
Supplementary Note 

 

Replication analysis using a multivariate multiple linear regression model 

To reproduce the results from the discovery dataset, we obtained a replication data set of 169 healthy individuals 

consisting of RNA-seq data from sorted naïve CD4+ T cells (Table1)1. This dataset offered some advantages; the 

presence of only CD4+ T cells; the use of naïve T cells excluded antigen experienced memory T cells; and all 

individuals were from the same continental ancestry (European populations) and genotyped genome-wide. 

Therefore, in this analysis we were able to strictly control for the effects of population stratification using principal 

components of genome-wide genotype data. For this dataset, we inferred TCRs from bulk RNA-seq, and hence 

there were fewer CDR3 sequences per individual than in the discovery dataset (around 0.7% of those observed in 

the discovery dataset; Table 1), resulting in missing low-frequency CDR3 amino acid residues in certain instances 

and reduced power. We applied the same analysis to the replication dataset. From 24,430 tests in the discovery 

dataset, we selected 11,620 tests within HLA class II since we only had CD4+ T cells in the replication dataset; 

among those the vast majority (n=11,550) were frequent enough to test for association (see Methods). We 

observed that the variance explained in each test was similar in the replication dataset as in the discovery dataset 

(Pearson’s r = 0.59), and the largest explained variance was again identified at HLA-DRB1 site 13 and L13-CDR3 

position 109 (Extended Data Figure 4). 

 

Replication analysis using a linear regression model 

In our replication data, we sought to test the replicability of the 435 significant CDR3 phenotypes (length-position-

amino acid combinations) at HLA amino acid alleles which showed the strongest association in the discovery 

dataset. Out of these 435 phenotypes, a total of 421 phenotypes were testable in the replication dataset (some HLA 

alleles and CDR3 phenotypes were missing due to low frequencies in the replication dataset). Among them, we 

only tested the 411 phenotypes whose lead associations located in the class II HLA since we only had CD4+ T cells 

in the replication dataset. The effect sizes from the discovery and replication dataset were significantly correlated (r 

= 0.73; P = 1.7 x 10-71; Extended Data Figure 4; Supplementary Table 8); 344 of 411 phenotypes were replicated 

in the same allelic direction (sign test P value = 5.7 x 10-46). If we restrict this analysis to 92 phenotypes for which 

we found nominally significant associations in the replication dataset (P < 0.05), all of them replicated in the same 

allelic direction (sign test P value = 4.0 x 10-28). Therefore, the majority of replication failures might be due to 



insufficient statistical power of the replication dataset which has a smaller sample size and much less CDR3 

sequences than the discovery dataset. 

 

Thymic selection may be driving HLA-CDR3 associations 

Since we observed consistent cdr3-QTL signals in PBMCs (including naïve and memory T cells) and sorted naïve T 

cells, we hypothesized that cdr3-QTL effects might be driven by thymic selection. Alternative possibilities included 

that cdr3-QTLs were driven by genetic mechanisms prior to thymic selection, or by antigen presentation in the 

periphery by HLA alleles. 

 To investigate the possibility of a genetic mechanism prior to thymic selection, we analyzed non-productive 

CDR3 sequences. Although they are generated by the same random recombination as productive CDR3s, they are 

not expressed on T cell surfaces and thus are not subjected to thymic selection. We predicted that if thymic 

selection is driving cdr3-QTLs, we should not observe HLA-CDR3 associations in non-productive sequences. 

Indeed, when we tested individual HLA sites to assess if they explained the variance of CDR3 amino acid 

frequencies at each position (multivariate multiple linear regression), we observed no significant signals in non-

productive sequences (minimum P = 3.7 x 10-5 > 0.05/24,430; Figure 3a). Since non-productive sequences were 

only 17.9% of all unique CDR3 sequences, we considered the possibility that this reflects reduced power. However, 

when we downsampled the productive sequences to match the number of non-productive sequences and repeated 

the analysis, we observed that productive CDR3s had substantial evidence of cdr3-QTL (Figure 3a). Consistently, 

when we analyzed individual amino acids in non-productive sequences using a linear regression model, there was 

no consistency in effect size directions with productive sequences, suggesting non-productive CDR3 sequences 

produced random results (Figure 3b).  

