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ABSTRACT (250 WORDS) 

INTRODUCTION: Chronological age (CA) is a predictor of adverse COVID-19 outcomes; 

however, CA alone does not capture individual responses to SARS-CoV-2 infection. Here, we 

evaluated the influence of aging metrics PhenoAge and PhenoAgeAccel to predict adverse 

COVID-19 outcomes. Furthermore, we sought to model adaptive metabolic and inflammatory 

responses to severe SARS-CoV-2 infection using individual PhenoAge components. 

METHODS: In this retrospective cohort study, we assessed cases admitted to a COVID-19 

reference center in Mexico City. PhenoAge and PhenoAgeAccel were estimated using 

laboratory values at admission. Cox proportional hazards models were fitted to estimate risk 

for COVID-19 lethality and adverse outcomes (ICU admission, intubation, or death). To 

explore reproducible patterns which model adaptive responses to SARS-CoV-2 infection, we 

used k-means clustering using PhenoAge/PhenoAccelAge components. 

RESULTS: We included 1068 subjects of whom 401 presented critical illness and 204 died. 

PhenoAge was a better predictor of adverse outcomes and lethality compared to CA and 

SpO2 and its predictive capacity was sustained for all age groups. Patients with responses 

associated to PhenoAgeAccel>0 had higher risk of death and critical illness compared to 

those with lower values (log-rank p<0.001). Using unsupervised clustering we identified four 

adaptive responses to SARS-CoV-2 infection: 1) Inflammaging associated with CA, 2) 

metabolic dysfunction associated with cardio-metabolic comorbidities, 3) unfavorable 

hematological response, and 4) response associated with favorable outcomes. 

CONCLUSIONS: Adaptive responses related to accelerated aging metrics are linked to 

adverse COVID-19 outcomes and have unique and distinguishable features. PhenoAge is a 

better predictor of adverse outcomes compared to CA. 
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INTRODUCTION 

Coronavirus disease (COVID-19), caused by SARS-CoV-2 infection, has proven to be a 

major health concern worldwide. Older chronological age and the presence of chronic 

comorbidities have been associated with a more severe disease course and increased 

mortality in COVID-19 [1–3]. Chronological age has been shown to be insufficient for 

resource allocation  and for risk stratification in the setting of several diseases, including 

COVID-19; therefore, alternative metrics have emerged to estimate mortality, since aging is 

recognized to vary across all individual at different rates independent of chronological age [4–

6]. Recently, new tools have been developed to estimate the aging rate based on biomarkers 

commonly used in clinical practice and, to date, there is only one study assessing the impact 

of a biological aging metric on COVID-19 [7]. While there are a wide range of tools which can 

be used to estimate biological aging, those derived from clinical markers such as PhenoAge 

and PhenoAgeAccel can be particularly useful as some of the parameters used in their 

estimation may overlap with those which are altered within pathophysiological processes in 

COVID-19, particularly inflammatory markers, fasting glucose and serum albumin [8]. 

Many of the pathways assessed by PhenoAge have implications in the adaptation to 

exogenous and endogenous stressors. Therefore, we hypothesized that PhenoAge and 

PhenoAgeAccel might capture adaptive responses to SARS-CoV-2 infection which alter the 

metabolic dynamic and physiological responses to COVID-19 and may aggravate and 

intensify inflammation and increase risk for adverse outcomes and lethality [9,10]. Given the 

overlapping pathways between PhenoAge, PhenoAgeAccel and the adaptive response to 

severe SARS-CoV-2 infection, we consider that these metrics in an acute setting might model 

physiological adaptations to infection. Therefore, we aimed to identify the role of PhenoAge 

and PhenoAgeAccel as predictors of adverse outcomes and lethality related to COVID-19 

beyond CA and its individual components. Furthermore, we sought to apply multivariate 
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clustering techniques to explore the presence of reproducible patterns which model adaptive 

responses to severe SARS-CoV-2 infection. 

METHODS 

Study design and setting 

We conducted a retrospective study comprising a cohort of hospitalized patients aged >18 

years recruited from March 16th to August 14th, 2020 with confirmed SARS-CoV-2 infection 

by RT-qPCR test from nasopharyngeal swabs at the Instituto Nacional de Ciencias Médicas y 

Nutrición Salvador Zubirán (INCMNSZ), a COVID-19 reference center in Mexico City. 

