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Abstract 11 

Forecasts and alternative scenarios of COVID-19 mortality have been critical inputs into a range of 12 

policies and decision-makers need information about predictive performance. We identified n=386 13 

public COVID-19 forecasting models and included n=8 that were global in scope and provided public, 14 

date-versioned forecasts. For each, we examined the median absolute percent error (MAPE) compared 15 

to subsequently observed mortality trends, stratified by weeks of extrapolation, world region, and 16 

month of model estimation. Models were also assessed for ability to predict the timing of peak daily 17 

mortality. The MAPE among models released in July rose from 1.8% at one week of extrapolation to 18 

24.6% at twelve weeks. The MAPE at six weeks were the highest in Sub-Saharan Africa (34.8%), and the 19 

lowest in high-income countries (6.3%). At the global level, several models had about 10% MAPE at six 20 

weeks, showing surprisingly good performance despite the complexities of modelling human 21 

behavioural responses and government interventions. The framework and publicly available codebase 22 

presented here (https://github.com/pyliu47/covidcompare) can be routinely used to compare 23 

predictions and evaluate predictive performance in an ongoing fashion. 24 

☨Correspondence to: Emmanuela Gakidou (gakidou@uw.edu). 25 

*These authors contributed equally to the analysis and are listed in alphabetical order.  26 
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Introduction 27 

Forecasts and alternative scenarios of COVID-19 have been critical inputs into a range of important 28 

decisions by healthcare providers, local and national government agencies and international 29 

organizations and actors1–4. For example, hospitals need to prepare for potential surges in the demand 30 

for hospital beds, ICU beds and ventilators1. National critical response agencies such as the US Federal 31 

Emergency Management Agency have scarce resources including ventilators that can be moved to 32 

locations in need with sufficient notice5,6. Longer range forecasts are important for decisions such as the 33 

potential to open schools, universities and workplaces, and under what circumstances7. Much longer-34 

range forecasts—six months to a year—are important for a wide range of policy choices, where efforts 35 

to reduce disease transmission must be balanced against economic outcomes such as unemployment 36 

and poverty8. Furthermore, vaccine and new therapeutic trialists need to select locations that will have 37 

sufficient transmission to test new products in the time frame when phase three clinical trials are ready 38 

to be launched. Nevertheless, hundreds of forecasting models have been published and/or publicly 39 

released, and it is often not immediately clear which models have had the best performance, or are 40 

most appropriate for predicting a given aspect of the pandemic. 41 

Existing COVID-19 forecasting models differ substantially in methodology, assumptions, range of 42 

predictions, and quantities estimated. Furthermore, mortality forecasts for the same location have often 43 

differed substantially, in many cases by more than an order of magnitude, even within a six-week 44 

forecasting window. The challenge for decision-makers seeking input from models to guide decisions, 45 

which can impact many thousands of lives, is therefore not the availability of forecasts, but guidance on 46 

which forecasts are likely to be most accurate. Out-of-sample predictive validation—checking how well 47 

past versions of forecasting models predict subsequently observed trends—provides insight into future 48 

model performance9. Although some comparisons have been conducted for models describing the 49 

epidemic in the United States10–13, to our knowledge similar analyses have not been undertaken for 50 

models covering multiple countries, despite the growing global impact of COVID-19. 51 

This paper introduces a publicly available dataset and evaluation framework 52 

(https://github.com/pyliu47/covidcompare) for assessing the predictive validity of COVID-19 mortality 53 

forecasts. The framework and associated open-access software can be routinely used to track model 54 

performance. This will, overtime, serve as a reference for decision-makers on historical model 55 

performance, and provide insight into which models should be considered for critical decisions in the 56 

future. 57 

Results 58 

Eight models which fit all inclusion criteria were evaluated (Table 1). These included those modelled by: 59 

DELPHI-MIT (Delphi)14,15, Youyang Gu (YYG)10, the Los Alamos National Laboratory (LANL)16, Imperial 60 

College London (Imperial)17,the SIKJ-Alpha model from the USC Data Science Lab (SIKJalpha)18, and three 61 

models produced by the Institute for Health Metrics and Evaluation (IHME)19 (see methods section for 62 

more details). Results are presented in the main text for two main predictive tasks: 1) predicting the 63 

magnitude of mortality, and 2) predicting the timing of peak mortality (see methods). Magnitude results 64 

are presented in the main text for models that continued to produce forecasts at the time of publication 65 

of this article, while peak timing results are presented for models released early enough to capture the 66 

first peak in most locations. Results for all historical models are shown in the appendix. Magnitude of 67 
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mortality results in the main text are presented according to two main analytical approaches. In the 68 

“most current” approach, used to select data shown in Figure 3, the most recent 4-week period allowing 69 

for the calculation of errors is selected for each extrapolation length. In the “month stratified” approach, 70 

used to select data for Figures 4 and 5, models from July were used to calculate errors at each length of 71 

extrapolation, with all months shown in the appendix. In each case errors were assessed from one to 72 

twelve weeks of forecasting (see methods and Figure 2 for more details). 73 

The evaluation framework developed here for assessing how well models predicted the total number of 74 

cumulative deaths is shown in Figure 1 for an example country—the United States—and similar figures 75 

for all locations included in the study can be found in the appendix. Figure 1, and similar figures in the 76 

appendix, also highlight the direction of error for each model in each location. When looking across 77 

iterations of forecasts, a wide range of variation can be observed for nearly all of the models. 78 

