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1 Model description

1.1 Base platform

We developed a deterministic compartmental model of SARS-CoV-2 transmission using
the AuTuMN platform, publicly available at github.com/monash-emu/AuTuMN [1]. This
repository allows for the rapid and robust creation and stratification of models of in-
fectious disease epidemiology and includes pluggable modules to simulate heterogeneous
population mixing, demographic processes, multiple circulating pathogen strains, repeated
stratification and other modelling features relevant to infectious disease transmission.

1.2 Base model

For this application, we first created a model with sequential compartments representing
susceptible (S), latently infected (E), infectious pre-symptomatic (P ), early disease (I),
late disease (L) and recovered (R) persons (although patients in the early and late disease
compartments are not considered symptomatic if assigned to the first “clinical” stratifica-
tion, as described in Section 1.4). The latently infected and infectious pre-symptomatic
periods together comprise the incubation period, with the incubation period and the pro-
portion of this period for which patients are infectious defined by parameters described
below. The transition from early disease to late disease is intended to represent the point
at which patients are detected (in the event that detection does eventually occur) and
isolation then occurs from this point forward (i.e. applies during the late disease phase
only). This transition point is also intended to represent the point of admission to hospital
or to intensive care for patients for whom this occurs (again see Section 1.4).

When waning immunity was assumed, individuals transitioned back to a susceptible
compartment at a rate that was defined as the reciprocal of the assumed immunity dura-
tion. The compartments S and E were stratified by infection history, such that differential
risks of severe disease could be considered for individuals who have experienced SARS-
CoV-2 infection before, compared to infection-naive individuals.

Figure S1. Compartmental structure of the base model.
Red shading indicates infectiousness.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-
year bands from 0-4 years of age through to 70-74 years of age, with the final age group
being those aged 75 years and older.

We used the age-specific contact matrices by location (home, schools, workplace and
other locations) reported by Prem et al. for the five investigated countries to inform
heterogeneous mixing in our models [2]. The model age groups were chosen to match these
mixing matrices. We did not implement births, ageing and non-COVID-19-related deaths
given that the current study pertains to the short to medium-term and the immediate
implementation of non-pharmaceutical interventions, for which population demographics
are less relevant.
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1.4 Clinical stratification

The age-stratified pre-symptomatic and disease compartments P , I and L were further
stratified into five categories: 1) asymptomatic, 2) symptomatic ambulatory never de-
tected, 3) symptomatic ambulatory ever detected, 4) hospitalised never critical and 5) ever
critically unwell. The proportion of new infectious persons entering stratum 1 (asymp-
tomatic) is age-dependent as described in Table S3. When waning immunity was assumed,
these proportions also depended on the individuals’ infection history, such that a smaller
proportion of symptomatic infections may be considered for repeat episodes of SARS-
CoV-2 infection. The proportion of symptomatic patients (strata 2 to 5) ever detected
(strata 3 to 5) is set through a time-variant parameter that represents the proportion
of all symptomatic patients who are ever detected. Of those ever symptomatic (strata
2 to 5), an age-specific proportion was considered to be hospitalised (entering strata 4
or 5). Of those hospitalised (entering strata 4 or 5), a fixed proportion was considered
to be critically unwell (entering stratum 5). The figures below illustrate this conceptual
approach.

Figure S2. Clinical stratification applying to compartments P , I and L.

1.5 COVID-19-related death

We used age-specific infection fatality rates (IFRs) to model COVID-19 deaths. These
rates were previously estimated using age-specific death data from 45 countries and results
from national-level seroprevalence surveys [3,4]. In our models, we used the reported point
estimates to which we applied an uncertainty multiplier in order to reflect the fact that
IFRs may vary by country and because COVID-19 deaths may be reported differently
in different countries. The prior distribution range associated with this multiplier in
our uncertainty analysis was obtained by considering the amplitude of between-country
variations reported in a previous analysis [5].

Age-specific IFRs were applied and distributed across strata 4 and 5, with no deaths

4



Clinical stratum Pre-symptomatic Early disease Late disease

Asymptomatic 0.5 0.7 0.7
Ambulatory undetected 0.7 1 1
Ambulatory detected 0.7 1 0.2
Hospitalised non-ICU 0.7 1 0.2
ICU 0.7 1 0.2

Table S1. Illustration of the relative infectiousness of disease compartments by clinical
stratification and stage of infection.
Darker shades of red indicate higher levels of infectiousness.

typically applied to the first three strata. If the IFR was greater than half of the absolute
proportion of persons critically unwell (entering stratum 5), the proportion of critically
unwell persons dying was set to one half, with the remainder of the IFR then applied to the
hospitalised proportion. Otherwise, if the IFR is less than half of the absolute proportion
of persons critically unwell, the IFR is applied entirely through stratum 5 (such that the
proportion of critically unwell persons dying in that age group becomes <50% and the
proportion of stratum 4 dying is set to zero). In the event that the IFR for an age group
is greater than the total proportion hospitalised (which is unusual, but could occur for
the oldest age group under certain parameter configurations), the remaining deaths are
assigned to the asymptomatic stratum. This approach was chosen because this stratum
has a fixed value over time and the dynamics are equivalent to assigning the deaths to any
of the first three strata, because the sojourn times in the infected compartments are the
same for each of these groups.

1.6 Infectiousness

For patients with disease who were admitted to hospital, the sojourn time in the early and
late infectious compartments was modified, as indicated in Table S2. The point of admis-
sion to hospital was considered to be the transition from early to late infectious disease,
such that the sojourn time in late disease was the period of time admitted to hospital. For
patients admitted to ICU, admission to ICU occurs at this same transition point. For this
group, the period of time hospitalised outside of ICU is estimated as a proportion of the
early active period, such that the early active period represents both the period ambula-
tory in the community and the period in hospital prior to ICU admission. Infectiousness
declined at the point of transition from early to late disease for all patients admitted to
hospital (both ICU and non-ICU) and for patients who were effectively detected and so
underwent isolation.

The relative infectiousness of both early and late compartments within the asymp-
tomatic stratum, as well as the late disease compartment of the symptomatic ambulatory
detected late disease were modified. This was intended to reflect lower infectiousness
per unit time of asymptomatic persons and of detected persons who were assumed to
self-isolate from the point of entering the late disease compartment. Pre-symptomatic in-
dividuals were assumed to have the same level of infectiousness as asymptomatic diseased
individuals, although pre-symptomatic individuals of the asymptomatic stratum were as-
sumed less infectious. Persons with late stage disease in the hospital and critical strata also
had their infectiousness modified. Table S1 illustrates the different levels of infectiousness
associated with the different clinical strata and the different infection stages.
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1.7 Implementation of non-pharmaceutical interventions

For this study, it was critical to simulate the past dynamics of the epidemics accurately
in order to capture the level of immunity acquired in the past. For this reason, we needed
to capture the past impact of non-pharmaceutical interventions (NPIs) such as social
distancing or school closures.

1.7.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3,
self-isolation is assumed to occur. The proportion of ambulatory symptomatic persons
effectively identified through the public health response by any means is set by the time-
variant process described in Section 1.7.2. On moving to stratum 3, infectiousness declines
according to the “relative infectiousness of identified persons undergoing quarantine and
isolation” parameter indicated above.