Amongst all evaluated patients within the study period, we only considered patients with 

complete data to estimate PhenoAge (n=1068). All proceedings were approved by the 

INCMNSZ Research and Ethics Committee, written informed consent was waived due to the 

retrospective nature of the study. A complete diagram of study recruitment is presented in 

Supplementary Material. 

Clinical information 

Information collected at the time of triage and emergency department evaluation included 

demographic variables, medical history of comorbidities including type 2 diabetes (T2D), 

obesity, chronic obstructive pulmonary disease (COPD), asthma, hypertension, 

immunosuppression, HIV infection, cardiovascular disease (CVD), chronic kidney disease 

(CKD), chronic liver disease (CLD), smoking habits and current symptoms, as described 

elsewhere [11]. Physical examination included weight (measured in kilograms), height 

(measured in meters) and vital signs including oxygen saturation measured by pulse oximetry 

(SpO2). Baseline testing was performed for complete blood count, basic metabolic panel, 

liver function tests, inflammatory biomarkers and arterial blood gas. A complete list of clinical 

variables and laboratory measures is provided in Supplementary Material. All analyses were 

performed using only clinical and laboratory measures obtained at admission. 
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PhenoAge and PhenoAgeAccel calculation 

PhenoAge is a biological age estimation that we calculated using baseline measures for the 

following parameters: chronological age (CA), glucose, albumin, creatinine, alkaline 

phosphatase, C-reactive protein (CRP), leucocyte count, lymphocyte percentage, red blood 

cell distribution width (RDW) and mean corpuscular volume (MCV). PhenoAgeAccel, a 

calculation obtained by regressing PhenoAge values onto chronological age using linear 

regression, provides an unbiased interpretation of the rate of aging independently of CA, 

where a PhenoAgeAccel value of 0 represents a phenotypic age consistent with an 

individual’s CA, while negative and positive values represent the biochemical profile of a 

chronologically younger and a chronologically older individual, respectively [12,13]. In the 

context of SARS-CoV-2 infection, the rate of aging cannot be formally assessed by 

PhenoAgeAccel due to the underlying acute inflammatory process; therefore, we 

hypothesized that patients with responses that corresponded to those expected for their 

chronological age would have a PhenoAgeAccel ≤0 and those who had a worse response 

than expected would have a PhenoAgeAccel >0 years. 

Categorization of patients and definition of outcomes 

For the purpose of this study, patients admitted to the intensive care unit (ICU) or who 

required invasive mechanical ventilation (IMV) were categorized as critical cases and patients 

who died were termed lethal cases; the rest of inpatients were categorized as severe cases. 

Our primary outcomes were both death and a composite event of either death, ICU admission 

or IMV that we termed “adverse outcomes”. Attending physicians, based on clinical judgment, 

determined ICU requirement. Clinical recovery was defined as hospital discharge based on 

the absence of clinical symptoms requiring inpatient management. Follow-up time was 

estimated from date of symptom onset to last follow-up (censoring) or death, whichever 

occurred first. 
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Statistical analysis 

Descriptive statistics are presented as frequencies for categorical variables or as mean ± SD 

or median (IQR) for continuous variables. We performed comparisons of accelerated aging 

using Student’s t-test for symmetric, normally distributed continuous variables or the Mann-

Whitney U test. Multiple-group comparisons were carried out using one-way analysis of 

variance or Kruskal-Wallis test with post hoc Tukey or Dunn test, where appropriate. 

Categorical variables were compared using the chi-square test or the Fisher’s exact test for 

comparison of groups with <5 success counts. Missing data was assumed missing at random 

and was completed using multiple imputation by chained equations using the mice R 

package. Statistical significance was set at a two-tailed p-value <0.05; all statistical analyses 

were conducted using R version 4.0.2. 

Association of PhenoAge and PhenoAgeAccel with clinical status 

We evaluated the behavior of PhenoAge and PhenoAgeAccel across comorbidity and 

severity spectrums by comparing values between severe, critical and lethal cases and with an 

increasing number of comorbidities. Additionally, we conducted a sensitivity analysis where 

we stratified age in <50, 50-70 and >70 years to assess this relationship across different age 

groups. We also compared characteristics of patients with PhenoAccelAge≤0 to those with 

PhenoAgeAccel>0; continuous variables were transformed to approach a symmetric 

distribution and standardized using z-scores. Furthermore, we performed a survival analysis 

to assess occurrence of adverse outcomes and lethality across subgroups, these results are 

presented as Kaplan-Meier curves compared with log-rank tests.  

