For Austin starting from February 1st, March 1st, and April 1st, and Houston starting from February 1st, the surge278

results in the 95th percentile of the number of ICU patients exceeding capacity. Detailed simulation results, which279

include the number of unserved patient-days and deaths follow. We compute 90% prediction intervals using symmet-280

ric order statistics, i.e., the middle 270 of 300 scenarios. As a result, the interval for unserved ICU patient-days is281

necessarily [0-0] whenever the 95th percentile of peak ICU demand is within capacity.282

283

Austin:284

Yellow stage starts on:285

• February 1, 2021:286

– probability the number of hospitalized ICU patients exceeds COVID-19 ICU capacity: 88.7%287

– 95th percentile of peak ICU hospitalizations: 555288

– median unserved ICU patient-days: 2236289

– 90% prediction interval of unserved ICU patient-days: [0-7368]290

• March 1, 2021:291

– probability the number of hospitalized ICU patients exceeds COVID-19 ICU capacity: 53.7%292

– 95th percentile of peak ICU hospitalizations: 431293

– median unserved ICU patient-days: 8294

– 90% prediction interval of unserved ICU patient-days: [0-2368]295

• April 1, 2021:296

– probability the number of hospitalized ICU patients exceeds COVID-19 capacity: 5.3%297

– 95th percentile of peak ICU hospitalizations: 333298

– median unserved ICU patient-days: 0299

– 90% prediction interval of unserved ICU patient-days: [0-2]300

• May 1, 2021:301

– probability the number of hospitalized patients exceeds COVID-19 capacity: 2.7%302

– 95th percentile of peak ICU hospitalizations: 317303

– median unserved ICU patient-days: 0304

18



– 90% prediction interval of unserved ICU patient-days: [0-0]305

Houston:306

Yellow stage starts on:307

• February 1, 2021:308

– probability the number of hospitalized ICU patients exceeds COVID-19 capacity: 74.0%309

– 95th percentile of peak ICU hospitalizations: 1294310

– median unserved ICU patient-days: 1045311

– 90% prediction interval of unserved ICU patient-days: [0-8941]312

• March 1, 2021:313

– probability the number of hospitalized ICU patients exceeds COVID-19 capacity: 2.7%314

– 95th percentile of peak ICU hospitalizations: 978315

– median unserved ICU patient-days: 0316

– 90% prediction interval of unserved ICU patient-days: [0-0]317

• April 1, 2021:318

– probability the number of hospitalized ICU patients exceeds COVID-19 capacity: 2.3%319

– 95th percentile of peak ICU hospitalizations: 977320

– median unserved ICU patient-days: 0321

– 90% prediction interval of unserved ICU patient-days: [0-0]322

• May 1, 2021:323

– probability the number of hospitalized ICU patients exceeds COVID-19 capacity: 2.3%324

– 95th percentile of peak ICU hospitalizations: 977325

– median unserved ICU patient-days: 0326

– 90% prediction interval of unserved ICU patient-days: [0-0]327
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(a) ICU Hospitalizations: Austin
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(b) ICU Hospitalizations: Houston
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(c) ICU Hospitalizations: Austin
2020 2021

 Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep 0

250

500

750

1000

1250

1500

1750

2000

CO
VI

D-
19

 IC
U 

Pa
tie

nt
s

(d) ICU Hospitalizations: Houston

Figure S8: Projections for COVID-19 ICU hospitalizations in the Austin MSA and Houston MSA when public compliance wanes,
and high-risk population cocooning is not followed through the time horizon. Panels (a) and (b) present daily ICU hospitalizations
(heads in beds) when the yellow stage holds after October 7th, and panels (c) and (d) present daily ICU hospitalizations when
optimized triggers are used but when there is no cocooning; instead transmission reduction in the high-risk population degenerates
to that of the low-risk population.
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(a) Compliance until February 1st: Austin
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(b) Compliance until February 1st: Houston
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(c) Compliance until March 1st: Austin
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(d) Compliance until March 1st: Houston
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(e) Compliance until April 1st: Austin
2020 2021
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(f) Compliance until April 1st: Houston
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(g) Compliance until May 1st: Austin
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(h) Compliance until May 1st: Houston