Nevertheless, in many locations, models largely reached consensus regarding trajectories in the summer 79 

of 2020. Models diverged again when predicting trajectories for Fall 2020 and Winter 2021, as some 80 

models predicted upticks related to seasonality, while others projected continued slow declines in 81 

mortality. 82 

Figure 2 highlights the most recent errors for each length of extrapolation. For all models, the most 83 

recent 1-week errors, reflecting forecasts created in October, ranged from 1% to 2%. The 12-week 84 

median absolute percent errors (MAPE), reflecting models produced in July and August, ranged from 85 

22.4% for the SIK-J Alpha model, to 79.9% for the Imperial model. At the global level pooling across 86 

models, the most recent 6-week MAPE value was 7.2%. 87 

Systematic assessments of bias for all models produced in July are shown in Figure 4, and Supplemental 88 

Figure 2. The Delphi and LANL models from July underestimated mortality, with median percent errors 89 

of -5.6% and -8.3% at 6 weeks respectively, while Imperial tended to overestimate (+47.7%), and the 90 

remaining models were relatively unbiased. 91 

Overall model performance for models produced in July is shown for cumulative deaths by week in 92 

Figure 5. As one might expect, MAPE tends to increase by the number of weeks of extrapolation. Across 93 

models released in July the MAPE rose from 1.8% at one week to 24.6% at twelve weeks. Decreases in 94 

predictive ability with greater periods of extrapolation were similarly noted for errors in weekly deaths 95 

(Supplemental Figure 3). At the global level, MAPE at six weeks was less than 15% for LANL (10.6%), 96 

IHME-MS-SEIR (10.6%), SIKJalpha (12.3%) and Delphi (13.6%). The Imperial model had larger errors, 97 

about 5-fold higher than other models by six weeks. This appears to be largely driven by the 98 

aforementioned tendency to overestimate mortality. At twelve weeks, MAPE values were lowest for the 99 

IHME-MS-SEIR (23.7%) model, while the Imperial model had the most elevated MAPE (98.8%). Predictive 100 

performance between models was generally similar for median absolute errors (MAEs) (see 101 

supplemental figure 4). Global MAE values at 12 weeks, among models released in July varied from 204 102 

for the IHME-MS-SEIR model to 1,264 for the Imperial model. 103 

Figure 5 also shows that model performance varies substantially by region. The lowest errors across 104 

models were observed among high-income countries with a 6-week MAPE values of 6.3%. In contrast, 105 

the largest errors were seen in sub-Saharan Africa, with a 6-week MAPE of 34.8%, and Latin America and 106 

the Caribbean, with a MAPE of 22.4%. Individual model performance and availability also varied by 107 

region. 108 
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The evaluation framework for exploring the ability of models to predict the timing of peak mortality 109 

accurately—a matter of paramount importance for health service planning—is shown in Figure 6 for an 110 

example location, Massachusetts. Similar figures for all locations are shown in the appendix. Median 111 

absolute errors (MAE) for peak timing also rose with increased forecasting weeks, from 13 days at one 112 

week to 30 days at eight weeks (Figure 7). The MAE at eight weeks ranged from 27 days for the IHME 113 

Curve Fit and SIKJ-Alpha models to 54 days for the LANL model, with an overall error across models of 30 114 

days (Figure 7). Models were generally biased towards predicting peak mortality too early 115 

(Supplemental Figure 5). 116 

Discussion 117 

Eight COVID-19 models were identified that covered more than five countries, were regularly updated, 118 

publicly released and provide archived results for past forecasts. Taken together at twelve weeks, the 119 

models released in July had a median average percent error of 24.6% percent. Errors tend to increase 120 

with longer forecasts, rising from 1.8% at one week to 24.6% at 12 weeks. At twelve weeks of 121 

extrapolation, the best predictive performance among models considered at the global level was 122 

observed for the IHME-MS-SEIR models, with a MAPE of 23.7%, although the best performing model 123 

varied by region. The projections provided by Imperial had considerably higher error (98.8%) and the 124 

SIKJalpha and Delphi models had intermediate performance for the same period. In the most current 125 

models, the 6-week MAPE across models was 7.2%.  126 

Although models largely converged in their predictions for the summer of 2020 period, forecasts began 127 

to diverge again among predictions for Fall 2020 and Winter 2021. These later divergences are likely due 128 

to differences in model assumptions related to the effects of seasonality. Although the top performing 129 

models are currently performing in a highly comparable fashion, the updated results presented in this 130 

framework in an ongoing fashion may highlight major predictive performance differences as the validity 131 

of these assumptions are born out in the coming months.  132 

A forecast of the trajectory of the COVID-19 epidemic for a given location depends on three sets of 133 

factors: 1) attributes of the virus itself, and characteristics of the location, such as population density 134 

and the use of public transport; 2) individual behavioural responses to the pandemic such as avoiding 135 

contact with others or wearing a mask; and 3) the actions of governments, such as the imposition of a 136 

range of social distancing mandates. Given the complexity of forecasting human and governmental 137 

behaviours, especially in the context of a new pandemic, performance of most of the models evaluated 138 

here was encouraging. Nevertheless, errors were observed to grow with greater extrapolation time, 139 

indicating that governments and planners should recognize the wide uncertainty that comes with longer 140 

range forecasts, and strategize accordingly. Hospital administrators may want to hedge on the higher 141 

end of the forecast range, while government policymakers may elect to use the mean forecast, 142 

depending on their risk tolerance. 143 

We also observed substantial differences in average model predictive performance between regions, 144 

which can likely be explained by several factors. Data quality has been shown to vary substantially 145 

between countries, and many models were initially calibrated on data from early epidemics in China, 146 

