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Abstract:  
 
To identify clusters of patients with shared networks of genes associated with early 

onset severe preeclampsia from whole exome sequencing data through novel 

bioinformatic analysis. 

We performed a case-control study using whole exome sequencing (WES) on early 

onset preeclamptic mothers with severe features delivering < 34 weeks and mothers 

who delivered ≥ 37 weeks. Genotype testing identified variants that were differentially 

abundant between cases and controls. A Protein-Protein interaction (PPI) analysis and 

visualization tool, Proteinarium, was implemented to identify clusters of patients with 

shared networks associated with severe preeclampsia. 

A total of 61 early onset preeclamptic women with severe features and 82 race and 

ethnicity matched control women at term were sequenced. We identified 8,867 

predicted deleterious variants. 21 of these variants were nominally associated with 

preeclampsia by genotype testing. Using Proteinarium129 out of the 143 sequenced 

patients were assigned to statistically significant clusters, Cluster A and B (p< 0.0001). 

Case dominated Cluster A contained 47 of the 61 case subjects. There were 13 unique 

genes in the PPI network of Cluster A compared to control dominated Cluster B. 

Amongst these unique genes, LAMB2, PTK2, RAC1, QSOX1, FN1, and VCAM1 have 

known associations with the pathogenic mechanisms of preeclampsia. 

Our network analysis identified genes that were unique to a large cluster of patients 

with shared networks that provide insights for severe preeclampsia. We also identified 

genes imputed from the interactome that may otherwise have not been identified by 

conventional analysis. Strict phenotyping of both cases and controls improved the 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 24, 2020. ; https://doi.org/10.1101/2020.11.23.20236885doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236885


 3 

likelihood of identifying these otherwise difficult to find genetic associations. These 

uniquely identified genes and their associated variants are potential candidates for 

developing polygenic risk scores for severe preeclampsia.  These results support our 

hypothesis on the genetic architecture of complex diseases and are generalizable to 

other phenotypes. 
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Introduction 

 Complex diseases are the result of the interaction of variants in multiple genes with 

environmental and lifestyle factors. Genetic risk for most complex diseases involves the 

interaction of multiple genes in discrete networks and pathways [1]. Although complex 

diseases show increased recurrence risk in families, they do not follow a simple Mendelian 

pattern of inheritance [2]. Rather, the likely genetic architecture of complex diseases is that 

subgroups of patients share variants in genes in specific networks and pathways sufficient 

to express a shared phenotype. It is also probable that alterations in genes in different 

networks define different clusters of patients with a similar phenotype. Completion of the 

Human Genome Project has enhanced our approach to complex diseases. Genomic 

technologies, genome-wide association studies, high-throughput sequencing and 

bioinformatics methods have revealed insights to the pathogenesis of complex diseases. 

This includes enhanced understanding of Alzheimer's disease, autism, asthma, 

Parkinson's disease, multiple sclerosis, and ovarian cancer. For example, computational 

methods have been used to analyze the network of genes that are linked to autism and 

also used to find biological subnetworks due to the genetic heterogeneity of the disease 

[3]. In ovarian cancer, overlapping differentially expressed genes have been identified in 

different groups of drug-resistant ovarian cancer cells and bioinformatics methods have 

been applied to identify hub genes to determine potentially effective treatment options [4]. 

 Preeclampsia is a life-threatening, multi-system hypertensive disorder of pregnancy, 

which complicates 5 to 7% of US deliveries [5, 6]. It is recognized as a leading cause of 

maternal and fetal morbidity and mortality worldwide [6]. Preeclampsia is characterized by 

varying degrees of maternal symptoms including elevated blood pressure, proteinuria and 
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fetal growth retardation [7]. It is a complex disease associated with several different 

phenotypes. Many clinicians agree that preeclampsia and severe preeclampsia, or early 

and late preeclampsia are different disorders [8-10]. Previously, using bioinformatics 

methods, we showed that there are discrete gene sets associated with severe 

preeclampsia [11]. To date however, other than these observations, there is limited 

evidence demonstrating whether severe preeclampsia and other hypertensive disorders of 

pregnancy represent different genetic etiologies.  