Cox regression analyses and performance of predictions 

We modeled univariate Cox proportional-hazards regressions to predict the development of 

adverse outcomes and lethality for COVID-19 with SpO2, PhenoAge, PhenoAgeAccel and all 
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individual components of PhenoAge. To determine which variables were better predictors 

compared to chronological age, we examined the C-statistic and differences in Bayesian 

Information Criterion (ΔBIC): a positive ΔBIC indicates that the model is a better predictor 

than CA. For multivariate analyses we fitted Cox regression models assessing the incidence 

of adverse outcomes or lethality for COVID-19: the first model included PhenoAge 

components which were chosen by minimization of BIC and the second model included only 

PhenoAgeAccel and chronological age. All models were further adjusted for sex and 

comorbidities as a sensitivity analysis due to the reported role of these variables in modifying 

the risk of developing adverse outcomes in COVID-19 patients [14]. Predictive performance 

of the individual predictors from these models were evaluated using areas under the receiving 

operating characteristic curve (AUROC) and clinical decision curves using the pROC and 

rmda R packages. 

Clustering of PhenoAge components to characterize adaptive responses to COVID-19 

To identify different adaptive responses to SARS-CoV-2 infection captured by PhenoAge we 

carried out an unsupervised k-means clustering analysis. Variable selection was performed 

by regressing individual PhenoAge components to lethality with an Elastic Net Cox 

penalization parameter using k-fold cross-validation (k=10, α=0.5); z-scores of selected 

variables were used for k-means clustering using the fpc R package with 100 runs. The 

optimal number of clusters was determined comparing 30 indices with the NbClust R package 

and cluster stability was evaluated with the Jaccard similarity index (>0.7) using 1,000 

bootstrapped samples with the clusterboot R package. The resulting subgroups were 

extensively characterized by comparing adverse outcomes, comorbidities, symptom 

presentation, demographic variables and laboratory measures. 

RESULTS 

Study population 
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We included 1,068 hospitalized COVID-19 patients with a median age of 53 years (44–63) 

and a median PhenoAge of 82.4 years (70.5–95.71), whereof 675 (63,2%) were male 

subjects. Most patients had at least one comorbidity (73.2%), particularly obesity, 

hypertension and type 2 diabetes mellitus (T2D). During the follow-up, 628 patients (58.8%) 

were severe cases, 222 (20.8%) were critical cases and 218 (20.4%) were lethal cases; 

overall, 440 patients (41.2%) had adverse outcomes for COVID-19 (Table 1). 

PhenoAge and PhenoAgeAccel predict adverse COVID-19 outcomes  

We observed a significant increase in both PhenoAge and PhenoAgeAccel with aggravation 

of clinical status and this tendency was preserved when stratifying by number of 

comorbidities and age categories (Figure 1A-D, Supplementary Figure 1). Overall, we 

found that a high proportion of critical and lethal patients had elevations in PhenoAge and 

most of them had PhenoAgeAccel >0 (Figure 1E-F). Using Cox regression, we found that 

CRP, lymphocytes percentage, albumin, SpO2, PhenoAge and PhenoAgeAccel were better 

predictors for adverse outcomes compared to chronological age alone. For lethality, only 

SpO2 and PhenoAge were better predictors than chronological age. (Table 2, 

Supplementary table 1). In multivariate Cox regression models, we found that the model 

comprising lymphocyte percentage, glucose, CRP and chronological age was the best to 

predict adverse outcomes, while the model comprising albumin, creatinine, CRP and 

chronological age was the best to predict lethality. Notably, the models including only 

PhenoAgeAccel and chronological age had a comparable predictive performance for both 

adverse outcomes and lethality, even after adjusting for sex and comorbidities (Table 3, 

Supplementary table 2). When assessing the predictive performance of these selected 

variables, we found that PhenoAgeAccel had the best AUC for adverse outcomes, 

outperforming chronological age and PhenoAge, while the AUC for PhenoAge was higher in 

the prediction of lethality (p<0.001). Similarly, using clinical decision analyses curves, both 
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metrics had a better performance for adverse outcomes and lethality than chronological age 

(Figure 2). 