Europe, and the United States. Furthermore, different regions are at different stages of their epidemic 147 

at any given time. For many of the countries in Sub-Saharan Africa for example, the challenge is 148 

predicting if, and when, large outbreaks will occur. It is therefore easier for a model to demonstrate 149 
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large magnitude errors when it predicts a completely different epidemic trajectory. Contrastingly, in 150 

some of the more established epidemics, it is easier to predict the nature of more stabilized, ongoing 151 

transmission dynamics. 152 

We also note that the vast majority of COVID-19 forecasting models did not provide sufficient 153 

information to be included in this framework, given that publicly available and date-version forecasts 154 

were not made available. We would encourage all research groups forecasting COVID-19 mortality to 155 

consider providing historical versions of their models in a public platform for all locations, to facilitate 156 

ongoing model comparisons. This will improve reproducibility, the speed of development for modelling 157 

science, and the ability of policy makers to discriminate between a burgeoning number of models20. 158 

Many of the models featured in this analysis were generally unbiased, or tended to underestimate 159 

future mortality, while other models, such as the Imperial model, as well as many other published 160 

models that did not meet our inclusion criteria, tend to substantially overestimate transmission, even 161 

within the first four weeks of a forecast. This tendency towards over-estimation among SEIR and other 162 

transmission-based models is easy to understand given the potential for the rapid doubling of 163 

transmission. Nevertheless, sustained exponential growth in transmission is not often observed, likely 164 

due to the behavioural responses of individuals and governments; both react to worsening 165 

circumstances in their communities, modifying behaviours and imposing mandates to restrict activities. 166 

This endogenous behavioural response is commonly included in economic analyses, however, it has not 167 

been routinely featured in transmission dynamics modelling of COVID-19. More explicit modelling of the 168 

endogenous response of individuals and governments may improve future model performance for a 169 

range of models. 170 

Modelling groups are increasingly providing both reference forecasts, describing likely future trends, 171 

and alternative scenarios describing the potential effects of policy choices, such as school openings, 172 

timing of mandate re-imposition, or planning for hospital surges. For these scenarios, the error in the 173 

reference forecast—which we describe in this manuscript—is actually less important than the error in 174 

the effect implied by the difference between the reference forecast and policy scenario. Unfortunately, 175 

evaluating the accuracy of these counterfactual scenarios is an extremely difficult task. The validity of 176 

such claims depends on the supporting evidence for the assumptions about a policy’s impact on 177 

transmission. The best option for decision-makers is likely to examine the impact of these policies as 178 

portrayed by a range of modelling groups, especially those that have historically had reasonable 179 

predictive performance in their reference forecasts. 180 

Given that a number of very different models demonstrated recent six-week errors for cumulative 181 

deaths below 10%, it would likely be worthwhile to construct an ensemble of these models and evaluate 182 

the performance the ensemble compared to each component. Although from a logistical standpoint, 183 

creating an ensemble of the forecasts would be relatively straightforward, it would be more challenging 184 

to integrate such a model pool with scenarios assessing policy options, given that the models have 185 

highly different underlying structures. Nevertheless, the inclusion of the models shown here, and future 186 

models meeting criteria into an ensemble framework, is an important area for future research. 187 

This analysis of the performance of publicly released COVID-19 forecasting models has limitations. First, 188 

we have focused only on forecasts of deaths, as they are available for all models included here. Hospital 189 

resource use is also of critical importance, however, and deserves future consideration. Nevertheless, 190 

this will be complicated by the heterogeneity in hospital data reporting; many jurisdictions report 191 
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hospital census counts, others report hospital admissions, and still others do not release hospital data 192 

on a regular basis. Without a standardized source for these data, assessment of performance can only 193 

be undertaken in an ad hoc way. Second, many performance metrics exist which could have been 194 

computed for this analysis. We have focused on reporting median absolute percent error, as the metric 195 

is frequently used, quite stable, and provides an easily interpreted number that can be communicated to 196 

a wide audience. Relative error is an exacting standard, however. For example, a forecast of three 197 

deaths in a location that observed only one may represent a 200% error, yet it would be of little policy 198 

or planning significance. Conversely, focusing on absolute error would create an assessment dominated 199 

by a limited number of locations with large epidemics. Future assessment could consider different 200 

metrics that may offer new insights, although the relative rank of performance by model is likely to be 201 

similar. 202 

When taking an inclusive approach to including forecasts from various modelling groups, including 203 

estimates from a wide range of time periods and geographies, extra care must be taken to ensure 204 

comparability between models. We use various techniques to construct fair companions, such as 205 

stratifying by region, month of estimation, and weeks of forecasting, and masking summary statistics 206 

representing a small number of values. Nevertheless, other researchers may prefer distinct methods of 207 

maximizing comparability over a complex and patchy estimate space. Furthermore, the domains 208 

assessed here —magnitude of total mortality and peak timing—are not an exhaustive list of all possible 209 

dimensions of model performance. By providing an open-access framework to compile forecasts and 210 

calculate errors, other researchers can build on the results presented here to provide additional 211 

analyses. 212 

COVID-19 mortality forecasts have been used in myriad ways by policymakers as they make difficult 213 

decisions about resource management under unprecedented circumstances. Examples include 214 

prospectively managing or moving resources between regions such as hospital beds, ICU beds, 215 

ventilators, masks and other personal-protective equipment, as well as decisions about social distancing 216 

measures, stay-at-home orders, and closing schools, universities and workplaces1,7. It is therefore of 217 

paramount importance that decision-makers can quickly assess how robust each modelling groups 218 

predictions have been historically. Furthermore, we believe a similar approach could be adopted in 219 

future pandemics, and for modelling other infectious diseases such as influenza. 220 