 The evidence that preeclampsia originates in part from genetic causes is based on 

family and epidemiological studies [12, 13]. Preeclampsia has contributions from the 

maternal, paternal and fetal genome [14-17]. The classical approach to genetics is twin 

studies where it has been shown that the heritability of preeclampsia is up to 52% [5, 12, 

18]. The recurrence risk for preeclampsia in the daughters of either eclamptic or 

preeclamptic patients is 20-40% [19, 20].  A significant role for genetics in the development 

of preeclampsia is also supported by family based studies [5, 21]. More than 100 family 

studies in different populations have reported a 2- to 5-fold increased risk of preeclampsia 

among family members of affected women [22-27].  

We sought to test our hypothesis on the genetic basis for preeclampsia using whole 

exome sequencing in carefully selected patients with severe preeclampsia.  In the present 

study we compared variants identified by whole-exome sequencing in early onset 

preeclamptic mothers with severe features and term controls without personal or family 

history of pregnancy related hypertensive disorders. We then used Proteinarium, a multi-

sample, protein-protein interaction analysis (PPI) tool, to identify clusters of patients with 

shared PPI networks associated with preeclampsia. 
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Methods 

Study population 

 Women & Infants Hospital of Rhode Island (WIH) is the only provider of high-risk 

perinatal services in Rhode Island, northeastern Connecticut and southeastern 

Massachusetts. We used this population-based service to enroll preeclamptic mothers with 

early onset, severe features, based on ACOG criteria, as well as term mothers with no 

history of preeclampsia [28]. We retrieved clinical data from all enrolled subjects from their 

electronic medical records. 

This case/control study was approved by the Institutional Review Board of WIH 

(Project ID: WIH 16-0031). We reviewed the records of all early onset preeclamptic mothers 

with severe features delivering < 34 weeks. Following informed consent, we asked explicit 

questions about preeclampsia in mother, grandmother, first order relatives and also 

paternal relatives.  Clinical history, with an emphasis on additional risk factors including 

medical illnesses and drug use was recorded for all patients. In addition, employment 

history and strenuous effort on the job were recorded. We excluded mothers with personal 

or family history of other hypertensive disorders. In our control cohort, we enrolled mothers 

who delivered ≥ 37 weeks’ gestation for whom the formal genetic interview revealed no 

history of preterm birth or pregnancy related hypertensive disorders on either the maternal 

or paternal side of the pedigree. A total of 143 patients were enrolled for whole exome 

sequencing, 61 early onset preeclamptic women with severe features, and 82 race and 

ethnicity matched control women at term.  
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Whole Exome Sequencing 

 Residual maternal whole blood was obtained from each subject for extraction of genomic 

DNA. EDTA stabilized whole blood was stored continuously at -80°C until processing. These 

residual whole blood samples were sent to Beijing Genome Institute (BGI) at the Children’s 

Hospital of Philadelphia for whole exome sequencing. The sequencing facility was blinded to 

the preeclampsia disease status. The library was sequenced on an Illumina HiSeq 4000 using 

150 bp paired-end protocols. QC sequence data was recorded.  

 

Sequence Data 

For variant discovery we used the Gene Analysis Tool Kit (GATK) version 4 to analyze 

the sequence reads [29]. Haplotype caller was applied for variant detection [30]. Variants were 

flagged as low quality and filtered using established metrics: if three or more variants were 

detected within 10bp; if four or more alignments mapped to different locations equally well; if 

coverage was less than ten reads; if quality score < 30; if low quality for a particular sequence 

depth (variant confidence/unfiltered depth < 1.5); and if strand bias was observed (Phred-

scaled p-values using Fisher’s Exact Test > 200). A variant identified by any one of these 

filters was labeled “low quality” and not considered for further analysis.   

 

Genotype Testing 

In order to identify variants that were differentially abundant between cases and controls, 

we used a Markov Chain Monte Carlo (MCMC) Fisher Exact Test, to compare the frequency 

of the homozygous reference alleles, the homozygosis alternative alleles, and the 

heterozygous genotypes between cases and controls.  
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Variant Annotation 

We applied a strict filter-based annotation using ANNOVAR. We identified deleterious 

variants with Polyphen 2 HDIV, SIFT and CADD [31-34]. We used the following thresholds: 

Polyphen 2 HDIV prediction if a change is damaging (>=0.957), a SIFT score (<0.05), a CADD 

score >15, and minor allele frequency (MAF) <0.05 from the 1000 Genome Project [34]. 