PhenoAgeAccel differentiates clinical outcomes independent of chronological age 

We compared demographic and clinical characteristics between patients with 

PhenoAgeAccel≤0 or PhenoAgeAccel>0, with the latter indicating a response to stress higher 

than that expected by age. Cases with PhenoAgeAccel>0 had higher rates of lethality, ≥1 

comorbidity, T2D, early-onset diabetes (T2D diagnosis at ≤40 years), hypertension and 

immunosuppression; these patients had increased PhenoAge but had no significant 

differences in chronological age (Table 1). Patients with PhenoAgeAccel>0 presented a more 

pronounced decline in respiratory and metabolic function, as well as immune dysregulation, 

as shown by the presence of lower lymphocyte percentage and marked elevations on 

inflammatory biomarkers such as CRP and fibrinogen. Accordingly, these patients had higher 

incidence of COVID-19 adverse outcomes and lethality (log-rank p<0.001, Figure 3). 

PhenoAge components identify four main adaptive responses to SARS-CoV-2 infection 

Next, we sought to use PhenoAge components under the assumption that it would allow us to 

identify adaptive responses to severe SARS-CoV-2 infection. We identified that chronological 

age, glucose, MCV, RDW, lymphocyte percentage, PCR, albumin and creatinine were the 

best predictors of mortality and adverse outcomes using Elastic Net Cox regression; using 

these metrics, we identified a stable 4-cluster solution with the k-means clustering algorithm. 

Cluster 1 was composed of 449 subjects (42.1%) who had the oldest chronological age with a 

median of 61 years, but had low PhenoAgeAccel values (median of 0.07 years), a high 

incidence of adverse outcomes, ICU admission, IMV requirement and lethality, as well as 

higher proportions of cardiovascular disease, COPD and CKD (Figure 4, Supplementary 

Figure 2). Cases in Cluster 1 had a higher risk of mortality (HR 3.04, 95%CI 1.94-4.79) and 

adverse outcomes (HR 1.86, 95%CI 1.42-2.43) compared to Cluster 4, adjusted for sex, age 

and comorbidities. Cluster 2 included 134 subjects (12.5%) who had the highest PhenoAge 



10 

 

(101.71 years) and PhenoAgeAccel (16.03 years). Adverse outcomes were as high as in 

Cluster 1, but patients in Cluster 2 had higher rates of comorbidities, particularly T2D, early-

onset diabetes and hypertension along with increased rates of cardiovascular disease, 

asthma and smoking, despite having a younger median age of 54 years. Furthermore, cases 

in Cluster 2 had higher risk of mortality (HR 3.66, 95%CI 2.17-6.17) and adverse outcomes 

(HR 2.13, 95%CI 1.54-2.94) compared to Cluster 4, adjusted for sex, age and comorbidities. 

Cluster 3 included 49 subjects (4.6%) who had the lowest chronological age (46 years) and a 

median PhenoAgeAccel of 5.90 years; this cluster had female predominance and the highest 

prevalence of immunosuppression and smoking. Cases in Cluster 3 also had higher risk of 

adverse COVID-19 outcomes (HR 1.84, 95%CI 1.12-3.01) and mortality (HR 2.67, 95%CI 

1.19-5.97) compared to Custer 4. Finally, Cluster 4 included 436 subjects (40.8%) who had 

the lowest PhenoAge (median of 69.64 years) and PhenoAgeAccel (median of -8.01 years) 

with a slightly older median age of 48.0 years compared to cluster 3; the incidence of adverse 

outcomes was the lowest, with a large proportion of patients experiencing clinical 

improvement (Figure 4, Supplementary Figure 2). 

Adaptive responses to severe SARS-CoV-2 have distinguishable clinical features 

Finally, we compared normalized clinical variables and laboratory measures across these 

subgroups and observed the following patterns (Figure 5): 1) Patients in Cluster 1 had 

elevations in multiple inflammatory biomarkers, including CRP, fibrinogen, D-Dimer, TPNI, 

BUN and LDH and a decrease in lymphocyte percentage and albumin, as well as an 

elevation in leukocytes and platelets, they also had a decline in the respiratory function as 

shown by low SpO2, PaO2/FiO2 ratio and high respiratory rate at the time of initial evaluation. 

Cycle threshold (CT) for viral load was higher than Cluster 2 but lower than Clusters 3 and 4. 