Ultimately, policymakers would benefit from considering a multitude of forecasting models as they 221 

consider resource planning decisions related to the response to the ongoing COVID-19 pandemic. This 222 

study provides a publicly available framework and codebase, which will be updated in an ongoing 223 

fashion, to continue to monitor model predictions in a timely manner, and contextualize them with prior 224 

predictive performance. It is our hope that this spurs conversation and cooperation amongst 225 

researchers, which might lead to more accurate predictions, and ultimately aid in the collective 226 

response to COVID-19. As the pandemic continues worldwide and resurges in Europe and North America 227 

become more evident, regularly updating models, and continually assessing their predictive validity, will 228 

be important in order to provide stakeholders with the best tools for COVID-19 decision-making. 229 

  230 
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Methods 231 

Systematic Review 232 

A total of 386 published and unpublished COVID-19 forecasting models were reviewed (see appendix). 233 

Models were excluded from consideration if they did not 1) produce estimates for at least five different 234 

countries, 2) did not extrapolate at least four weeks out from the time of estimation, 3) did not estimate 235 

mortality, 4) did not provide downloadable, publicly available results, or 5) did not provide date-236 

versioned sets of previously estimated forecasts, which are required to calculate subsequent out-of-237 

sample predictive validity. Eight models which fit all inclusion criteria were evaluated (Table 1). These 238 

included those modelled by: DELPHI-MIT (Delphi)14,15, Youyang Gu (YYG)10, the Los Alamos National 239 

Laboratory (LANL)16, Imperial College London (Imperial)17,the SIKJ-Alpha model from the USC Data 240 

Science Lab (SIKJalpha)18, and three models produced by the Institute for Health Metrics and Evaluation 241 

(IHME)19. Beginning March 25th, IHME initially produced COVID forecasts using a statistical curve fit 242 

model (IHME-CF), which was used through April 29th for publicly released forecasts1. On May 4th, IHME 243 

switched to using a hybrid model, drawing on a statistical curve fit first stage, followed a second-stage 244 

epidemiological model with susceptible, exposed, infectious, recovered compartments (SEIR)21. This 245 

model—referred to herein as the IHME-CF SEIR model—was used through May 26th. On May 29th, the 246 

curve fit stage was replaced by a spline fit to the relationship between log cumulative deaths and log 247 

cumulative cases, while the second stage SEIR model remained the same22. This model, referred to as 248 

the IHME-MS SEIR model, is the basis for recently published work on US State level scenarios of COVID-249 

19 projections in the fall and winter of 2020/202123and was still in use at the time of this publication. 250 

The three IHME models rely upon fundamentally different assumptions and core methodologies, and 251 

therefore are considered separately. They were also released during different windows of the pandemic, 252 

and are therefore compared to models released during similar time periods. 253 

In some cases, numerous scenarios were produced by modelling groups, to describe the potential 254 

effects of interventions, or future trajectories under different assumptions. In each case the baseline or 255 

status quo scenario was selected to evaluate model performance as that represents the modelers’ best 256 

estimate about the most probable course of the pandemic. Table 1 summarizes information about each 257 

model assumptions, methodologies, input data, modelled outputs, and forecasting range. 258 

Model Comparison Framework 259 

In order to conduct a systematic comparison of the out-of-sample predictive validity of international 260 

COVID-19 forecasting models, a number of issues must be addressed. Looking across models, a high 261 

degree of heterogeneity can be observed in numerous dimensions, including sources of input data, 262 

frequency of public releases of model estimates, geographies included in the results, and how far into 263 

the future predictions are made available for. Differences in each of these areas must be taken into 264 

account, in order to provide a fair and relevant comparison. 265 

Input data: A number of sources of input data—describing observed epidemiological trends in COVID-266 

19—exist, and they often do not agree for a given country and time point24–26. We chose to use mortality 267 

data collected by the Johns Hopkins University Coronavirus Resource Center as the in-sample data 268 

against which forecasts were validated at the national level, and data from the New York Times for 269 

state-level data for the United States25,26. We chose to mainly rely on the Hopkins data as 1) it was the 270 

most common input data source used in the different models considered, 2) it covered all countries for 271 
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which modelling groups produced forecasts, 3) although some quality issues were noted, and managed 272 

in our analysis, largely quality was deemed acceptable, and 4) data were made publicly available on a 273 

GitHub page and updated daily, which facilitates the maintenance of a timely comparison framework. 274 

Locations were excluded from the evaluation (including Ecuador and Peru) where models used 275 

alternative data sources, such as excess mortality, in settings with known marked under-registration of 276 

COVID-19 deaths and cases27,28. We adjusted for differences in model input data using intercept shifts, 277 

whereby all models where shifted to perfectly match the in-sample data for the date in which the model 278 

was released (see supplemental methods). 279 

Frequency of public releases of model estimates: Most forecasting models are updated regularly, but at 280 

different intervals, and on different days. Specific days of the week have been associated with a greater 281 

number of reported daily deaths. Therefore, previous model comparison efforts in the United States—282 

such as those conducted by the US Centers for Disease Control and Prevention—have required modelers 283 

to produce estimates using input data cut-offs from a specific day of the week29. For the sake of 284 

including all publicly available modelled estimates, we took a more inclusive approach, considering each 285 

publicly released iteration of each model. To minimize the effect of day-to-day fluctuations in death 286 

reporting, we focus on errors in cumulative and weekly total mortality, which are less sensitive to daily 287 

variation. 288 

Geographies and time periods included in the results: Each model produces estimates for a different set 289 

of national and subnational locations, and extrapolates a variable amount of time from the present. 290 