 

Network Analysis 

We hypothesize that the genetic architecture underlying complex disorders is best 

explained by subsets of patients with variants in shared networks and pathways sufficient to 

express the phenotype. For that purpose, we analyzed our whole exome sequencing data 

using Proteinarium, a multisample PPI analysis and visualization tool [35]. The top 60 genes, 

corresponding to the most significant, differentially abundant variants between cases and 

controls for each patient (ranked by genotype testing p value) were used as the seed genes 

for input into Proteinarium. Proteinarium was implemented with the minimum path length 

parameter set to 2, in order to include only those pathways in which seed proteins are 

connected directly to each other and/or via a single intermediary protein. We refer to these 

intermediary connecting proteins as imputed proteins. Proteinarium clusters the subjects 

based on similarities of their PPI networks using the Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA) algorithm [36], outputting a dendrogram visualization of the 

clustering. Statistical significance for each branch under the dendrogram is calculated by 

Fisher exact test comparing the abundance of cases and controls in each cluster relative to 

the total number of samples and their group assignment. 
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Network Separation Testing 

Measuring the genetic similarity between diseases by comparing their protein-protein 

interaction networks from the interactome is possible. There are computational approaches 

like separation-based methods which compare the shortest distances between network 

proteins within each disease or network to the shortest distances between the disease 

networks [37]. A positive separation score indicates that there is a physical separation 

between networks within the interactome. The greater the score, the more dissimilar the 

networks. We computed the separation score between the networks of significant clusters 

identified by Proteinarium [35]. 

 

Comparative Phenotypic Analysis 

 We performed a series of comparative phenotypic analyses between the significant 

clusters of patients identified by Proteinarium using univariate and multivariate approaches. 

Before performing phenotypic analyses comparing the clinical characteristics of the clustered 

patients, we removed all the control patients from the case dominated cluster, and all the case 

patients from the control dominated cluster. We performed univariate and multivariate analysis 

of the clinical characteristics of the remaining patients in each of the significant clusters using 

the R stats v3.4.3 package.  

 

Results  

Clinical Characteristics: 

The clinical characteristics of the patients with early onset preeclampsia with 

severe features and term control patients are shown in Table 1. The distribution of 
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race/ethnicity is also shown in Table 1. In order to leverage the likelihood of genetic discovery, 

both the cases and controls were carefully phenotyped with respect to early onset 

preeclampsia with severe features, clinical characteristics and family history. As can be seen 

from the table, gestational age at delivery, the systolic blood pressure, frequency of 

proteinuria, impaired liver function, thrombocytopenia, cerebral visual symptoms and fetal 

growth retardation were all significantly different between the groups, which was expected by 

our definition of severe preeclampsia. There were no other significant univariate or 

multivariate phenotypic differences.  

Sequence Results: 

 High quality sequence data with a Phred score >30 from well-balanced pools with over 

19,000,000 reads/patient were observed. The sequence showed high quality 40X average 

depth of coverage with more than 80% at least 20X coverage. We identified a total of 528,630 

variants. There were 187,915 exonic variants. The work flow for the univariate analysis is 

shown in Figure 1. After application of the initial filters for coverage (DP > 10) and variant 

pathogenicity (SIFT and PolyPhen 2 HDIV and CADD), there were a total of 8,867 predicted 

deleterious variants (available at www.dbpec.brown.edu). Amongst these, 21 variants were 

also nominally associated with preeclampsia by genotype testing. All were non-synonymous, 

exonic variants (Table 2). Nonetheless, none of these variants met genome-wide significance 

after correction for multiple comparison testing. 

In order identify clusters of patients with shared networks associated with severe 

preeclampsia, the top 60 genes based on the most significant variants (ranked by genotype p 

value) for each patient were used as the seed genes for input into Proteinarium. The resulting 

dendrogram is shown in Figure 2. Out of the 143 patients sequenced, 129 of these patients 
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(90 % of the mothers) were assigned to statistically significant clusters. The two significant 

clusters have been highlighted in red and blue on the dendrogram (p< 0.0001). The inset in 

Figure 2 shows the number of cases and controls that are in each cluster. Cluster A had 

significantly more cases than controls, containing 47 of the total 61 case subjects. The layered 

network for the case-dominated Cluster A is shown in Figure 3. There are 13 genes which are 

unique to Cluster A and they are highlighted in red in the layered network graph. Most have 

defined functional roles or implications for preeclampsia, Table 3. Cluster B had significantly 

more controls than cases, including 61 of the total 82 control subjects. The layered network for 

the control-dominated Cluster B is shown in Figure 3. The unique genes from the layered 

network graph of Cluster B, shown in blue, are listed in Supplemental Table 1.    