1.7.2 Modelling time-variant detection

The proportion of symptomatic individuals detected was varied over time in order to
account for increasing detection during the course of the epidemic. We used the following
translated and rescaled logistic function to model this increase:

propsympt detected(t) = propstart +
propfinal − propstart

2
(tanh (b (t− c)) + 1) ,

where propstart is the proportion of symptomatic individuals that are detected at the
start of 2020, propfinal is the maximum asymptotic proportion of symptomatic individ-
uals that are detected, b is a shape parameter defining how rapidly scaling occurs and
c is the time when inflection occurs in the scale-up curve. The parameters propfinal, b
and c are automatically estimated during model calibration (see Section 2). Figure S3
illustrates two examples of functions describing the proportion of symptomatic individ-
uals that are detected over time. The six countries’ detection profiles inferred from the
detection parameters’ posterior distributions are presented in Section 2.4.

1.7.3 Other non-pharmaceutical interventions

For all NPIs relating to reduction of human mobility or “lockdown”, these interventions
are implemented through dynamic adjustments to the age-assortative mixing matrix. The
mixing matrices of Prem et al. allow for disaggregation of total contact rates by location,
i.e. home, work, school and other locations. This disaggregation allows for the simulation
of various NPIs in a local context by dynamically varying the contribution of each location
to reflect the historical implementation of the interventions. The corresponding mixing
matrix (denoted C0) is presented using the standard convention that a row represents
the average numbers of age-specific contacts per day for a contact recipient of a given
age-group. In other words, the element C0[i, j] is the average number of contacts per
day that an individual of age-group i has with individuals of age-group j. This matrix
results from the summation of the four context-specific contact matrices: C0 = CH +CS +
CW + CL, where CH , CS , CW and CL are the age-specific contact matrices associated
with households, schools, workplaces and other locations, respectively. In our model, the
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Figure S3. Examples of modelled time-variant proportions of symptomatic individuals
detected over time.
Two parameter sets are illustrated: (propstart = 0, propfinal = 0.6, b = 0.1, c = 31/3/2020) in
red; (propstart = 0, propfinal = 0.9, b = 0.05, c = 29/2/2020) in green.

contributions of the matrices CS , CW and CL are time-variant, such that the input contact
matrix can be written:

C(t) = CH + s(t)2CS + w(t)2CW + l(t)2CL, (1)

where s, w and l are location-specific time-variant multipliers. Note that these mul-
tipliers were squared to capture the fact that both individuals involved in a contact are
affected by the relative probability of being in a given location. The following three sec-
tions describe how these multipliers are set and Figure S4 shows their respective profiles
for the six countries.

It is important to note that s, w, l are all set back to 1 when predicting the future
epidemic during Phase 3 as well as during Phase 2 when mixing is optimised by age (see
Section 3 for description of the different phases).

School closures
School closures were represented by decreasing the contribution of the school-based con-
tacts to the mixing matrix by 90% at the time school closures occurred in the country
considered. The closure and reopening times were obtained from the UNESCO website [6].
The reason why the school contacts were not set to zero after closure is that many schools
continued to accept some children whose parents worked in priority sectors.

Workplace closures
Workplace closures were represented by reducing the contribution of workplace contacts
to the total mixing matrix over time. We used Google mobility data to inform this time-
variant reduction after applying a 7-day moving average to the raw data [7].

Community-wide movement restriction
This was simulated by reducing the contribution of the “other location” contacts to the
overall mixing matrix. The functional form of this reduction was set using Google mobil-
ity data and obtained by combining the proportional reductions reported by Google for
the three categories “Retail and recreation”, “Supermarket and pharmacy” and “Public
transport” [7]. We did not include the relative changes of the “Parks” category, as their
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Figure S4. Time-variant contact rate multipliers used to model mobility restrictions.
“Other locations” refers to all places other than schools, workplaces or households.

contribution to transmission is expected to be minimal. The reduction applied to the
“other locations” contact rates ρ := 1− l, was obtained from:

ρ(t) =
ρR(t) + ρS(t) + ρP (t)

3
,

where ρR, ρS and ρP are the proportional reductions reported by Google for “Retail
and recreation”, “Supermarket and pharmacy” and “Public transport”, respectively. We
applied a 7-day moving average to the raw data for smoothing.

Micro-distancing
The previous adjustments to social mixing reflected reductions in people’s mobility that
resulted in lower rates of contact. In addition to this, we apply a time-variant reduction
to the per-contact probability of transmission in locations other than households. This
adjustment is referred to as micro-distancing and is intended to capture physical distancing
between individuals, mask wearing and other preventive measures that individuals may
take to reduce the per-contact transmission risk. Micro-distancing was modelled using the
combination of an increasing function of time that reflects the progressive emergence of
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micro-distancing, and a decreasing function that captures potential waning effects such as
decreasing compliance over time. The increasing component was implemented as follows:

microemergence(t) =
microfinal

2
(tanh (0.05 (t−microinflection)) + 1) ,

wheremicrofinal represents the final value of the emergence component andmicroinflection
is the time when inflection occurs in the scaling curve. The waning component was mod-
elled as follows:

microwane(t) = wanefinal +
1− wanefinal

2
(tanh (−0.05 (t− waneinflection)) + 1) ,

where wanefinal represents the final value of the emergence component and waneinflection
is the time when inflection occurs in the decreasing curve.

Finally, the multiplier used in the model to adjust the per-contact risk of transmission
was obtained by combining the two components as follows:

md(t) = 1−microemergence(t)×microwane(t).

The parameters microfinal, microinflection, wanefinal and waneinflection were auto-
matically inferred during calibration. Figure S5 illustrates an example of micro-distancing
profile.
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Figure S5. Example of time-variant micro-distancing profiles.
The following parameter set was used: microfinal = 0.4, microinflection = 1/3/2020, wanefinal =
0.75, waneinflection = 1/7/2020.

Age-specific behavioural changes
Our early attempts at fitting the model to data on both the first epidemic wave and the
second epidemic take-off demonstrated that the dramatic change observed in the ratio
between COVID-19 deaths and notifications after the first wave could not be explained
by improvements in case detection alone. In order to capture these significant changes,
we assumed that there may have been some age-specific behavioural changes after the
first wave, whereby older individuals were more likely to reduce their social interactions
compared to younger individuals.

To implement these age-specific variations, we allowed the contact rates of the elderly
population (60 years old and over) to be reduced by up to 50%, with the reduction occur-
ring progressively between 1 April 2020 and 31 May 2020. The magnitude of this reduction
was automatically inferred during calibration (see Table S2).
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1.8 Model equations

The dynamics of the model are governed by a set of ordinary differential equations. We
use the subscripts a, h and c to denote the different age-groups, the two infection history
statuses and the clinical strata, respectively. That is, a is an element of {“0-4”, “5-9”, ...,
“70-74”, “75+”}, h is an element of {“infection-naive”, “previously infected”) } and c is
one of {“asymptomatic”, “ambulatory undetected”, “ambulatory detected”, “hospitalised
non-ICU”, “ICU”}.