Based on those features, we propose that patients in Cluster 1 show an adaptive response 

related to inflammaging in accordance to chronological age. 2) Patients in Cluster 2 had a 

marked elevation in blood glucose, and triglycerides, as well as an increase in BMI; these 
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patients also had a decline in respiratory function and elevations in pulse pressure, lactate, 

BUN and ferritin. We labeled this response as related to metabolic dysfunction, driven by 

cardio-metabolic comorbidities and, particularly, type 2 diabetes. 3) Patients in Cluster 3 had 

a pronounced elevation in RDW and decrease in MCV, they also had an increase in platelets 

and a decrease in creatinine and inflammatory biomarkers; they displayed a decline in 

respiratory function and a slight elevation of triglycerides and BMI, but not glucose. CT viral 

load was the highest amongst all subgroups. We labeled this as a response with worsened 

hematologic markers and a pro-thrombotic profile. 4) Finally, patients in cluster 4 had higher 

lymphocyte percentage and albumin levels and they showed lower values of leukocytes, CRP 

and multiple inflammatory biomarkers, they also displayed an enhanced respiratory function 

and, although they had small increases in BMI and triglycerides, they had a decrease in blood 

glucose. This adaptive response was related to a less pronounced inflammation compared to 

what would have been expected given their chronological age and showed a pattern of 

clinical resilience. 

DISCUSSION 

In this study we observed that PhenoAge is a better predictor for development of adverse 

outcomes and lethality compared to chronological age in patients with severe COVID-19 

patients. Moreover, patients with PhenoAgeAccel>0 showed higher risk of adverse events 

and COVID-19 mortality, and had impaired metabolic, respiratory and immunologic functions. 

Notably, these trends persisted even after adjusting for sex and comorbidities, two major 

factors which have been heavily associated with adverse outcomes for COVID-19 [3,15–17]. 

Based on these findings, we hypothesized that PhenoAge components would allow us to 

distinguish adaptations to severe COVID-19. Using unsupervised clustering, we found that 

PhenoAge components may help distinguish different subtypes of adaptive responses to 

SARS-CoV-2 infection, with poorer prognosis linked to inflammaging in accordance to 

chronological age and metabolic dysregulation, as has previously been hypothesized [18]. 
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We also characterized an adaptive response cluster prone to impaired hematologic markers 

with pro-thrombotic features and a favorable profile of patients with low rates of adverse 

outcomes. Our results allow us to position PhenoAge as a metric which characterizes acute 

adaptations to stress independent of chronological age and PhenoAgeAccel as a metric of 

favorable or worsened adaptive responses to such acute events, which may help the clinician 

to hasten medical treatment in patients at higher risk. 

The process of aging in the immune system is characterized by a progressive impairment of 

innate and adaptive immune responses upon antigen exposure (immunosenescence) and 

systemic low-grade chronic inflammation (inflammaging) [19], both of which have been 

associated with hindered responses against multiple bacterial and viral infections and which 

could partly explain the disproportionate effect of SARS-CoV-2 infection with increasing 

chronological age [20,21]. These immunological changes associated to aging and chronic 

diseases may be a consequence of telomere shortening, damage to the DNA and epigenetic 

changes in hematopoietic cells [5,22]. Intrinsic differences in individual responses to SARS-

CoV-2 infection could make individuals more susceptible to developing cytokine storms and 

have hypercoagulable state; in addition, accumulation of senescent (i.e. dysfunctional, non-

proliferative) non-lymphoid cells in multiple tissues, particularly in the lung, may further 

promote inflammation and tissue destruction via NK receptors, in fact, a recent study has 

found that specific natural killer cell immunotypes may be related to COVID-19 severity [23]. 

Patients with cardio-metabolic comorbidities, particularly obesity and type 2 diabetes, may 

have worse proinflammatory and hypercoagulability states, causing further endothelial 

damage [14,24,25]. In our study we observed that older individuals with marked elevations in 

several inflammatory biomarkers (Cluster 1) and patients with PhenoAgeAccel>0, metabolic 

dysregulation and a high burden of comorbidities (Cluster 2) had worse respiratory function 

and the highest rates of adverse outcomes and lethality due to COVID-19; while younger 

patients and with PhenoAcccelAge≤0  (Cluster 4) had an important improvement in 
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respiratory parameters and a reduction in inflammatory biomarkers compared to the other 

subgroups. Recent findings identified that adaptive immune responses were not responsible 

for disease severity and adverse outcomes in patients with COVID-19 [26]. In accordance 

with our observations, these findings indicate that additional adaptations to SARS-CoV-2 

infection including inflammatory, metabolic, respiratory and hematologic changes could 

explain heterogeneous risk profiles in COVID-19. 