 We used separation testing to compare the case and control dominated networks 

identified by Proteinarium [37].  The comparison of the unique genes from case dominated 

cluster and the control dominated cluster revealed a positive separation score, confirming that 

the layered PPI networks of these two patient subgroups exist in distinct areas of the 

interactome. We ran GO Term analysis using DAVID software on all genes of the network 

from case dominated Cluster A and control dominated Cluster B, Table 4 [38, 39]. We found 

significantly enriched biological processes, molecular functions and cellular components 

based on Bonferroni corrected p-value for case and control dominated networks. Prominent 

among the biological processes and molecular functions were antigen processing and 

presentation, cellular movement (axon guidance and microtubules) and T cell receptor 

signaling.  

We previously published the Database for Preeclampsia (dbPEC) [11]. dbPEC consists 

of the genes associated with preeclampsia, the clinical features, and concurrent conditions. 
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We compared the genes from our univariate analysis and the genes from both case and 

control dominated layered networks to those in the database. We found two overlapping 

genes from univariate gene list (TTN and CCL14) that were included in dbPEC. We found 

three overlapping genes from the layered network of Cluster A (FN1, KIF2A, VCAM1). We 

applied over representation analysis and it was determined that this cluster is significantly 

enriched for genes previously shown to be associated with preeclampsia in dbPEC (p< 

0.0033). 

 
 
Discussion 

 
We identified clusters of patients with shared protein-protein interaction networks 

associated with early onset severe preeclampsia. These results provide insights into the 

genetics of severe preeclampsia and support our hypothesis that the genetic architecture 

of complex diseases is characterized by clusters of patients that have variants in shared 

gene networks. To generate these results, first we performed whole exome sequencing. 

For our case cohort, we enrolled women with idiopathic early onset preeclampsia with 

severe features and singleton births <34 weeks’ gestation. We compared them to term 

controls with no family history of preeclampsia. Then, we used Proteinarium, a multi-

sample, PPI analysis and visualization tool, to identify clusters of patients with shared 

protein-protein interaction networks [35]. Using seed genes from each patient, Proteinarium 

mapped the input genes onto the PPI interactome based on STRING database to build 

individual networks. The similarities between all subjects’ PPI networks were based on 

distance metrics and were then used for clustering samples. We identified a single, 

significant cluster with a predominance of patients with early onset, severe features of 
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preeclampsia encompassing 47 out of the 61 women. We also identified a single control-

dominated cluster with 66 out of 82 control patients.  

The separation test of the unique genes from case and control dominated clusters 

confirmed that the two subnetworks forming clusters A and B exist in the different regions of 

the interactome. We reviewed the association of the unique genes from the case dominated 

network with preeclampsia and note that several of these genes have very plausible 

mechanistic connections to preeclampsia. Laminin β2 (LAMB2) is a glomerular basement 

membrane (GBM) component, required for proper functioning of the glomerular filtration 

barrier. It has a role in proteinuria [40]. In addition, it was shown previously that serum laminin 

levels in preeclamptic patients are significantly higher than those in normal pregnancy [41]. It 

has been shown that hypoxia-induced upregulation of Quiescin Sulfhydryl Oxidase 1 

(QSOX1) and an elevation in intracellular H2O2 leads to increased apoptosis in the placentae 

of pregnancies complicated by preeclampsia [42]. QSOX1 protein is also found in circulating 

extracellular vesicles of both preeclampsia and healthy pregnant women [43]. It has been 

reported that Fibronectin 1 (FN1) might promote the development of preeclampsia by 

modulating differentiation of human extravillous trophoblasts, as well as formation of focal 

adhesions [44-46]. Vascular Cell Adhesion Molecule 1 (VCAM1) is involved in cellular 

adhesion. It has been reported that serum concentrations of sVCAM-1 are significantly higher 

in both mild and severe preeclampsia than in normal pregnancy [47]. Although 

Thrombospondin 1 (THBS1) is not a unique gene in the case dominated network, it is notable 

that THBS1, which is also associated with focal adhesions, is an intermediate protein in this 