Using the compartment notation introduced in Section 1.2 and the parameter notation
presented in Table S4, we have:



Ṡa,h = −λa(t)σaSa,h + ωRa1{h=“previously infected′′}

Ėa,h = λa(t)σaSa,h − αEa,h
Ṗa,c =

∑
h pa,h,c(t) αEa,h − νPa,c

İa,c = νPa,c − γcIa,c
L̇a,c = γcIa,c − δa,cLa,c − µa,cLa,c
Ṙa =

∑
c δa,cLa,c − ωRa ,

(2)

where:


λa(t) = β

[∑
j
ε×Pj

Nj
Ka,j(t) +

∑
j,c

ιc×Ij,c + κc×Lj,c

Nj
Ka,j(t)

]
,

Ka,j(t) = CHa,j + (md(t)s(t))
2CSa,j + (md(t)w(t))2CWa,j + (md(t)l(t))

2CLa,j ,∑
c pa,h,c(t) = 1, ∀t ∈ R, ∀h ∈ {“infection−naive′′, “previously infected′′}.

(3)
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Parameter Definition Value/Prior
distribution

Source

Epidemic seeding
time*,c

Time when first infectious individ-
uals were introduced in the model

Uniform on [0,
40]

Assumption

Transmission probabil-
ity per contactc

Probability of transmission per
contact between a fully-infectious
and a fully-susceptible individual

Uniform on
[0.02 - 0.06]

Early model explorations

Incubation timec Average total duration spent in
pre-disease infection compart-
ments (E and P )

Normal(5.5, 1)
lower bound: 1
day

[8–11]

Incubation infectious
proportion

Proportion of incubation period in-
fectious

0.5 [12]

Disease durationc Average total duration spent in the
disease compartments (I and L).
Does not apply to hospitalised pa-
tients.

Normal(6.5,
0.8)
lower bound: 1
day

[11–13]

Early disease propor-
tion (non-hospital)

Proportion of disease period before
isolation can occur for individuals
who are never hospitalised

0.33 Assumed (i.e. that identification and isolation
can only occur after the first third of the dis-
ease episode has elapsed)

Early disease duration
(hospital non-ICU)

Disease duration prior to admis-
sion for hospitalised patients not
critically unwell

7.7 days Expected mean from ISARIC cohort, as re-
ported on 4th Oct 2020 [14]

Early disease duration
(ICU)

Disease duration prior to admis-
sion for ICU patients

10.5 days Calculated as 7.7 days prior to hospital ad-
mission plus 2.8 days in hospital prior to ICU
admission. Former value being as for disease
duration prior to admission for hospitalised pa-
tients not critically unwell. Latter value be-
ing expected mean of period from admission
to ICU entry from ISARIC cohort, as reported
on 4th Oct 2020 [14].

Late disease duration
(hospital)

Average hospitalisation duration,
excluding ICU

12.8 days Expected mean from ISARIC cohort, as re-
ported on 4th Oct 2020 [14]

Late disease duration
(ICU)

Average duration in intensive care
unit

13.3 days Mean duration of stay in ICU/HDU from IS-
ARIC cohort, as reported on 4th Oct 2020 [14]

Symptomatic propor-
tions uncertaintyc

Multiplier applying to the age-
specific proportions of symp-
tomatic presented in Table S3

Uniform on [0.6
- 1.4]

Assumption

Hospital proportions
uncertaintyc

Multiplier applying to the age-
specific proportions of hospitalised
presented in Table S3

Uniform on [0.5
- 1.5]

Assumption

ICU proportion Proportion of hospitalised individ-
uals admitted to intensive care

0.17 [14]

Infection fatality rates Age-specific proportions of death
among infected individuals

See Table S3 [3, 4]

Infection fatality rate
multiplierc

Uncertainty multiplier applied to
the age-specific infection fatality
rates presented in Table S3

Uniform on [0.5
- 3.8]

[5]

Elderly protection af-
ter the first wavec

Relative contact reduction scaling
progressively between 1 April and
31 May 2020

Uniform on [0 -
0.5]

Assumption

Detection profile:
→ propstartc

→ propfinal
c

→ bc

→ c*,c

See Section 1.7.2. Uniform on
[0 - 0.3]
[0.10 - 0.99]
[0.03 - 0.15]
[100 - 250]

Assumption

Micro-distancing:
→ microfinal

c

→ microinflection*,c

→ wanefinal
c

→ waneinflection*,c

See Section 1.7.3 Uniform on
[0.25 - 0.8]
[60 - 130]
[0.4 - 1]
[130 - 250]

Assumption

Table S2. Model parameters.
*times are expressed as number of days since 31 December 2019. cParameter included in the
Bayesian calibration.
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Age group Proportion
symptomatic(u)

Relative suscepti-
bility to infection

Proportion hos-
pitalised among
symptomatic(u)

Infection fatality rate(u)

0-4
0.29

0.36
0.087 2e−5

5-9 0.009 5e−6

10-14
0.21

0.005 5e−6

15-19

1

0.008 1.5e−5

20-24
0.27

0.011 4e−5

25-29 0.011 9e−5

30-34
0.33

0.013 1.7e−4

35-39 0.015 2.9e−4

40-44
0.40

0.018 5.3e−4

45-49 0.040 8.6e−4

50-54
0.49

0.047 1.5e−3

55-59 0.070 2.4e−3

60-64
0.63

0.071 3.6e−3

65-69

1.41

0.114 6.4e−3

70-74
0.69

0.113 0.01
75-79

0.071
0.02

80 and above 0.07

Source Davies et al. [15] Zhang et al. [16] Netherlands RIVM
weekly report [17]

O’Driscoll et al. [3]

Table S3. Age-specific parameters.
(u)Uncertainty was incorporated around this parameter by applying a multiplier that was varied
in the adaptive Metropolis algorithm (see Table S2).

parameter definition

σa relative susceptibility to infection by age

α rate of progression from latent to pre-symptomatic state

ν rate of progression from pre-symptomatic to early disease
state

pa,c age-specific proportion progressing to each clinical stratifi-
cation

γc rate of progression from early active disease to late active
disease

δa,c rate of progression from late active disease to recovered state

ω rate of immunity loss

µa,c rate of COVID-19-related mortality

β probability of infection per contact between a fully-infectious
and a fully-susceptible individual

md time-variant multiplier used to model micro-distancing (Sec-
tion 1.7.3)

ε relative infectiousness of pre-symptomatic individuals

ιc clinical stratification infectiousness vector for early disease
compartments

κc clinical stratification infectiousness vector for late disease
compartments

Ca,j contact matrix element [a, j], defined as the average daily
number of persons of age a contacted by an individual of
age j.

Table S4. Parameter notation for ordinary differential equations.
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2 Model calibration

The model was calibrated using a Bayesian approach. In particular, we used the adaptive
Metropolis algorithm introduced by Haario et al. to sample parameters from their poste-
rior distributions [18]. For each country, we ran 7 independent Metropolis chains initialised
using Latin Hypercube Sampling based on the parameter priors. We ran simulations for
8 hours per chain in order to achieve at least 5,000 iterations per chain. We discarded the
first 2,500 iterations of each chain as burn-in and combined the samples of the 7 chains to
project epidemic trajectories over time. The definitions of the prior distributions and the
likelihood are detailed in the following sections.

2.1 Parameters varied during calibration

The parameters varied during calibration along with their associated prior distributions are
listed in Table S2 and indicated with the superscript c. We used uniform prior distributions
for the most uncertain parameters and truncated normal distributions for those that have
been better characterised in previous works.