Each model was also first released on a different date, and therefore reflects a different window of the 291 

pandemic. Here, we also took an inclusive but stratified approach, and included estimates from all 292 

possible locations and time periods. To increase comparability, summary error statistics were stratified 293 

by super-region used in the Global Burden of Disease Study30, weeks of extrapolation, and month of 294 

estimation, and we masked summaries reflecting a small number of locations or time points. Models 295 

were included in the global predictive validity results only when they were present for all regions. 296 

Estimates were included at the national level for all countries, except the United States, where they 297 

were also included at the admin-1 (state) level, as they were available for most models. In order to be 298 

considered for inclusion, models were required to forecast at least four weeks into the future. 299 

Outcomes: Finally, each model also includes different estimated quantities, including daily and 300 

cumulative mortality, number of observed or true underlying cases, and various dimensions of hospital 301 

resource utilization. The focus of this analysis is on mortality, as it was the most widely reported 302 

outcome, and it also has a high degree of societal, epidemiological and public health importance. We did 303 

not focus on forecasts of confirmed cases for several reasons. Certain models we wished to include did 304 

not provide an estimate of confirmed cases to subsequently assess predictive performance. Mortality, 305 

on the other hand, was available for all models. Furthermore, confirmed cases also depend on testing 306 

rates, which vary widely over time and across locations. Modelling confirmed cases, therefore, 307 

represents different and perhaps larger challenges. Of course, death numbers also have limitations, but 308 

they are generally more reliable than case numbers, at least in the early stages of the pandemic, and in 309 

locations with limited capacity to test. 310 

Comparison of Cumulative Mortality Forecasts 311 

The total magnitude of COVID-19 deaths is a key measure for monitoring the progression of the 312 

pandemic. It represents the most commonly produced outcome of COVID-19 forecasting models, and 313 
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perhaps the most widely debated measure of performance. The main quantity that is considered is 314 

errors in total cumulative deaths—as opposed to other metrics such as weekly or daily deaths—as it has 315 

been most commonly discussed measure, to-date, in academic and popular press critiques of COVID-19 316 

forecasting models. Nevertheless, alternate measures are presented in the appendix. Errors were 317 

assessed for systematic upward or downward bias, and errors for weekly, rather than cumulative 318 

deaths, were also assessed. In calculating summary statistics, percent errors were used to control for the 319 

large differences in the scale of the epidemic between locations. Medians, rather than means, are 320 

calculated due to a small number of large magnitude outliers present in a few time-series. Errors from 321 

all models were pooled to calculate overall summary statistics, in order to comment on overarching 322 

trends by geography and time. 323 

Results are presented using two analytical strategies in the main text. Both strategies are highlighted in 324 

Figure 2. The “most current” approach is used to select the data shown in Figure 3. The “month 325 

stratified” approach is used for Figures 3 and 4. In the “most current” approach, the most recent 4 326 

weeks of model dates are used for each extrapolation length. Therefore, for 1-week errors, models from 327 

October were used, whereas for 12-week errors, models from July and August were used. This allows for 328 

the assessment of the most recent evidence possible for each set of errors displayed. 4-week periods 329 

are used to ensure that the results are not unduly biased by featuring only a small number of runs for 330 

each model. 331 

In the “month stratified” approach, models from July are used in all cases. This strategy allows for more 332 

reliable assessment of certain aspects of predictive validity, as the same models are being compared 333 

over time and geographies. For example, the month stratified approach may provide a more comparable 334 

assessment of how errors grow with increased length of extrapolation. Models are shown for July in the 335 

main text—the most recent month allowing for assessment of errors at twelve weeks of forecasting—336 

and errors stratified for all months are shown in the appendix. 337 

Comparison of Peak Daily Mortality Forecasts 338 

Each model was also assessed on how well it predicted the timing of peak daily deaths—an additional 339 

aspect of COVID-19 epidemiology with acute relevance for resource planning. Peak timing may be better 340 

predicted by different models than those best at forecasting the magnitude of mortality, and therefore 341 

deserves separate consideration as an outcome of predictive performance. In order to assess peak 342 

timing predictive performance, the observed peak of daily deaths in each location was estimated first—343 

a task complicated by the highly volatile nature of reported daily deaths values. Each timeseries of daily 344 

deaths was smoothed, and the date of the peak observed in each location, as well as the predicted peak 345 

for each iteration of each forecasting model was calculated (see supplemental methods). A LOESS 346 

smoother was used, as it was found to be the most robust to daily fluctuations. Results shown here 347 

reflect only those locations for which the peak of the epidemic had passed at the time of publication, 348 

and for which at least one set of model results was available seven days or more ahead of the peak date. 349 

Predictive validity statistics were stratified by the number of weeks in advance of the observed peak that 350 

the model was released, as well as the month in which the model was released. Results shown in the 351 

main text were pooled across months, as there was little evidence of dramatic differences over time 352 

(see appendix). There was insufficient geographic variation to stratify results by regional groupings, 353 

although that remains an important topic for further study, which will become feasible as the pandemic 354 

peaks in a greater number of countries globally. 355 
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Data and Code Availability 356 

All data and versioned code required to reproduce this analysis its included visualizations are publicly 357 

available at ( https://github.com/pyliu47/covidcompare). 358 

References 359 

1 Team IC-19 health service utilization forecasting, Murray CJ. Forecasting COVID-19 impact on 360 

hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. 361 

medRxiv 2020; : 2020.03.27.20043752. 362 

2 Lu FS, Nguyen AT, Link NB, Lipsitch M, Santillana M. Estimating the Early Outbreak 363 

Cumulative Incidence of COVID-19 in the United States: Three Complementary Approaches. 364 

medRxiv 2020; : 2020.04.18.20070821. 365 

3 Weinberger D, Cohen T, Crawford F, et al. Estimating the early death toll of COVID-19 in the 366 

United States. medRxiv 2020; : 2020.04.15.20066431. 367 

4 Epidemic Model Guided Machine Learning for COVID-19 Forecasts in the United States | 368 

medRxiv. https://www.medrxiv.org/content/10.1101/2020.05.24.20111989v1 (accessed 369 