The COVID-19 pandemic has disproportionally affected older adults and patients with 

underlying chronic comorbidities, with several studies pointing at the relevance of 

chronological age and comorbidity for risk stratification of COVID-19 outcomes [3,6,27]. 

However, some reports have also questioned whether chronological age is enough for this 

task or if it is necessary to take additional variables into account to better reflect 

heterogeneous risk profiles associated with adverse outcomes related to COVID-19 [15,28]. 

To date, only one study by Chia-Ling et al. assessed the relationship between PhenoAge and 

COVID-19 outcomes using data from the UK Biobank. Authors reported that PhenoAgeAccel 

estimated 10-14 years prior to SARS-CoV-2 infection was a better predictor of positivity to 

SARS-CoV-2 or COVID-19 related lethality compared to chronological age. In contrast, our 

study evaluates PhenoAge at the time of SARS-CoV-2 infection, which allowed us to capture 

the heterogeneity of physiological responses to SARS-CoV-2 infection using a metric which 

was designed to assess biological age; however, with its components being collected during 

an event of acute stress, PhenoAge and PhenoAgeAccel would not allow to assess an 

underlying process of accelerated aging. Prior efforts in UK cases characterized symptom 

clusters in COVID-19, which already reflected the heterogeneity of clinical presentations and 

responses to SARS-CoV-2 infection [29]. Here, we have characterized four adaptive 

responses to severe COVID-19, with relevant prognostic and pathophysiological implications; 

notably, we identified that cycle threshold viral load was higher for adaptive responses 

associated with better outcomes, which has previously been reported [30]. The identified 
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adaptive responses to acute SARS-CoV-2 are highly heterogeneous in accordance with 

previous findings and its characterization requires further studies which investigate underlying 

pathophysiological implications of each infection subtype. 

Our study has certain limitations, such as the inclusion of a non-representative population 

composed only of hospitalized patients with severe COVID-19; moreover, we were not able to 

study the effects of longitudinal PhenoAge trajectories on clinical course due to the lack of 

repeated measurements over time. Due to the fact that PhenoAge and PhenoAgeAccel were 

estimated at admission, it remains unclear the role that PhenoAge values prior to the disease 

and its longitudinal changes may have on reduced physiological reserve, diminished intrinsic 

capacity or frailty in the setting of COVID-19 [31–33]. Lastly, we only used PhenoAge and 

PhenoAgeAccel to estimate adaptive responses potentially linked to aging; however, it is well 

known that different biological age estimations may illustrate distinct points of view of the 

aging process [34]. Prospective studies assessing aging measures before, during and after 

the infection are necessary to further elucidate the impact of premature aging on the clinical 

course of COVID-19 patients; additionally, other parameters should be taken into account, 

such as imaging features, immunophenotyping and histopathological findings. Finally, to 

examine whether the identified adaptive responses to SARS-CoV-2 infection have 

distinguishable pathophysiological differences, in-depth phenotyping studies are still required. 

In conclusion, we propose that PhenoAge and PhenoAgeAccel may be better predictors for 

adverse COVID-19 outcomes and lethality compared to chronological given that they likely 

capture physiological adaptations to acute stress. These associations may contribute to 

characterize adaptive responses which are altered by underlying processes such as aging 

and comorbidities, and the physiological reserve in response to severe SARS-CoV-2 

infection. Finally, we propose that clustering of these adaptive responses might aid in 

understanding pathophysiological processes related to the heterogeneity of severe COVID-

19.  
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TABLE 1. Patient demographics and medical history of comorbidities assessed at triage or evaluation at the emergency department 

at a Tertiary Care Center in Mexico City, comparing COVID-19 cases according to PhenoAgeAccel values. 

Abbreviations: CA: Chronological age. CVD: Cardiovascular disease; CKD: Chronic Kidney Disease; COPD: Chronic Obstructive 
Pulmonary Disease; HIV: Human Immunodeficiency Virus. 