2.2 Calibration targets

We used the data reported by the World Health Organization for the daily numbers of
COVID-19 confirmed cases and deaths between 1 March 2020 and 30 September 2020 in
the six countries considered [19]. We then converted the daily counts into weekly totals in
order to remove the effect of weekdays versus weekends in cases reporting. We also used
hospitalisation data as calibration targets. We fitted the model to daily numbers of new
hospitalisations (7-day average) when these data were available (Belgium, France, Spain,
UK). In contrast, the daily number of patients currently hospitalised was used for Italy,
and the daily number of new patients in intensive care units were used for Sweden. The
sources of the hospitalisation data are summarised in Table S5 and the data points used
for calibrations are presented in Figure 1 (main text).

Country Hospitalisation indi-
cator

Source

Belgium New hospital admis-
sions

COVID-19 Belgium Epidemiologi-
cal Situation dashboard [20]

France New hospital admis-
sions

data.gouv.fr platform (French Gov-
ernment) [21]

Italy Current total of hospi-
talisations

National COVID-19 data repository
[22]

Spain New hospital admis-
sions

Spanish Ministry of Health [23]

Sweden New ICU admissions Swedish Intensive Care Registry
[24]

United
Kingdom

New hospital admis-
sions

COVID-19 Government dashboard
[25]

Table S5. Summary of hospital data used to calibrate the models.

We also used estimates from seroprevalence surveys for model calibration, assuming
that observed seropositive proportions could be compared to the modelled proportions
of ever-infected individuals. However, as it was demonstrated that antibody prevalence
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declines over time [26], we only used seroprevalence data as calibration target for the
countries where a nationwide seroprevalence survey was conducted shortly after the first
wave’s notification peak and where data were reported publicly. This was the case for all
countries except Italy. When multiple surveys were available, we used the results of the
survey that was conducted the soonest after the first wave’s notification peak. Table S6
presents the seroprevalence estimates used for calibration.

Country Population Approach Date Result Source
Belgium Nationwide Residual sera taken

outside hospitals by
diagnostic laborato-
ries.

20-26 Apr 2020 6.0% (5.1 - 7.1) [26]

France Nationwide Residual sera from
Biobanks. LuLISAs
and PNT assays.

6-12 Apr 2020 4.1% (3.3 5.0) [27]

Spain Nationwide Fingerprick RDT, and
CLIA on serum

27 Apr - 11 May 2020 5.0% (4.7 - 5.4) [28]

Sweden 9 regions Blood samples taken
in outpatient care for
a medical indication
other than COVID-19

20 Apr - 26 May 2020 5.2% (3.8 - 6.9) [29]

United King-
dom

Nationwide Biobank participants,
self-collected finger-
prick sample tested
with ELISA

27 Apr - 3 May 2020 7.1% (6.7 - 7.5) [30]

Table S6. Survey estimates of seroprevalence used for model calibration. The numbers
in brackets represent 95% confidence intervals.

2.3 Likelihood calculation

Let ci denote the average daily number of new confirmed COVID-19 cases in a given
country during week i, and ĉi

θ the associated predicted number according to the model
when using the parameter set θ. Similarly, let us denote hi as the average daily number of
new COVID-19 hospitalisations (or average daily hospital occupancy for Italy, or average

daily number of new ICU admissions for Sweden) during week i, and ĥi
θ

the associated
predicted number according to the model when using the parameter set θ. Finally, let di

denote the average daily number of COVID-19 deaths during week i, and d̂i
θ

the associated
predicted number according to the model with parameter set θ. For the countries where
seroprevalence data were available for calibration (i.e. Belgium, France, Spain, Sweden,
UK), let denote s the observed proportion of seropositive individuals at the midpoint of
the survey period indicated in Table S6 and ŝθ the proportion of recovered individuals
predicted by the model for the same time point when using the parameter set θ.

When seroprevalence data were not available (Italy), the likelihood was defined as
follows:

L(θ) :=
∏
i

f(ci| ĉiθ, σc)× f(hi| ĥi
θ
, σh)× f(di| d̂i

θ
, σd),

where f(.| µ, σ) is the probability mass function of the normal distribution with mean µ
and standard deviation σ.

For the five countries where seroprevalence was used as calibraiton target, the likelihood
was defined as follows:

L(θ) := f(s| ŝθ, σs)×
∏
i

f(ci| ĉiθ, σc)× f(hi| ĥi
θ
, σh)× f(di| d̂i

θ
, σd).

The parameters σc, σh, σd and σs were automatically estimated by the adaptive
Metropolis algorithm.
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2.4 Parameters’ posterior distributions

The posterior distributions of the parameters listed in Table S2 are presented in Figure
S6 and the parameter traces after burn-in are shown in Figure S7.
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Figure S6. Posterior estimates of model parameters.
The mean estimates are represented with a red dot. The central 50% credible intervals are shown
in blue and the central 95% credible interval are represented with black bars.

Using the posterior samples of the detection parameters, we computed estimated pro-
files of the time-variant proportion of symptomatic detected. The six countries’ detection
profiles are shown in Figure S8.
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Figure S7. Parameter traces.
The 2,500 iterations obtained after burn-in are represented.

16



Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n 
of

 sy
m

pt
om

at
ic

de
te

ct
ed

Belgium

Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0
France

Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0
Italy

Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n 
of

 sy
m

pt
om

at
ic

de
te

ct
ed

Spain

Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0
Sweden

Mar 1 May 1 Jul 1 Sep 1
0.0

0.2

0.4

0.6

0.8

1.0
United Kingdom

Figure S8. Posterior estimates of the time-variant proportion of symptomatic persons
detected.
The figures present the median estimate (black line), central 50% credible interval (dark blue) and
central 95% credible interval (light blue).
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3 The three simulation phases

The model is used to simulate three successive phases that have different purposes:

1. Modelling the past (until 30 September 2020),

2. Mitigating the age-specific or location-specific social mixing (during 6 or 12 months
from 1 October 2020),

3. Relaxing all restrictions and testing for herd immunity (until 31 December 2021).

Figure 1 (main text) illustrates these three phases, both in the presence and in absence
of herd-immunity.

3.1 Phase 1: Modelling the past

This phase aims to simulate the past SARS-CoV-2 epidemic accurately in order to capture
the level of immunity acquired by August 2020. During this phase which ends on 30th

September 2020, model parameters were automatically calibrated in order for the model
predictions to match the numbers of COVID-19 cases, hospitalisations and deaths, as well
as seroprevalence for all countries except Italy (Section 2). Our Bayesian approach to
calibration also allowed us to account for uncertainty in the model inputs. This approach
is described in Section 2.

3.2 Phase 2: Mitigating the age-specific or location-specific social mix-
ing

The second simulation phase begins on the 1st of October 2020 and lasts 6 or 12 months
depending on the configuration considered. It is during this phase that the social mixing
profile was varied and optimised.

Optimisation performed by adjusting mixing by age
In a first analysis, we aimed to find the optimal age-specific adjustments to the contact
matrix. Under this scenario, the location-specific multipliers s(t), w(t) and l(t) described
in Equation 1 were all set back to 1, while mild micro-distancing was assumed to be
maintained (md = 0.9, see Section 1.7.3). All the other parameter values remained the
same as those used during Phase 1, including for the parameters that are automatically
calibrated (Section 2). In addition, we used age-specific multipliers that were varied during
optimisation in order to model various strategies of mitigation by age.