If peripheral antigen presentation by MHC and memory formation was ultimately driving the observed 

effects, then T cells with CDR3 favored by specific HLA alleles would be expanded due to proliferation. In this case, 

weighting each unique CDR3 sequence by its expansion level should augment cdr3-QTL signals, relative to our 

primary analysis in which we treated each unique sequence equally without any weights. To test this possibility, we 

reanalyzed the discovery data; we included the effect of clonal expansion by considering the read counts of each 

CDR3 sequence. We still observed evidence of cdr3-QTL effects but with a substantially lower magnitude (Figure 

3c-d). In addition to the replication analysis results using naïve T cells, these results suggested that our cdr3-QTL 

results reflect the effects of thymic selection favoring individual CDR3 sequences, and that these signals are 

mitigated (rather than augmented) by peripheral clonal expansion. 



 

Identifying cdr3-QTL loci outside of the MHC regions 

Since there is some correlation between V/J genes and CDR3 amino acids, we considered that cis-regulatory 

variants of V/J genes within the TCR locus might affect CDR3 amino acid composition indirectly. In the replication 

dataset for which genome-wide genotype data was available, we searched for the cis-regulatory variants of V/J 

genes and CDR3 amino acid compositions of beta chains among the 940 variants in the TCR locus (Chr. 

7:141,998,851-142,510,972 in the GRCh37 genomic coordinates). Among 48 V and 13 J genes we detected, we 

observed significant associations for 22 V genes and nine J genes (P < 8.7 x 10-7 = 0.05 / (940 x (48 + 13)); 

Supplemental Table 2 and Supplementary Figure 1). In addition, among 1,020 CDR3 phenotypes (length-

position-amino acid combinations; potentially 7 x 10 x 20 = 1,400 phenotypes but we could not detect rare amino 

acid in the replication dataset), we observed significant associations for 47 phenotypes (P < 5.2 x 10-8 = 0.05 / (940 

x 1,020); Supplementary Table 3 and Supplementary Figure 1). Of the 1,547 significant associations, 1,461 

(94.4%) were to positions 113-116 just adjacent to J genes. Accounting for nine J genes with significant cis-

regulatory variants completely obviated associations with CDR3 amino acid composition (Supplementary Figure 

1). These results suggested that cis-regulatory effects for CDR3 amino acid compositions are mainly driven by their 

correlation with J genes and limited to the flanking positions of CDR3. Therefore, effects of cis-regulatory variants 

are likely distinct from those of HLA alleles, which mainly influence the middle positions of CDR3 located closer to 

antigens. 

 

CDR3 risk score 

CDR3 risk score is analogous to genetic risk score; the effect sizes of cdr3-QTL analysis based on HLA risk score 

(this is the identical analysis as we summarized in Figure 4b) were summed up when the target amino acid exists 

in a given CDR3 sequence (Supplementary Figure 8 and Methods). For the CDR3 risk score, the choice of P 

value threshold can be flexible, and the one with the best performance should be utilized for the downstream 

analysis; we defined the performance of CDR3 risk score by the correlation between the average CDR3 risk scores 

and the HLA risk scores. Using 5-fold cross validation in the discovery dataset, we tested five different P value 

thresholds; 0.05, 0.01, 0.001, 1 x 10-4, 3.6 x 10-5 (= 0.05/1,368, Bonferroni corrected P value). We decided to 

choose a P value threshold of 3.6 x 10-5 since we confirmed that the score with this threshold had the best 

performance in the cross validation (Supplementary Figure 8).  