Characteristic Overall (n=1069) PhenoAgeAccel ≤0 (n=630) PhenoAgeAccel >0 (n=438) P-value 

Male (%) 675 (63.2) 389 (61.7) 286 (65.3) 0.263 

Age (years) 53 (44-63) 52 (43-62) 54 (45-64) 0.026 

PhenoAge (years) 82.4 (70.5-95.7) 74.22 (64.4-84.2) 95.68 (83.9-107.9) <0.001 

>=1 comorbidity (%) 770 (73.2) 426 (68.4) 344 (80.2) <0.001 

Diabetes Mellitus (%) 273 (25.6) 98 (15.6) 175 (40) <0.001 

Early-onset Diabetes (%) 25 (2.3) 2 (0.3) 23 (5.3) <0.001 

Obesity (%) 468 (43.9) 266 (42.4) 202 (46.1) 0.230 

Cardiovascular disease (%) 47 (4.4) 23 (3.7) 24 (5.5) 0.200 

Hypertension (%) 315 (29.5) 159 (25.2) 156 (35.6) <0.001 

Chronic kidney disease (%) 12 (1.1) 3 (0.5) 9 (2.1) 0.034 

COPD (%) 16 (1.5) 9 (1.4) 7 (1.6) 0.804 

Asthma (%) 22 (2.1) 10 (1.6) 12 (2.7) 0.198 

Immunosuppression (%) 62 (5.8) 26 (4.1) 36 (8.2) 0.007 

HIV (%) 10 (0.9) 7 (1.1) 3 (0.7) 0.539 

Smoking (%) 160 (15.1) 95 (15.1) 65 (15) 0.984 

Follow-up time (days) 15 (11-21) 14.5 (11-20) 15 (10-23) 0.045 

Severe cases (%) 628 (58.8) 453 (71.9) 175 (40) <0.001 

Critical cases (%) 222 (20.8) 101 (16) 121 (27.6) <0.001 

Lethal cases (%) 218 (20.4) 76 (12.1) 142 (32.4) <0.001 
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TABLE 2. Univariate Cox proportional risks regression models to predict risk of adverse outcomes and lethality related to COVID-19 

using clinical characteristics assessed at triage evaluation. A positive ΔBIC indicates that the variable is a better predictor than CA. 

Abbreviations: CA: Chronological age. BIC: Bayesian information criterion. HR: Hazard ratio. CRP: C-reactive protein. RDW: Red 

blood cells distribution width. MCV: Mean corpuscular volume. SpO2: Oxygen saturation. 

Parameter 
Adverse outcomes Lethality 

ΔBIC HR (95%CI) ΔBIC HR (95%CI) 

CA (years) Reference 1.016 (1.009-1.024) Reference 1.040 (1.029-1.051) 

Glucose (mg/dL) -10.47 1.001 (1.000-1.002) -44.50 1.002 (1.001-1.003) 

CRP 13.77 1.029 (1.019-1.040) -17.49 1.044 (1.029-1.058) 

Alkaline Phosphatase -15.59 1.001 (1.000-1.003) -50.33 1.002 (1.001-1.003) 

RDW -15.32 1.051 (0.991-1.115) -51.83 1.044 (0.962-1.133) 

MCV -17.66 1.002 (0.991-1.014) -45.77 1.030 (1.006-1.055) 

Lymphocytes (%) 29.53 0.941 (0.923-0.959) -13.23 0.922 (0.896-0.948) 

Leucocytes (x1000) -5.22 1.034 (1.015-1.052) -45.37 1.037 (1.011-1.063) 

Creatinine -5.42 1.479 (1.209-1.809) -36.22 1.764 (1.389-2.240) 

Albumin 9.57 0.566 (0.457-0.701) -4.71 0.339 (0.249-0.462) 

SpO2 18.18 0.981 (0.975-0.987) 8.73 0.968 (0.961-0.976) 

PhenoAge (years) 33.38 1.020 (1.015-1.026) 34.35 1.038 (1.030-1.047) 

PhenoAgeAccel (years) 7.85 1.017 (1.011-1.023) -27.64 1.024 (1.015-1.033) 
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TABLE 3. Multivariate Cox proportional risks regression models to predict risk of adverse outcomes and lethality related to COVID-

19. For both adverse outcomes and lethality alone, the first model contains variables chosen by minimization of BIC and the second 

model contains only PhenoAgeAccel and CA. 

Abbreviations: HR: Hazard ratio. CA: Chronological age. CRP: C-reactive protein. RDW: Red blood cells distribution width. MCV: 

Mean corpuscular volume. 