network where it has edges to both VCAM1 and FN1 [48].  Invasion of maternal decidua and 

uterine spiral arteries by extravillous trophoblasts (EVT) is required for establishment of 
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normal placenta and adequate blood supply toward the fetus. Human trophoblast migration 

requires Rac Family Small GTPase 1 (RAC1) and Cell Division Cycle 42 (CDC42) [49]. Lower 

levels were found in preeclampsia samples than in normal term pregnancy samples, and 

these levels significantly declined in severe preeclampsia samples compared with mild 

preeclampsia samples [50]. Protein tyrosine kinase 2 (PTK2) which is also called focal 

adhesion kinase is differentially expressed in preeclampsia. Investigations were carried out to 

evaluate the features of inflammatory response, placental dysfunction and PTK2 was reported 

as among the promising biomarkers for preeclampsia [51].  In the case-dominated subnetwork 

we observed Kinesin Family Member 2A (KIF2A) which has been reported in the literature to 

be upregulated in the preeclamptic placenta [17].  Up-regulated genes in the preeclampsia 

placenta haven been shown to be associated with the regulation of diverse cellular processes, 

including matrix degradation, trophoblast cell invasion, migration and proliferation [17]. 

Although our study included only a modest sample size, we identified a significant 

subgroup of patients with shared PPI networks associated with severe preeclampsia. We 

were not expecting each patient to appear in a significant cluster.  However, we believe that 

our careful phenotyping resulted in the high percentage of patients being successfully 

assigned to significant clusters (77% of the severe preeclamptic mothers). We also believe 

that careful phenotyping allowed us to observe distinct separation between case and control 

dominated clusters in the dendrogram. We believe that the whole exome sequencing, 

combined with this novel multi sample network analysis, combined with very carefully chosen 

phenotype of preeclampsia patients contributed to our discovery despite the relatively modest 

size.  
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There have been several sequencing efforts including whole genome, whole exome 

and targeted sequencing on an array of preeclampsia phenotypes from diverse populations 

[52-61]. There is no consensus amongst the published results in regards to associated genes 

and variants. Since preeclampsia is a polygenic disease, lack of a consensus among these 

studies focused solely on univariate etiologies might be expected in these early stage studies. 

Nonetheless, we compared our significant gene list from the univariate analysis to the results 

of these previously published studies. Among the 20 genes identified in our univariate analysis 

only Titin (TTN) was identified in two prior studies [52, 56]. We also compared the genes from 

our network based approach to the results of these other studies. We found 2 genes, Major 

Histocompatibility Complex, Class II, DQ Alpha 1 (HLA-DQA1) and Inositol 1,4,5-

Trisphosphate Receptor Type 1 (ITPR1) that were reported in previous studies [53, 59]. None 

of these overlapping genes were among the unique genes identified in the shared layered 

networks.  

Our protein-protein interaction analysis allowed us to identify clusters of patients with 

shared PPI networks associated with preeclampsia.  Within the significant clusters there were 

unique genes that were imputed during network analysis (RAC1, KIF5B, PTK2, KIF5A, FN1, 

QSOX1, ARF4, VCAM1, CDC42, KIF2A). In other words, they were not amongst the top 60 

seed genes selected by differential abundance between cases and controls. Nonetheless, 

this approach allowed us to identify these influential genes in the mechanism(s) underlying 

preeclampsia that would not otherwise have been identified by whole genome univariate 

variant analysis.   

While our primary aim was to identify associations in the case dominated cluster, we 

also examined the network of control dominated cluster where we were able to identify 
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additional unique proteins. Proteins in this network were associated with the ubiquitination 

process. They may be thought to serve as protective proteins that confer resilience against 

preeclampsia [62, 63]. Although there are studies showing the relationship with hypertension 

- ubiquitination process or pregnancy, this still needs further investigation [63].  