 



Embedding of TCR 3-D structure 

In order to embed points into a two-dimensional space, we obtained protein structure data on TCR, HLA-DR, and 

antigen structures (1J8H, 1YMM, 2IAM, 2IAN, and 4E41). Using the centroids of each amino acid residue, we 

calculated distances, di,j, between amino acid residues i and j, from HLA-DRB1 and antigen, antigen and CDR3, 

and HLA-DRB1 and CDR3. We examined only polymorphic HLA residues. We averaged distances across all five 

structures.  

If a residue centroid had an averaged pairwise distances >20 angstroms for all measured distances, we did 

not include those residues in our analyses. For remaining points, we sought to embed the centroids into a two-

dimensional plot, by assigning x and y coordinates in order to minimize the difference between distances in 

embedded space, and distance in three-dimensional structural space. For each pairwise distance, we used a 

weight wij to emphasize certain distances, and de-emphasize others. We sought to minimize the following objective 

function: 

𝐹(𝑥, �⃑�) = ) ) 𝑤+,, -./𝑥+ − 𝑥,1
2
+ /𝑦+ − 𝑦,1

2
− 𝑑+,,5

26

,7+89

6:9

+79

 

To insure short distances (d<6 angstroms), and de-emphasize longer distances, we defined wij as follows: 
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To keep residues from collapsing in on themselves, we make certain arbitrary assignments. If i,j are from two 

residues that are from within the same molecule, or are from two residues molecules that are >20 angstroms, we 

assign the di,j = 50 angstroms, and w(i,j) to be 0.01.  

To identify the best fit, we used random start positions, where each point was randomly assigned to twenty 

points. After a random starting point, we optimized the fit of the points by using both gradient descent and Newton’s 

method. Newton’s method needs more computational time per iteration, since the Jacobian of F needed to be 

calculated. Therefore, we applied 90 iterations of gradient descent first: 
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Here ∇𝐹  is the gradient of F. For s we tried values ranging from 2^(1-h), where h ranged from 1 to 21, and hence s 

ranged from 1 to 9e-7. We selected the value of h that resulted in the lowest value of F. Next, we applied 20 

iterations of Newton’s method after gradient descent to quickly find local minima: 
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Here J(F) is the Jacobian of F. For s, we tried values ranging from 2^(1-h), where h ranged from 1 to 21. We 

selected the value of h that resulted in the lowest value of F. To calculate the gradient, we calculate the derivative 

of the objective function at x and y for each point: 
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Here di=j is the Dirac delta function which is 1 if i and j are equal to each other, and 0 otherwise. Similarly, di≠k is 1 if i 

and k are equal to each other, and 0 otherwise. To calculate the Jacobian, we calculate each of the second 

derivatives empirically setting delta = 0.0000001: 
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We calculate other partial derivatives for all pairs i and j for both x and y coordinates similarly. 
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Cis-regulatory effects of CDR3 amino acid compositions. 
Using the replication dataset (n = 169), we tested associations between the variants within the TCR locus and V/J 
usage and CDR3 amino acid compositions. We also conducted the same analysis for CDR3 amino acid 

compositions but including covariates of nine J genes for which we observed significant cis-regulatory effects. 

 
 
  



 

 
Supplementary Figure 2. Variance explained in cdr3-QTL analysis for each length of CDR3. 
Variance explained in cdr3-QTL analysis for different length of CDR3 (n=628; multivariate multiple linear 
regression). The results for HLA-DRB1 were provided.  
 
  



 

 
 
Supplementary Figure 3. Evaluation of the confounders in cdr3-QTL analysis (multivariate multiple linear 
regression). 
To evaluate the effect of potential confounders in cdr3-QTL analysis, we tested variance explained using four 
different conditions (multivariate multiple linear regression). X-axis is the variance explained in the primary analysis 
(n=628) and Y-axis is the variance explained in each condition. We analyzed all tests in the primary analysis 
(24,430 tests). First, to test the potential bias by different ethnicities, we conducted the analysis only using 
Caucasian samples (n=348). Second, to test the potential bias by age and sex, we conducted the analysis by 
adding age and sex as covariates (n=520; sample size decreased due to missing data in covariates). Third, to test 
the potential bias by cytomegalovirus infection status, we conducted the analysis only using non-infected samples 
(n=334). Lastly, to test the potential bias by public clonotypes, we conducted the analysis excluding public 
clonotype (n=628). 
   