Figure S9: Projections for daily COVID-19 ICU hospitalizations (heads in beds) in the Austin MSA and Houston MSA when the
optimal policy in Table 1 of the main text is in effect until: February 1st (a) and (b); March 1st (c) and (d); April 1st (e) and (f);
and May 1st (g) and (h). The level of transmission corresponds to the yellow stage thereafter. The projections suggest that, to stay
within total hospital capacity, public compliance is needed through May 1st in Austin and March 1st in Houston.
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Parameters Values Source

β: transmission rate Austin: 0.06901
Houston: 0.06401

(4, 15)

P : proportion of pre-symptomatic
transmission (%)

44 (5)

ωA: infectiousness of individuals in
compartment IA, relative to IY

ωA ∼ Triangular (0.29,0.29,1.4) (16)

τ : symptomatic proportion (%) 57 (17)

ωP : infectiousness of individu-
als in pre-symptomatic and pre-
asymptomatic compartments, rela-
tive to symptomatic and asymp-
tomatic compartments

ωP =
P

1−P
τ(YHRηH

+ 1−YHR
γY

)+(1−τ)
ωA
γA

τ
ρY

+(1−τ)
ωA
ρA

σ : exposed rate 1
σ ∼ Triangular (1.9, 2.9, 3.9) Based on incubation (18) and pre-

symptomatic periods

γA: recovery rate from compart-
ment IA

1
γA
∼ Triangular (3, 4, 5) (5)

γY : recovery rate from symptomatic
compartment IY

1
γY
∼ Triangular (3, 4, 5) (5)

ρA: rate at which pre-asymptomatic
individuals become asymptomatic

Equal to ρY (5)

ρY : rate at which pre-symptomatic
individuals become symptomatic

1
ρY

= 2.3 (5)

IFR: infected fatality ratio, age
specific (%)

Low risk High risk

0.000917 0.00917
0.00218 0.0218
0.0339 0.339
0.252 2.52
0.644 6.44

Age adjusted from (19)

Y FR: symptomatic fatality ratio,
age specific (%)

Low risk High risk

0.00161 0.0161
0.00382 0.0382
0.0594 0.594
0.442 4.42
1.13 11.3

Y FR = IFR
1−τ

C: daily cost to stay at specific
stages

C1 10000
C2 100
C3 10
C4 1

Table S10: Model parameters
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Parameters Value Source

ηH : rate from symptom onset to
hospital admission

0.1695 5.9 day average from symptom on-
set to hospital admission (20)

Y HR: symptomatic case hospital-
ization rate (%)

Low risk High risk

0.0279 0.2791
0.0215 0.2146
1.3215 13.2514
2.8563 28.5634
3.3873 33.8730

Age adjusted from (19)

pIH Fitted time series, starting at 0.6717 Seton data

γH , γICU : recovery rate in com-
partment IH and ICU

Fitted parameters Seton data

π : rate symptomatic individuals go
to hospital, age-specific

π = γY ·Y HR
ηH+(γY −ηH)Y HR

ηICU : rate from hospital admission
to ICU

A time series which is constant spe-
cific to time blocks

Seton data

µ : rate from ICU to death Fitted parameters Seton data

ICUFR: ICU death ratio, age spe-
cific (%)

ICUFR

5.8592
5.8592
5.8592

15.6207
30.8526

Seton data

HICUR: hospitalized ICU ratio A time series with a decreasing rate
specific to time blocks, starting at
0.1574

Seton data

νH : ICU rate on hospitalized indi-
viduals, age-specific

νH = γH∗HICUR
ηICU+(γH−ηICU )HICUR

νICU : death rate on ICU individu-
als, age-specifc

νICU = γICU∗ICUFR
µ+(γICU−µ)ICUFR

B: Total hospital bed capacity (in-
cluding ICU)

Austin: 1500
Houston: 4500

Estimates provided by each of the
region’s hospital systems and aggre-
gated by regional public health lead-
ers

BICU : ICU capacity Austin: 331
Houston: 1250

Estimates provided by each of the
region’s hospital systems and aggre-
gated by regional public health lead-
ers

1{school closure}: school closure dates Austin: 3/19/2020− 9/8/2020,
5/26/2021− 8/23/2021
Houston: 3/19/2020− 9/8/2020,
5/28/2021− 8/23/2021

Table S11: Hospitalization parameters
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