June 23, 2020). 370 

5 Critical Supply Shortages — The Need for Ventilators and Personal Protective Equipment 371 

during the Covid-19 Pandemic | NEJM. New England Journal of Medicine 372 

http://www.nejm.org/doi/full/10.1056/NEJMp2006141 (accessed July 26, 2020). 373 

6 FEMA Administrator March 27, 2020, letter to Emergency Managers Requesting Action on 374 

Critical Steps | FEMA.gov. https://www.fema.gov/news-release/2020/03/27/fema-375 

administrator-march-27-2020-letter-emergency-managers-requesting-action (accessed July 376 

26, 2020). 377 

7 Viner RM, Russell SJ, Croker H, et al. School closure and management practices during 378 

coronavirus outbreaks including COVID-19: a rapid systematic review. The Lancet Child & 379 

Adolescent Health 2020; 4: 397–404. 380 

8 Atkeson A. What Will Be the Economic Impact of COVID-19 in the US? Rough Estimates of 381 

Disease Scenarios. National Bureau of Economic Research, 2020 DOI:10.3386/w26867. 382 

9 Tashman LJ. Out-of-sample tests of forecasting accuracy: an analysis and review. 383 

International Journal of Forecasting 2000; 16: 437–450. 384 

10 Gu Y. COVID-19 Projections Using Machine Learning. https://covid19-projections.com/ 385 

(accessed June 23, 2020). 386 

11 Reich Lab COVID-19 Forecast Hub. https://reichlab.io/covid19-forecast-hub/ (accessed June 387 

23, 2020). 388 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.07.13.20151233doi: medRxiv preprint 

https://github.com/pyliu47/covidcompare
https://doi.org/10.1101/2020.07.13.20151233
http://creativecommons.org/licenses/by/4.0/


12 Project Score Data: COVID-19 Forecasts - Zoltar. 389 

https://zoltardata.com/project/44/score_data (accessed June 23, 2020). 390 

13 UCLAML Combating COVID-19. http://covid19.uclaml.org/compare (accessed June 23, 2020). 391 

14 MIT DELPHI Epidemiological Case Predictions COVIDAnalytics. 392 

https://www.covidanalytics.io/projections (accessed June 23, 2020). 393 

15 Li ML, Bouardi HT, Lami OS, Trikalinos TA, Trichakis NK, Bertsimas D. Forecasting COVID-19 394 

and Analyzing the Effect of Government Interventions. medRxiv 2020; : 395 

2020.06.23.20138693. 396 

16 Los Alamos Natinoal Laboratory COVID-19 Confirmed and Forecasted Case Data. 397 

https://covid-19.bsvgateway.org/ (accessed June 23, 2020). 398 

17 Imperial College COVID-19 LMIC Reports. https://mrc-ide.github.io/global-lmic-reports/ 399 

(accessed June 23, 2020). 400 

18 Srivastava A, Xu T, Prasanna VK. Fast and Accurate Forecasting of COVID-19 Deaths Using the 401 

SIkJ$\alpha$ Model. arXiv:200705180 [physics, q-bio] 2020; published online July 12. 402 

http://arxiv.org/abs/2007.05180 (accessed Aug 23, 2020). 403 

19 COVID-19 estimation updates. Institute for Health Metrics and Evaluation. 2020; published 404 

online March 24. http://www.healthdata.org/covid/updates (accessed June 23, 2020). 405 

20 Rivers C, George D. How to Forecast Outbreaks and Pandemics. 2020; published online July 406 

5. https://www.foreignaffairs.com/articles/united-states/2020-06-29/how-forecast-407 

outbreaks-and-pandemics (accessed July 8, 2020). 408 

21 IHME COVID-19 Estimation Update: May 4th, 2020. 409 

http://www.healthdata.org/sites/default/files/files/Projects/COVID/Estimation_update_050410 

420.pdf (accessed July 6, 2020). 411 

22 IHME COVID-19 Estimation Update: May 29th, 2020. 412 

http://www.healthdata.org/sites/default/files/files/Projects/COVID/Estimation_update_05.3413 

0.2020.pdf (accessed July 6, 2020). 414 

23 Reiner RC, Barber RM, Collins JK, et al. Modeling COVID-19 scenarios for the United States. 415 

Nature Medicine 2020; : 1–12. 416 

24 Coronavirus Pandemic (COVID-19) - Statistics and Research - Our World in Data. 417 

https://ourworldindata.org/coronavirus (accessed June 28, 2020). 418 

25 nytimes/covid-19-data. The New York Times, 2020 https://github.com/nytimes/covid-19-419 

data (accessed June 28, 2020). 420 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.07.13.20151233doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20151233
http://creativecommons.org/licenses/by/4.0/


26 COVID-19 Map. Johns Hopkins Coronavirus Resource Center. 421 

https://coronavirus.jhu.edu/map.html (accessed June 23, 2020). 422 

27 Covid-19 data - Tracking covid-19 excess deaths across countries | Graphic detail | The 423 

Economist. https://www.economist.com/graphic-detail/2020/07/15/tracking-covid-19-424 

excess-deaths-across-countries (accessed July 26, 2020). 425 

28 A greater tragedy than we know: Excess mortality rates suggest that COVID-19 death toll is 426 

vastly underestimated in LAC. UNDP. 427 

https://www.latinamerica.undp.org/content/rblac/en/home/presscenter/director-s-graph-428 

for-thought/a-greater-tragedy-than-we-know--excess-mortality-rates-suggest-t.html 429 