 

Conclusion 

The results of our study provide several promises of future use to further understanding 

the mechanism underlying preeclampsia. Identified genes and their associated variants, 

particularly the unique genes in the case dominant cluster, are candidates for generating 

polygenic risk scores for severe preeclampsia. Our network analysis identified genes which 

were imputed from the interactome and these imputed genes provide insights for severe 

preeclampsia that may otherwise have not been identified. As such, these are important 

candidates to include in meta-analyses of genetic associations with preeclampsia. Strict 

phenotyping of both cases and controls improved the likelihood of identifying these otherwise 

difficult to find genetic associations. 
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Table 1. Clinical characteristics of patients. Mean + SD. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Categories case (n=61) control (n=82) p-value 
Age (mean) 29.14 ± 5.05 29.45 ± 5.34 7.294E-01 
Grava (mean) 2.19 ± 1.27 2.54 ± 1.62 1.177E-01 
Job_strenuous  (%) 26.23% 28.05% 8.102E-01 
Obesity (%) 31.15% 23.17% 2.958E-01 
African_American (%) 9.84% 4.88% 2.761E-01 
Asian (%) 3.28% 3.66% 9.028E-01 
Caucasian (%) 55.74% 56.10% 9.661E-01 
Hispanic (%) 22.95% 28.05% 4.906E-01 
Native_American (%) 1.64% 1.22% 3.213E-01 
Other_Racial_ID (%) 6.56% 6.10% 9.121E-01 
Systolic_bp (mean) 170.81 ± 14.47 117.67 ± 9.63 3.502E-44 
Proteinuria (%) 65.57% 0.00% 1.606E-15 
Impaired_liver_function (%) 55.74% 2.47% 1.825E-11 
Thrombocytopenia (%) 14.75% 0.00% 2.055E-03 
Cerebral_visual_symptoms (%) 55.74% 0.00% 3.263E-12 
FGR (%) 29.51% 2.44% 3.590E-05 
Preterm_delivery_before_34_weeks_for_sPEC (%) 55.74% 0.00% 3.263E-12 
Preterm_delivery_before_37_weeks (%) 60.66% 3.66% 2.856E-13 
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Table 2. Nominally significant genes from univariate analysis. Genomic positions are based 

on Human Feb. 2009 (GRCh37/hg19) Assembly.  

Chr Pos Gene HGNC ID SNP Polyphen2_HDIV SIFT CADD_phred 
1 97770920 DPYD 3012 rs1801160 0.998 0 23.5 
1 104117921 AMY2B 478 rs140978983 1 0 26.1 
1 109446750 GPSM2 29501 rs61754640 0.994 0.02 19.3 
1 226125385 LEFTY2 3122 rs2295418 1 0 16.6 
2 69177269 GKN2 24588 rs62133344 1 0 18.5 
2 70504399 PCYOX1 20588 rs34041544 1 0.01 26.4 
2 179486345 TTN 12403 rs114331773 1 0 15.7 
2 179666982 TTN 12403 rs35683768 0.999 0 15.7 
6 76024704 FILIP1 21015 rs62415695 1 0.01 15.4 
6 84904604 CEP162 21107 rs17790493 1 0 15.9 
7 103130222 RELN 9957 rs73714410 0.972 0.02 27.9 

12 124221796 ATP6V0A2 18481 rs74922060 1 0.03 23.0 
13 113750905 MCF2L 14576 rs140657264 0.999 0 26.6 
16 29825022 PRRT2 30500 rs76335820 0.995 0.02 18.4 
17 34311387 CCL14 10612 rs16971802 0.974 0.02 16.2 
17 37321347 ARL5C 31111 rs9912267 1 0 18.6 
18 28604374 DSC3 3037 rs35630063 1 0 21.1 
19 56249615 NLRP9 22941 rs80009430 1 0 16.0 
20 3641868 GFRA4 13821 rs146579049 1 0 18.3 
20 36954724 BPI 1095 rs5743523 0.998 0.02 15.5 
22 31494813 SMTN 11126 rs80055673 1 0.03 18.7 

 

 
 
 
 

Table 3. Unique genes from case dominated cluster (Cluster A). *Genes alphabetically 
ordered. 
 

Gene Name Gene* HGNC id Cluster Imputed 
Apolipoprotein A5 APOA5 17288 A No 

ADP ribosylation factor 4 ARF4 655 A Yes 
Cell division cycle 42 CDC42 1736 A Yes 

Fibronectin 1 FN1 3778 A Yes 
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Kinesin family member 1A KIF1A 888 A No 
Kinesin family member 2A KIF2A 6318 A Yes 
Kinesin family member 5A KIF5A 6323 A Yes 
Kinesin family member 5B KIF5B 6324 A Yes 

Laminin subunit beta 2 LAMB2 6487 A No 
Protein tyrosine kinase 2 PTK2 9611 A Yes 

Quiescin sulfhydryl oxidase 1 QSOX1 9756 A Yes 
Rac family small gtpase 1 RAC1 9801 A Yes 

Vascular cell adhesion molecule 1 VCAM1 12663 A Yes 
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Table 4. Significantly enriched biological processes, molecular functions and cellular 

components based on Bonferroni corrected p-value for case and control dominated networks. 