Let us denote mi ∈ [0.1, 1] a relative mixing multiplier associated with age group
i ∈ {1, ..., 16}. During Phase 2, we apply the adjusted contact matrix A defined by:

A[i, j] = mimjC0[i, j],

where C0 is the original contact matrix provided by Prem et al. and described in
Section 1.7.3. Note that during Phase 2, the matrix A replaced the matrix C in the
equations presented in Section 1.8. We aimed to identify a combination {mi, i ∈ {1, ..., 16}}
that:

1. leads to herd immunity by the end of Phase 2 and

2. minimises the mortality-related objective.
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The mixing factors mi were constrained to stay over 10% in order to allow for a
minimum level of mixing. This means that the opportunity of contacts could be reduced
by no more than 90%, as compared to the pre-COVID-19 era.

Note that in the context of the optimisation by age, the potential reduction in the
contact rates of the elderly inferred during calibration (Section 1.7.3) is not applied during
Phase 2. Indeed, the related age-specific parameters are overridden by the optimised age-
specific multipliers.

In Figure S9, we show the age-specific contributions in terms of total number of social
contacts towards the elderly population. The contribution of age-group j in terms of
contacts towards the age-group i was calculated as C0[i, j]×πj , where πj is the population
of age-group j. These quantities are presented to help understand the optimised mixing
profiles presented in the main text.

Figure S9. Age-specific contributions in terms of total number of contacts towards
the elderly population.

Optimisation performed by adjusting mixing by location
In a separate exercise, we performed optimisation of social mitigation by location. Namely,
we aimed to identify the optimal combinations of contact rate reductions in the three fol-
lowing locations: schools, workplaces and places other than schools, workplaces and homes.
The rates of contacts occurring between household members were assumed to remain un-
changed during this exercise and mild micro-distancing was assumed to be maintained
(md = 0.9, see Section 1.7.3) during the optimisation phase. We aimed to achieve the
same goals as with social mitigation by age. Using the notation introduced in Equation 1,
the decision variables of the optimisation problem become the location-specific multipliers
s(t), w(t) and l(t) that we consider constant during Phase 2. Note that

The mortality-related objectives to minimise
We considered two different mortality-related objectives separately in this study. First,
the optimisation exercise aimed to minimise the total number of deaths occurring during
Phases 2 and 3. Then, we repeated all analyses by minimising the total number of life-
years lost during the same period. The number of life-years lost was estimated by summing
the expected number of remaining years that individuals would have lived if they had not
died from COVID-19. This process was informed by the country-specific life-expectancy
values by age reported by the United Nations.
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3.3 Phase 3: Relaxing all restrictions and testing herd immunity

In this analysis, we were only interested in the strategies of mitigation that result in herd
immunity by the end of Phase 2. We used a simulation-based approach to test whether
herd immunity was reached at that time. To do this, we set all the age-specific mixing
multipliers mi and the location-specific multipliers s, w and l back to 1 at the start of
Phase 3 in order to simulate an unmitigated epidemic. We assumed that herd immunity
was reached by the end of Phase 2 if and only if the number of new diseased individuals
was consistently found to decrease during Phase 3.

During Phase 3, we still applied the same level of mild micro-distancing as assumed
during Phase 2. This was done to capture the likely long-term changes in individuals’
behaviours and the preventive measures that may still be taken in the future, as public
awareness of the modes of transmission of SARS-CoV-2 has now increased. Similarly, the
inferred contact reduction in the elderly after the first waves due to age-specific behavioural
changes (Section 1.7.3) was also applied during Phase 3.

4 Optimisation of the age-specific social mixing

4.1 Problem description

Optimisation by age
For each country and for each configuration, we aimed to identify optimal combinations of
the age-specific multipliers mi described in Section 3. Let us denote Φ = {m1, . . . ,m16} ∈
[0.1, 1]16 a combination of these age-specific multipliers. Let also Ψ(Φ) be the associated
mortality-related objective (either total numbers of deaths or life-years lost during Phases
2 and 3), and H(Φ) a binary variable indicating whether herd immunity has been achieved
by the end of Phase 2 (H(Φ) = 1 if herd immunity, 0 otherwise). We aimed to find Φ∗

such that:

Φ∗ = arg min
Φ

Ψ(Φ) , (4)

subject to: H(Φ) = 1 . (5)

Optimisation by location

The optimisation by location was defined in the same way as the optimisation by age except
that the decision variables were the location-specific multipliers s, w and l described in
Section 1.7.3 instead of the age-specific multipliers mi.

4.2 Technical description of the optimisation algorithm

A total of 48 optimisations searches were performed, as we considered 6 countries, two
different Phase 2 durations (6 and 12 months), two different objectives to minimise (deaths
and YLLs), and two optimisation modes (by age and by location). The optimisation exer-
cises were treated independently using a parallel mono-objective Evolutionary Algorithm
(EA) [31]. In an EA, a population of combinations is evolved by selection and reproduction
of promising combinations already simulated (parents). The new combinations (children)
generated by the reproduction operators are then simulated and replace the less promising
combinations into the population.

The constraint of achieving herd immunity presented in Equation 5 was integrated
into the mortality-related objective by setting the objective value to 8,000,000,000. This
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number is overwhelmingly greater than both the total number of possible deaths and the
total number of possible life-years lost for all the countries considered in this study.

The parallel EA is described in Algorithm 1. The population of N combinations was
initialized using Latin Hypercube Sampling and was then simulated in parallel (line 1
and 2). Within the generational loop (line 4 to 11), a population of parents was created
by selecting N combinations from the population. The tournament selection of size 2
(line 5) repeatedly sampled 2 combinations with replacement from the population and
retained the best one as parent. Parent characteristics were mixed by the SBX crossover
operator [32] to generate the population of children (line 6). Children are next slightly
modified by the polynomial mutation operator [32] and simulated in parallel (line 7 and
8). The best combinations from the population and the children were retained to form
the new population (line 9).

Algorithm 1 Parallel Evolutionary Algorithm

Input
N : population size
budget : budget for the search

1: P ← LHS sampling(N) . initial population
2: parallel simulation(P)
3: (xmin, ymin) ← get best cost(P)
4: while budget 6= 0 do
5: Pp ← tournament(2, P) . population of parents
6: Pc ← SBX crossover(Pp) . population of children
7: Pc ← polynomial mutation(Pc)
8: parallel simulation(Pc)
9: P ← elitist replacement(P, Pc, N)

10: (xmin, ymin) ← get best cost(P)
11: end while
12: return xmin, ymin

Simulations were performed in parallel as they were the most computationally expen-
sive part of the process (6 seconds on 1 computational core). The budget for the search
was set to 12 hours on 1 computational node made of 18 Intel Xeon Gold 5220 cores
proceeding from Grid5000, a large-scale testbed with a focus on parallel and distributed
computing [33]. The population size was set to 126 in order to follow the general guidance
given in [31] and to minimise the number of idle cores when simulating a population.

4.3 Sensitivity analysis applying perturbations on the optimal plans

Figures 2 and 3 (main text) present the optimal plans obtained after minimisation by age
and by location, respectively. We also measured how variations in the optimised decision
variable would affect the objective functions (numbers of deaths and YLLs). To do this,
we set a maximum allowed number of additional deaths or YLLs compared the optimum
obtained under each configuration (∆obj). We then determined the alterations of the
mixing factors that would:

1. cause an increase of ∆obj in the objective function and

2. maintain the condition of herd immunity.
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The thin black bars on Figures 2 and 3 represent the greatest perturbations allowed. These
perturbations were applied to one mixing factor at a time.