(accessed July 20, 2020). 430 

29 CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 431 

2020; published online Feb 11. http://www.cdc.gov/coronavirus/2019-ncov/covid-432 

data/forecasting-us.html (accessed June 23, 2020). 433 

30 Dicker D, Nguyen G, Abate D, et al. Global, regional, and national age-sex-specific mortality 434 

and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 435 

2017. The Lancet 2018; 392: 1684–735. 436 

 437 

Acknowledgements 438 

This work was primarily supported by the Bill & Melinda Gates Foundation. J.F. received support from 439 

the UCLA Medical Scientist Training program (NIH NIGMS training grant GM008042). 440 

 441 

Competing Interests 442 

The authors declare they have no competing interests as defined by Nature Research that might be 443 

perceived to influence the results and/or discussion reported in this manuscript. 444 

 445 

Author Contributions 446 

JF, PL, TV, SIH, CJLM, and EG conceptualized and designed the study, with substantial input from RR, RB, 447 

JC, SL, and DP. JF and PL acquired the data, and JF, PL, CT, and AC wrote the analytical code to conduct 448 

the analysis. JF, PL, and CJLM drafted the first draft of the article and all authors meaningfully revised. 449 

SIH, CJLM, and EG supervised the work. 450 

  451 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.07.13.20151233doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20151233
http://creativecommons.org/licenses/by/4.0/


Tables and Figures  452 

 

Model Data Access 
Model 
Type 

Mortality 
Input Data 

Model Outputs Geographies Range Model Structure and Assumptions 

IHME - 
CurveFit 

http://www.h
ealthdata.org
/covid/data-
downloads 

Statistical 
Curve Fit 

JHU+ local 
and national 
governments 

Hospital and ICU Admissions, 
Ventilator, Hospital Beds 
Utilization; Confirmed Daily and 
Cumulative Cases; Daily and 
Cumulative Mortality 

34 Countries* Aug 4th**  
Statistical curve fit model aimed at 
predicting peak of hospital resource use as 
a function of social distancing. 

IHME - CF 
SEIR 

http://www.h
ealthdata.org
/covid/data-
downloads 

Curve Fit + 
SEIR 

JHU+ local 
and national 
governments 

Hospital and ICU Admissions, 
Ventilator, Hospital Beds 
Utilization; Confirmed Daily and 
Cumulative Cases; Daily and 
Cumulative Mortality 

52 Countries* Aug 4th** 

Hybrid curve fit (next 8 days) and SEIR 
model (after 8 days) with additional 
parameters including mobility, testing, 
temperature, and population density. 

IHME – 
MS SEIR 

http://www.h
ealthdata.org
/covid/data-
downloads 

Mortality 
Spline + 
SEIR 

JHU+ local 
and national 
governments 

Hospital and ICU Admissions, 
Ventilator, Hospital Beds 
Utilization; Confirmed Daily and 
Cumulative Cases; Daily and 
Cumulative Mortality 

163 
Countries* 

Feb 1st 

Covariate-adjusted (population, testing, 
mandates, flu/pneumonia seasonality, 
mask use, etc.) SEIR model based on daily 
deaths estimates harmonized with testing, 
hospitalization via a random knot spline.  

Youyang 
Gu 

https://github
.com/youyan
ggu/covid19_
projections  

SEIR JHU 
Daily and Cumulative Mortality; 
Daily, Active, and Cumulative 
Cases 

73 Countries* Nov 1st** 

SEIR model with three R0 values 
corresponding to: 1) Pre-mitigation 2) Post 
mitigation 3) Post reopening. Performs grid 
search to optimize parameter selection. 

 

MIT - 
DELPHI 

https://github
.com/COVIDA
nalytics/DELP
HI 

SEIR JHU 

Cumulative Mortality; Active 
Cases, Cumulative Detected 
Cases, Active Hospitalized 
Cases; Cumulative Hospitalized 
Cases  

159 
Countries* 

Jan 15th 

Standard SEIR model adjusted for effective 
meta-analysis driven parameters of contact 
rate, under-detection, hospitalization, and 
societal-governmental response measures 
(4 phased non-linear parametric model).  

 

Imperial-
LMIC 

https://github
.com/mrc-
ide/global-
lmic-reports 

SEIR Euro-CDC 

Daily and Cumulative Cases; 
Daily and Cumulative Mortality; 
ICU incidence, ICU Demand, 
Hospital Incidence, Hospital 
Demand 

176 Countries Jan 22nd 

Modeled using SQUIRE, an age 
standardized SEIR model with parameters 
for healthcare capacity and disease 
severity. Incorporates mobility dependent 
R0 based on Google mobility data. Baseline 
scenario assumes current levels of mobility 
and interventions persist. 

 

 

LANL 
-GR 

https://covid-
19.bsvgatewa
y.org/ 

Dynamic 
Growth 

JHU 
Confirmed Daily and Cumulative 
Cases; Daily and Cumulative 
Mortality 

153 
Countries* 

Dec 15th 

Estimates cases driven by a dynamic growth 
parameter, adjusted based on trends in 
observed cases. Mortality driven by 
estimated CFR, assumed to be consistent 
over the forecast period. 