GO terms that are associated with case dominated networks were represented with “Cluster 

A” and with control dominated networks were represented with “Cluster B”. 

 

GO term ID Definition p value 

 

 
Case dominated cluster (A) 

    
Biological Processes     

GO:0019886 
Antigen processing and presentation of exogenous peptide antigen 
via MHC class II 2.09E-06 

GO:0007411 Axon guidance 3.75E-06 
GO:0007018 Microtubule-based movement 1.31E-03 
GO:0050852 T cell receptor signaling pathway 1.32E-03 
GO:0038096 Fc-gamma receptor signaling pathway involved in phagocytosis 1.19E-02 
GO:0031295 T cell costimulation 3.20E-02 
Molecular Function     
GO:0003777 Microtubule motor activity 6.23E-06 
GO:0008017 Microtubule binding 2.36E-02 
GO:0019899 Enzyme binding 2.36E-02 
GO:0005088 Ras guanyl-nucleotide exchange factor activity 2.84E-02 
Cellular Components     
GO:0005829 Cytosol 2.18E-05 
GO:0016020 Membrane 6.02E-04 
GO:0005871 Kinesin complex 1.33E-03 
GO:0008091 Spectrin 3.66E-02 
GO:0012507 ER to Golgi transport vesicle membrane 4.59E-02 

 

 
Control dominated cluster (B) 

    
Biological Processes     
GO:0050852 T cell receptor signaling pathway 1.29E-06 

GO:0019886 
Antigen processing and presentation of exogenous peptide antigen 
via MHC class II 5.36E-05 

GO:0042787 
Protein ubiquitination involved in ubiquitin-dependent protein 
catabolic process 1.09E-03 
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GO:0007062 Sister chromatid cohesion 3.08E-03 
GO:0007067 Mitotic nuclear division 1.73E-02 
GO:0031145 Anaphase-promoting complex-dependent catabolic process 2.54E-02 
Molecular Function     
GO:0005515 Protein binding 6.13E-04 
Cellular Components     
GO:0005829 Cytosol 1.59E-08 
GO:0005654 Nucleoplasm 2.84E-04 
GO:0005813 Centrosome 6.55E-03 
GO:0008091 Spectrin 3.12E-02 
GO:0012507 ER to Golgi transport vesicle membrane 3.73E-02 
GO:0005634 Nucleus 4.27E-02 
GO:0043234 Protein complex 4.75E-02 
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 Figure 1. Figure shows the univariate work flow for whole exome sequencing. 
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 Figure 2. Dendrogram is showing significant clusters of patients (colored). Case 

 dominated cluster (Cluster A) and control dominated cluster (Cluster B) is presented in 

 dashed lines. Cases are represented in red and controls were represented in blue 

 color. 
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 Figure 3. Layered network graphs for the case dominated cluster A and control 

 dominated cluster B represented. The unique genes associated with each cluster are 

 highlighted in their related cluster colors. Unique genes of cluster A are in red and 

 unique genes of cluster B are in blue color. 
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Supplemental Table 1. Unique Genes from control dominated cluster (Cluster B). *Genes 
alphabetically ordered. 
 

Gene Name Gene* HGNC id Cluster Imputed 
Aurora kinase A AURKA 11393 B Yes 

Cbl proto-oncogene B CBLB 1542 B Yes 
Cell division cycle 20 CDC20 1723 B Yes 

Cell division cycle 5 like CDC5L 1743 B Yes 
Golgi reassembly stacking protein 1 GORASP1 16769 B Yes 

Kinesin family member 2C KIF2C 6393 B Yes 
NEDD4 E3 ubiquitin protein ligase NEDD4 7727 B No 

P21 (RAC1) activated kinase 1 PAK1 8590 B Yes 
SMAD specific E3 ubiquitin protein ligase 2 SMURF2 16809 B Yes 

Tripartite motif containing 21 TRIM21 11312 B Yes 
Ubiquitin C UBC 12468 B Yes 
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