5 Additional results

5.1 Age-specific infected proportions

While the age-specific seroprevalence data were not used for model calibration, we compare
these estimates with the age-specific proportions of recovered individuals obtained from
our models for validation purposes.

The following five figures show these comparisons for Belgium, France, Spain, Sweden
and the UK, respectively.
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Figure S10. Age-specific proporitons of recovered individuals against seroprevalence
data (France)
Serosurvey data are shown in red and model estimates are represented in black, both at the
midpoints of the reported age groups. The vertical bars show the 95% credible intervals. Serosurvey
data were extracted from Levin et al. [5].
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Figure S11. Age-specific proporitons of recovered individuals against seroprevalence
data (Belgium)
Serosurvey data are shown in red and model estimates are represented in black, both at the
midpoints of the reported age groups. The vertical bars show the 95% credible intervals. Serosurvey
data were extracted from Herzog et al. [26].
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Figure S12. Age-specific proporitons of recovered individuals against seroprevalence
data (Spain)
Serosurvey data are shown in red and model estimates are represented in black, both at the
midpoints of the reported age groups. The vertical bars show the 95% credible intervals. Serosurvey
data were extracted from Pollan et al. [28].
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Figure S13. Age-specific proporitons of recovered individuals against seroprevalence
data (Sweden)
Serosurvey data are shown in red and model estimates are represented in black, both at the
midpoints of the reported age groups. The vertical bars show the 95% credible intervals. Serosurvey
data were extracted from an interim report of the Swedish Public Health Agency [29].

5.2 Effect of increased mixing on deaths and YLLs

We explored the effect of increasing mixing as compared to the optimal mitigation plans
obtained using contact mitigation by age. That is, we applied a minimum bound b to
the age-specific mixing factors such that the modified mixing profile could be described as
{max(m∗i , b)}i∈{1,...,16}, where {m∗i }i∈{1,...,16} represents the optimal (reference) solution
originally obtained in the main analysis using b = 0.1. Figure S15 shows the results of
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Figure S14. Age-specific proporitons of recovered individuals against seroprevalence
data (UK)
Serosurvey data are shown in red and model estimates are represented in black, both at the
midpoints of the reported age groups. The vertical bars show the 95% credible intervals. Serosurvey
data were extracted from Ward et al. [34] and The Public Health England weekly surveillance report
(week 40) .

this analysis in terms of predicted total numbers of COVID-19-related deaths and YLLs
occurring after 1 October 2020 when considering 0.1 ≤ b ≤ .5. Note that no additional
optimisation was run for this exercise such that the predictions presented here were not
optimal solutions. Recovered individuals were assumed to have persistent immunity in
this analysis.
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Figure S15. Impact of increasing mixing compared to the optimal strategies.
The minimum mixing factor is the variable b described above. The purple line represents the total
number of COVID-19-related deaths occurring after 1 Oct 2020 using the reference solution of the
optimisation by age minimising deaths. The blue line represents the total number of COVID-19-
related YLLs occurring after 1 Oct 2020 using the reference solution of the optimisation by age
minimising YLLs.
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5.3 Contact matrices resulting from the optimisation

The main text presents the optimisation results in terms of age-specific or location-specific
mixing variables. Here we present the mixing matrices resulting from the optimised mix-
ing factors. Figures S16 and S17 present the mixing matrices obtained under the different
configurations when running the optimisation processes by ages and by location, respec-
tively.
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Optimisation by age

Figure S16. Age-specific contact matrices obtained from the optimisations by age.
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Optimisation by location

Figure S17. Age-specific contact matrices obtained from the optimisations by location.
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5.4 Estimates of proportions of recovered individuals under optimised
scenarios

Figures S18 and S19 present the predicted proportions of recovered individuals over time
under the optimised scenarios of mitigation by age and by location, respectively. Recovered
individuals were assumed to have persistent immunity in these analysis.
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Figure S18. Posterior estimates of proportions of recovered individuals over time
(optimisation by age).
The first waves (past epidemics) are represented in purple while the predictions of the future
epidemics are represented in blue. The future epidemics are those associated with the four different
optimisation configurations: six- or 12-month mitigation minimising total number of deaths or years
of life lost (YLLs). The light shades show the central 95% credible intervals, the dark shades show
the central 50% credible intervals and the solid lines represent the median estimates.
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Figure S19. Posterior estimates of proportions of recovered individuals over time
(optimisation by location).
The first waves (past epidemics) are represented in purple while the predictions of the future
epidemics are represented in blue. The future epidemics are those associated with the four different
optimisation configurations: six- or 12-month mitigation minimising total number of deaths or years
of life lost (YLLs). The light shades show the central 95% credible intervals, the dark shades show
the central 50% credible intervals and the solid lines represent the median estimates.
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Figures S20 and S21 show the age-specific proportions of recovered individuals after the
optimised mitigation phase when optimising by age and by location, respectively. Since
the optimisation was constrained by the fact that herd immunity had to be reached by
the end of the mitigation phase, these proportions could also be interpreted as age-specific
vaccine coverage that would lead to herd immunity using a 100% vaccine.
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Twelve-month mitigation phase
minimising deaths minimising YLLs

Figure S20. Age-specific proportions of recovered individuals at the end of Phase 2
(optimisation by age).
Recovered individuals assumed to have persistent immunity. Simulations based on the maximum-
likelihood parameter sets. YLLs: years of life lost.
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Figure S21. Age-specific proportions of recovered individuals at the end of Phase 2
(optimisation by location).
Recovered individuals assumed to have persistent immunity. Simulations based on the maximum-
likelihood parameter sets. YLLs: years of life lost.
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5.5 Predicted numbers of deaths and YLLs per capita

Table S7 presents the predicted numbers of COVID-19-related deaths and YLLs per capita
associated with the optimised and unmitigated scenarios. Recovered individuals were
assumed to have persistent immunity in these analysis.
 

 
Country Optimisati

on mode 
Mitigation 
phase 

Deaths before 1 Oct 2020 
(per million) 

Deaths from 1 Oct 2020 (per million) YLLs before 1 Oct 
2020 (per 10,000) 

YLLs from 1 Oct 2020 (per 10,000) 

   Model 
prediction 

WHO 
report 

Unmitigated Optimised Model prediction Unmitigated Optimised 

      Minimising 
deaths 

Minimising YLLs   Minimising 
deaths 

Minimising 
YLLs 

Belgium by age 6 mo. 752 (519-1090) 880 
 

4317 (2929-4658) 418 (314-480) 424 (315-486) 274 (181-402) 1292 (936-1357) 182 (137-213) 179 (135-211) 

  12 mo.    371 (208-436) 376 (209-441)   167 (95-199) 163 (93-195) 

 by location 6 mo.    1043 (840-1401) 1104 (888-1485)   520 (405-603) 508 (394-589) 

  12 mo.    952 (478-1080) 996 (498-1132)   485 (256-555) 478 (252-546) 

France by age 6 mo. 584 (373-808) 485 5079 (3756-6321) 428 (326-580) 430 (329-582) 120 (69-181) 1059 (746-1356) 136 (91-189) 134 (90-187) 