 

USC 
SIKJalpha 

https://github
.com/scc-
usc/ReCOVER
-COVID-19 

SIKJalpha JHU 
Confirmed Daily and Cumulative 
Cases; Daily and Cumulative 
Mortality 

177 
Countries* 

Feb 10th 

Application of SIKJalpha epidemiological 
model which models temporally varying 
infection rates and human mobility. Models 
CFR as a function of cases with different 
infection times. 

 

 

 453 

454 

Table 1. Models Included in the Study 

All eight models included in the study are shown. The full list of models assessed for inclusion is shown in the supplemental review file. 

Range indicates the last date upon which forecasts are available in the most current version of each model. 

*Includes state-level estimates for the United States. 

**No longer actively producing forecasts at the time of publication. 
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 455 

Figure 1. Cumulative Mortality Forecasts and Prediction Errors by Model – Example for United States 

The most recent version of each model is shown on the top left. The middle row shows all iterations of each model as separate 

lines, with the intensity of color indicating model date (darker models are more recent). The vertical dashed lines indicate the first 

and last model release date for each model. The bottom row shows all errors calculated at weekly intervals. The top right panel 

summarizes all observed errors, using median error and median absolute error, by weeks of forecasting, and month of model 

estimation. Errors incorporate an intercept shift to account for differences in each model’s input data. This figure represents an 

example for the United States of country-specific plots made for all locations examined in this study. Graphs for all geographies can 

be found in the supplement. Note that while certain model uses different input data source than the other modelling groups 

causing apparently discordant past trends in the top left panel. We plot raw estimates on the top left panel, however we implement 

an intercept shift to account for this issue in the calculation of errors. 
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Figure 2. Illustration of Analytical Framework 

This figure highlights the analytical framework presented in the main text. Part A highlights the “most current” approach, which is used to 

select the data shown in Figure 3. Part B highlights the “month stratified” approach used for Figures 4 and 5. The Y axis shows the number 

of weeks of extrapolation for each scenario, while the x axis shows a range of model date—the date on which a model was released. The 

thick band in each plot highlights the 4-week window of model dates used for each extrapolation week value. The thin line shows the period 

for which each set of models is extrapolating before errors are calculated. In the top panel, the most recent four weeks of model dates are 

used for each extrapolation length. Therefore, for 1-week errors models from October were used, whereas for 12-week errors, models from 

July and August were used. In the bottom panel, models from July are used in all cases. The analytic strategy highlighted in the top panel 

provides the most recent evidence possible for each extrapolation length. The strategy in the bottom allows for more reliable assessment of 

how errors grow with increased extrapolation time. 
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Figure 3. Most Current - Cumulative Mortality Accuracy – Median Absolute Percent Error 

Median absolute percent error values, a measure of accuracy, were calculated across all observed errors at weekly intervals, for each model 

by weeks of forecasting and geographic region. Values that represent fewer than five locations are masked due to small sample size. Models 

were included in the global average when they included at least five locations in each region. Pooled summary statistics reflect values 

calculated across all errors from all models, in order to comment on aggregate trends by time or geography. Results are shown here for the 

most recent four week window allowing for the calculation of errors at each point of extrapolation (see Figure 2 and methods). Results from 

other months are shown in the supplement. 
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Figure 4. Month Stratified July Models - Cumulative Mortality Bias - Median Percent Error 

Median percent error values, a measure of bias, were calculated across all observed errors at weekly intervals, for each model, by weeks of 

forecasting and geographic region. Values that represent fewer than five locations are masked due to small sample size. Models were 

included in the global average when they included at least five locations in each region. Pooled summary statistics reflect values calculated 

across all errors from all models, in order to comment on aggregate trends by time or geography. Results are shown here for models 

released in July, and results from other months are shown in the appendix. 
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Figure 5. Month Stratified July Models - Cumulative Mortality Accuracy – Median Absolute Percent Error 

Median absolute percent error values, a measure of accuracy, were calculated across all observed errors at weekly intervals, for each model 

by weeks of forecasting and geographic region. Values that represent fewer than five locations are masked due to small sample size. Models 

were included in the global average when they included at least five locations in each region. Pooled summary statistics reflect values 

calculated across all errors from all models, in order to comment on aggregate trends by time or geography. Results are shown here for 

models released in July, and results from other months are shown in the supplement. 
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   460 Figure 6. Observed vs Predicted Peak in Daily Deaths– Example for Massachusetts 

Observed daily deaths, smoothed using a loess smoother, are shown as black-outlined dots (top). The observed peak in daily deaths is 

shown with a vertical black line (bottom). Each model version that was released at least one week prior to the observed peak is plotted 

(top) and its estimated peak is shown with a point (top and bottom). Estimated peaks are shown in the bottom panel with respect to 

their predicted peak date (x-axis) and model date (y-axis). Values are shown for the Massachusetts, and similar graphs for all other 

locations are available in the appendix. Massachusetts was chosen as the example location as the United States (used as the example 

for Figure 1) peaked earlier, only allowing for two models to provide peak timing errors, whereas Massachusetts peaked later, allowing 

for four models, making for a more illustrative example. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.07.13.20151233doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20151233
http://creativecommons.org/licenses/by/4.0/


  461 Figure 7. Peak Timing Accuracy – Median Absolute Error in Days 

Median absolute error in days is shown by model and number of weeks of forecasting. Models that are not available for at 

least 40 peak timing predictions are not shown. Errors only reflect models released at least seven days before the observed 

peak in daily mortality. One week of forecasting refers to errors occurring from seven to 13 days in advance of the 

observed peak, while two weeks refers to those occurring from 14 to 20 days prior, and so on, up to six weeks, which refers 

to 42-48 days prior. Errors are pooled across month of estimation, as we found little evidence of change in peak timing 

performance by month (see appendix). 
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