 Model Parameter β HR (95%CI) p-value 

Models for 
adverse 

outcomes 

  

PhenoAge Components 

C-Statistic 0.68 

  

Lymphocytes (%) -0.043 0.958 (0.938-0.978) <0.001 

Glucose (mg/dL) 0.001 1.001 (1.000-1.002) 0.049 

CRP 0.016 1.016 (1.005-1.028) 0.005 

CA (years) 0.014 1.014 (1.007-1.022) <0.001 

PhenoAgeAccel + CA 

C-Statistic 0.665 

PhenoAgeAccel 0.020 1.021 (1.014-1.027) <0.001 

CA (years) 0.019 1.02 (1.012-1.027) <0.001 

Models for 
lethality 

 

PhenoAge Components 

C-Statistic 0.733 

 

Albumin -0.687 0.503 (0.359-0.705) <0.001 

Creatinine 0.430 1.537 (1.183-1.997) 0.001 

CRP 0.033 1.034 (1.019-1.049) <0.001 

CA (years) 0.033 1.033 (1.022-1.045) <0.001 

PhenoAgeAccel + CA 

C-Statistic 0.711 

PhenoAgeAccel 0.033 1.033 (1.023-1.043) <0.001 

CA (years) 0.045 1.046 (1.034-1.057) <0.001 
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FIGURE LEGENDS 

 

Figure 1. Levels of PhenoAge and PhenoAgeAccel tend to increment across groups with increasing disease severity even after 

taking the number of comorbidities and age categories into account (A-D). The scatter plots of PhenoAge (E) and PhenoAgeAccel (F) 
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regressed onto CA highlight that patients with worse clinical status tend to display higher PhenoAge and PhenoAgeAccel values. 

Significance codes: * <0.05, ** <0.01, *** <0.001. 

Abbreviations: CA: Chronological Age 
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Figure 2. Predictive performance of the individual variables of multivariate models assessed by ROC curves for adverse outcomes 

(A) and lethality (B) and clinical decision curves for adverse outcomes (C) and lethality (D). 

Abbreviations: AUC: Area under curve. CA: Chronological age. CRP: C-reactive protein. Lymph: Lymphocytes. 
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Figure 3. Comparison of transformed and standardized clinical variables comprising individual components of PhenoAge (A), 

respiratory and metabolic function (B) and inflammatory biomarkers (C) between patients with PhenoAgeAccel>0 and 
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PhenoAgeAccel≤0; transformations used included the Box cox, Arcsine, Yeo-Johnson and Ordered Quantile (ORQ) normalization 

transformations. Patients with PhenoAgeAccel>0 had a higher risk of development of adverse outcomes (D) and lethality (E) as 

shown by the Kaplan-Meier curves among these groups. Significance codes: * <0.05, ** <0.01, *** <0.001. 

Abbreviations: CA: Chronological age. Alk-Ph: Alkaline phosphatase. MCV: Mean corpuscular volume. RDW: Red blood cells 

distribution width. Lymph: Lymphocytes. CRP: C-reactive protein. SpO2: Pulse oxygen saturation. PaFi: Partial pressure of oxygen to 

fraction of inspired oxygen ratio. TyG index: Triglycerides and glucose index. LDH: Lactate dehydrogenase. TPNI: Troponin I. BUN: 

Blood urea nitrogen. ALT: Aspartate aminotransferase. ALT: Alanine aminotransferase. 
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Figure 4. Observed clusters displayed differential values of CA (A), PhenoAge (B) and PhenoAgeAccel (C) and the rates of adverse 

outcomes, ICU admission, IMV requirement and lethality varied significantly across clusters (D). 

Abbreviations: CA: Chronological age. ICU: Intensive care unit. IMV: Invasive mechanical ventilation. 
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Figure 5. Comparison across clusters of multiple laboratory measures and clinical variables related to individual PhenoAge 

components (first column), respiratory and metabolic function (second column), inflammation (third column) and symptoms (fourth 
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and fifth columns) reveal distinct patterns of adaptive responses to SARS-CoV-2 infection. Transformations used included the Box 

cox, Arcsine, Yeo-Johnson and Ordered Quantile (ORQ) normalization transformations. 

Abbreviations: CA: Chronological age. Alk-Ph: Alkaline phosphatase. MCV: Mean corpuscular volume. RDW: Red blood cells 

distribution width. Lymph: Lymphocytes. CRP: C-reactive protein. SpO2: Pulse oxygen saturation. PaFi: Partial pressure of oxygen to 

fraction of inspired oxygen ratio. TyG index: Triglycerides and glucose index. LDH: Lactate dehydrogenase. TPNI: Troponin I. BUN: 

Blood urea nitrogen. ALT: Aspartate aminotransferase. ALT: Alanine aminotransferase, CT: Cycle threshold 