  12 mo.    406 (288-565) 411 (292-573)   130 (84-189) 127 (82-184) 

 by location 6 mo.    1315 (1054-1803) 1319 (1065-1805)   422 (294-590) 421 (295-586) 

  12 mo.    1213 (871-1766) 1219 (875-1773)   390 (262-576) 389 (261-574) 

Italy by age 6 mo. 616 (458-900) 593 
 

6482 (5350-7475) 744 (524-1069) 913 (637-1215) 114 (72-193) 1213 (792-1465) 294 (171-420) 239 (141-334) 

  12 mo.    597 (431-735) 599 (415-753)   262 (151-355) 175 (103-234) 

 by location 6 mo.    3302 (2709-4886) 3304 (2710-4880)   690 (465-1056) 690 (465-1057) 

  12 mo.    3075 (2225-3871) 3172 (2294-3989)   656 (420-830) 646 (413-819) 

Spain by age 6 mo. 712 (325-1027) 692 
 

4970 (3507-7102) 482 (357-767) 483 (358-784) 99 (45-187) 742 (511-1526) 129 (93-294) 107 (78-236) 

  12 mo.    443 (329-704) 450 (335-706)   109 (79-243) 100 (73-219) 

 by location 6 mo.    1464 (1075-2145) 1473 (1081-2163)   304 (216-670) 303 (216-668) 

  12 mo.    1420 (1055-2031) 1425 (1057-2034)   296 (214-648) 295 (213-646) 

Sweden by age 6 mo. 574 (486-662) 584 
 

3105 (2347-3692) 302 (205-388) 304 (203-391) 96 (77-115) 557 (400-690) 107 (69-142) 88 (57-116) 

  12 mo.    285 (192-368) 295 (193-385) 96 (77-115)  111 (69-147) 83 (53-110) 

 by location 6 mo.    1068 (868-1260) 1096 (924-1287) 96 (77-115)  278 (205-349) 274 (210-342) 

  12 mo.    1038 (733-1248) 1041 (731-1253) 96 (77-115)  269 (178-342) 266 (175-339) 

United 
Kingdom 

by age 6 mo. 636 (449-833) 620 6921 (6014-7857) 704 (599-848) 772 (659-925) 192 (133-262) 1682 (1569-1818) 273 (238-324) 259 (223-308) 

  12 mo.    685 (564-839) 716 (590-874) 192 (133-262)  255 (213-307) 252 (210-305) 

 by location 6 mo.    1341 (1226-1679) 1346 (1229-1682) 192 (133-262)  639 (594-769) 638 (592-767) 

  12 mo.    1249 (1055-1627) 1269 (1071-1655) 192 (133-262)  620 (537-769) 616 (533-766) 

 

Table 1. Predicted numbers of deaths and years of life lost 

Optimisation realised under the assumption of persistent immunity. Numbers are presented in thousands of deaths 

and thousands of YLLs as median and central 95% credible intervals. YLLs: Years of life lost. 

Table S7. Predicted numbers of deaths and years of life lost per capita.
Optimisations realised under the assumption of persistent immunity. Numbers are presented per
million population for deaths and per 10,000 population for YLLs as median and central 95%
credible intervals. YLLs: Years of life lost.
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5.6 Hospital occupancy with optimised mitigation by location

Figure S22 presents the predicted daily number of beds occupied by COVID-19 patients
over time under the optimised scenarios of mitigation by location. Recovered individuals
were assumed to have persistent immunity in this analysis.
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Figure S22. Hospital occupancy with mitigation optimised by location (assuming
persistent immunity).
The first waves (past epidemics) are represented in purple while the predictions of the future
epidemics are represented in blue. The future epidemics are those associated with the four different
optimisation configurations: six- or 12-month mitigation minimising total number of deaths or years
of life lost (YLLs). The light shades show the central 95% credible intervals, the dark shades show
the central 50% credible intervals and the solid lines represent the median estimates.
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5.7 Age-specific profiles of disease indicators over time

The following figures are the equivalent of Figure 3 (main text) under different configu-
rations of optimisation. The configurations are indicated at the top of each figure and
describe the type of mitigation (by age or by location), the duration of the mitigation
phase (6 or 12 months) and the minimised indicator (deaths or YLLs).
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Optimisation by age minimising deaths with 6-month mitigation

Figure S23. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by age minimising years of life lost with 6-month mitigation

Figure S24. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by age minimising deaths with 12-month mitigation

Figure S25. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by age minimising years of life lost with 12-month mitigation

Figure S26. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by location minimising deaths with 6-month mitigation

Figure S27. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by location minimising years of life lost with 6-month mitigation

Figure S28. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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Optimisation by location minimising deaths with 12-month mitigation

Figure S29. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.

Figure S30. Age-specific profile of disease incidence, COVID-19-related deaths and
proportion recovered over time
The yellow background indicates the intervention phase during which age-specific contacts were
optimised. These projections were produced assuming that recovered individuals have persistent
immunity against SARS-CoV-2 reinfection and using the maximum a posteriori estimates.
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5.8 Epidemic trajectory using different assumptions for the profile of
waning immunity.

The optimisation searches were all performed based on the assumption of persistent im-
munity for recovered individuals. However, we also ran epidemic simulations considering
various assumptions of waning immunity while using the optimal mitigation plans obtained
when assuming full immunity. We considered 5 different scenarios regarding post-infection
immunity:

1. immunity against reinfection for an average of 6 months

2. immunity against reinfection for an average of 6 months and 50% reduction in disease
severity

3. immunity against reinfection for an average of 24 months

4. immunity against reinfection for an average of 24 months and 50% reduction in
disease severity

5. persistent immunity against reinfection

The 50% reduction in disease severity was modelled as a 50% reduction in the prob-
ability of presenting symptoms during repeat SARS-CoV-2 infections. The structure of
the model implied that the same reduction also applies to the risk of hospitalisation and
death. Figures S31, S32, S33 and Figure 7 (main text) show the predicted COVID-19
incidence, mortality and hospital occupancy over time for the different assumptions and
considering the optimal plan obtained using different optimisation configurations.
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Figure S31. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on the
12-month contact mitigation by age minimising years of life lost (YLLs). The yellow background
indicates the mitigation phase during which age-specific contacts were optimised. Five different
assumptions were used to project the disease indicators: persistent immunity (black), 24-month
immunity with and without 50% reduction in risk of symptoms for repeat infections (red and coral,
respectively), 6-month immunity with and without 50% reduction in risk of symptoms for repeat
infections (blue and turquoise, respectively).
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Figure S32. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 6-month contact mitigation by age minimising deaths. The yellow background indicates the
mitigation phase during which age-specific contacts were optimised. Five different assumptions
were used to project the disease indicators: persistent immunity (black), 24-month immunity with
and without 50% reduction in risk of symptoms for repeat infections (red and coral, respectively),
6-month immunity with and without 50% reduction in risk of symptoms for repeat infections (blue
and turquoise, respectively).
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Figure S33. Predicted COVID-19 incidence, mortality and hospital occupancy over
time under various assumptions of waning immunity.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 12-month contact mitigation by age minimising deaths. The yellow background indicates the
mitigation phase during which age-specific contacts were optimised. Five different assumptions
were used to project the disease indicators: persistent immunity (black), 24-month immunity with
and without 50% reduction in risk of symptoms for repeat infections (red and coral, respectively),
6-month immunity with and without 50% reduction in risk of symptoms for repeat infections (blue
and turquoise, respectively).
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5.9 Epidemic trajectory under short-lived immunity applying mild mit-
igation after optimised phase.