 

 
 
Supplementary Figure 4. cdr3-QTL results using four-digit classical allele genotypes. 
QQ plot of cdr3-QTL analysis comparing two different methods (n = 628; multivariate multiple linear regression); 
associations with HLA amino acid alleles and those with four-digit classical HLA alleles.  
  



 

 
 
Supplementary Figure 5. The observed and embedded pair-wise distances of amino acids in MHC-peptide-
TCR complexes. 
(a) The shortest distances between each HLA-DRB1 site and all positions of the antigen (X-axis) and those 
between each HLA-DRB1 site and all positions of the CDR3 (Y-axis) were provided for each protein structure. The 
sites with independently significant cdr3-QTL effects were highlighted by magenta. 
(b) Pair-wise distances in the original datasets and those in the embedded space. Averaged value across five 
structures were utilized. Two-dimensional embedding analysis based on the pair-wise distances was conducted 
(Methods). We down-weighted the distances between HLA and TCR so that their antigen-mediated indirect 
interaction was highlighted. Pearson’s correlation coefficients were provided. 
 
  



 

 
 
Supplementary Figure 6. Evaluation of the confounders in cdr3-QTL analysis (liner regression). 
The analysis was restricted to the 435 CDR3 phenotypes (length-position-amino acid combinations) which had at 
least one significant association in the primary analysis (P < 0.05/1,262,664; linear regression). 



(a) Effect sizes from a linear regression model where the effect of V genes was not adjusted (the primary analysis) 
and those from a linear mixed regression model where the effect of V genes was adjusted were compared. Effect 
sizes for non-normalized phenotype were used.  
(b) Effect sizes from a linear regression model where the effect of J genes was not adjusted (the primary analysis) 
and those from a linear mixed regression model where the effect of J genes was adjusted were compared. Effect 
sizes for non-normalized phenotype were used.  
(c) Effect sizes from a linear regression model where all samples were utilized (n=628; the primary analysis) and 
those where only Caucasian samples were utilized (n=348) were compared.  
(d) Effect sizes from a linear regression model where the age and sex effects were not adjusted (n=628; the 
primary analysis) and those where the age and sex effects were adjusted (n=520) were compared. Since there 
were many missing values in covariate data, including them in a model decreased the sample size.  
(e) Effect sizes from a linear regression model where all samples were utilized (n=628; the primary analysis) and 
those where only cytomegalovirus non-infected donors were utilized (n=334) were compared.  
(f) Effect sizes from a linear regression model where all CDR3 were utilized (n=628; the primary analysis) and 
those where public clonotypes were excluded (n=628) were compared.  
 
 
 
  



 

 
Supplementary Figure 7. QQ plot of cdr3-QTL, V/J gene association based on HLA-risk scores. 
The identity line is provided with the 95% confidence interval. 
  



 

 
 
 
 
Supplementary Figure 8. The strategy to calculate CDR3 risk score. 
(a) Schematic explanation of our strategy to calculate CDR3 risk score. The table shows the effect size estimate of 
cdr3-QTL analysis based on HLA risk scores. Effect sizes for corresponding amino acid positions are summed up 
to calculate the CDR3 risk score. Effect sizes which passed a P value threshold were utilized. 
(b) Using the discovery dataset, we conducted 5-fold cross validation to evaluate the performance of RA-CDR3 risk 
score. A representative plot of RA-HLA risk score and RA-CDR3 risk score in a round of cross validation (with 
Bonferroni-corrected P < 0.05 threshold).  
(c) The Pearson’s correlation coefficient between RA-HLA risk score and RA-CDR3 risk score in the 5-fold cross 
validation using five different P value thresholds.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile 
range (IQR), and the whiskers reflect the maximum and minimum values within each grouping no further than 1.5 x 
IQR from the hinge. 