We ran simulations under our most pessimistic assumption regarding waning immunity (6
month average duration and no effect on repeat disease severity), considering that mild
contact mitigation was applied after the optimised phase. Figure 8 (main text) presents
the predictions associated with the optimal age-mitigation plan obtained by minimising
YLLs over a period of 6 months. The results of the other optimisation configurations are
presented below.
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Figure S34. Predicted COVID-19 incidence, mortality and hospital occupancy over
time with short-lived post-infection immunity and applying mild mixing reductions
after the optimised phase.
The predictions were obtained using the maximum-likelihood parameter estimates and based on the
12-month contact mitigation by age minimising years of life lost (YLLs). The yellow background
indicates the mitigation phase during which age-specific contacts were optimised. These predictions
were obtained assuming 6-month average duration of immunity with no effect on the severity
of repeat SARS-CoV-2 infections. The mixing factors were defined in the same way as during
optimisation except that the same factor was applied to all age-groups. That is, a 90% mixing
factor corresponds to a situation where every individual reduces their opportunity of contact by
10%.
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Figure S35. Predicted COVID-19 incidence, mortality and hospital occupancy over
time with short-lived post-infection immunity and applying mild mixing reductions
after the optimised phase.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 6-month contact mitigation by age minimising deaths. The yellow background indicates the
mitigation phase during which age-specific contacts were optimised. These predictions were ob-
tained assuming 6-month average duration of immunity with no effect on the severity of repeat
SARS-CoV-2 infections. The mixing factors were defined in the same way as during optimisation
except that the same factor was applied to all age-groups. That is, a 90% mixing factor corresponds
to a situation where every individual reduces their opportunity of contact by 10%.
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Figure S36. Predicted COVID-19 incidence, mortality and hospital occupancy over
time with short-lived post-infection immunity and applying mild mixing reductions
after the optimised phase.
The predictions were obtained using the maximum-likelihood parameter estimates and based on
the 12-month contact mitigation by age minimising deaths. The yellow background indicates
the mitigation phase during which age-specific contacts were optimised. These predictions were
obtained assuming 6-month average duration of immunity with no effect on the severity of repeat
SARS-CoV-2 infections. The mixing factors were defined in the same way as during optimisation
except that the same factor was applied to all age-groups. That is, a 90% mixing factor corresponds
to a situation where every individual reduces their opportunity of contact by 10%.

47



References

[1] Australian Tuberculosis Modelling Network, “AuTuMN Github repository.”

[2] K. Prem, A. R. Cook, and M. Jit, “Projecting social contact matrices in 152 countries
using contact surveys and demographic data,” PLoS Comput Biol, vol. 13, no. 9,
p. e1005697, 2017.

[3] M. O’Driscoll, G. Ribeiro Dos Santos, L. Wang, D. A. Cummings, A. S. Azman,
J. Paireau, A. Fontanet, and S. Cauchemez, “Age-specific mortality and immunity
patterns of SARS-CoV-2 infection in 45 countries,” medRxiv, 2020.

[4] M. O’Driscoll, G. R. Dos Santos, L. Wang, D. A. T. Cummings, A. S. Azman,
J. Paireau, A. Fontanet, S. Cauchemez, and H. Salje, “Age-specific mortality and
immunity patterns of SARS-CoV-2,” Nature, nov 2020.

[5] A. T. Levin, K. B. Cochran, and S. P. Walsh, “Assessing the Age Specificity of
Infection Fatality Rates for COVID-19: Meta-Analysis & Public Policy Implications,”
tech. rep., jul 2020.

[6] UNESCO, “COVID-19 Impact on Education,” 2020.

[7] Google, “COVID-19 Community Mobility Reports.”

[8] J. Zhang, M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, M. Li, W. Zheng,
L. Yi, X. Chen, Q. Wu, Y. Liang, X. Wang, J. Yang, K. Sun, I. M. Longini, M. E.
Halloran, P. Wu, B. J. Cowling, S. Merler, C. Viboud, A. Vespignani, M. Ajelli, and
H. Yu, “Evolving epidemiology and transmission dynamics of coronavirus disease
2019 outside Hubei province, China: a descriptive and modelling study,” The Lancet
Infectious Diseases, vol. 20, no. 7, 2020.

[9] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S.
Azman, N. G. Reich, and J. Lessler, “The Incubation Period of Coronavirus Dis-
ease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and
Application.,” Annals of Internal Medicine, vol. 172, pp. 577–582, may 2020.

[10] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. Leung, E. H. Lau,
J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu,
W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu,
G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T.
Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, “Early
transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia,”
mar 2020.

[11] Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A. Truelove,
T. Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun,
J. Zhang, T. Ma, J. Lessler, and T. Feng, “Epidemiology and Transmission of COVID-
19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts,”
medRxiv, p. 2020.03.03.20028423, mar 2020.

[12] X. He, E. H. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong,
Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q. Zhang, M. Zhong,
Y. Wu, L. Zhao, F. Zhang, B. J. Cowling, F. Li, and G. M. Leung, “Temporal
dynamics in viral shedding and transmissibility of COVID-19,” Nature Medicine,
p. 2020.03.15.20036707, mar 2020.

48



[13] A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, F. Butler,
J. Griffin, E. A. Lane, C. McAloon, K. O’Brien, P. Wall, K. A. Walsh, and S. J.
More, “Inferred duration of infectious period of SARS-CoV-2: rapid scoping review
and analysis of available evidence for asymptomatic and symptomatic COVID-19
cases,” BMJ open, vol. 10, p. e039856, aug 2020.

[14] M. Pritchard, E. A. Dankwa, M. Hall, J. K. Baillie, G. Carson, A. Docherty, C. A.
Donnelly, J. Dunning, C. Fraser, H. Hardwick, E. M. Harrison, K. A. Holden, C. Kart-
sonaki, K. Kennon, J. Lee, K. McLean, P. J. M. Openshaw, D. Plotkin, A. Rojek,
C. D. Russell, M. G. Semple, L. Sigfrid, P. Horby, P. Olliaro, and L. Merson, “ISARIC
Clinical Data Report 4 October 2020,” medRxiv, p. 2020.07.17.20155218, jan 2020.

[15] N. G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit, and R. M. Eggo, “Age-dependent
effects in the transmission and control of COVID-19 epidemics,” Nature Medicine,
pp. 1–7, jun 2020.

[16] J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, Q. Wu, S. Merler,
C. Viboud, A. Vespignani, M. Ajelli, and H. Yu, “Changes in contact patterns shape
the dynamics of the COVID-19 outbreak in China,” Science, vol. 368, pp. 1481–1486,
jun 2020.

[17] “Wekelijkse update epidemiologische situatie COVID-19 in Nederland — RIVM.”

[18] H. Haario, E. Saksman, and J. Tamminen, “An adaptive Metropolis algorithm,”
Bernoulli, 2001.

[19] WHO, “WHO COVID-19 dashboard.”

[20] Sciensano, “COVID-19 Belgium Epidemiological Situation.”
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