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Abstract 

INTRODUCTION: Genome-wide association studies have led to numerous genetic loci associated with 

Alzheimer’s disease (AD). Whole-genome sequencing (WGS) now permit genome-wide analyses to 

identify rare variants contributing to AD risk.   

METHODS: We performed single-variant and spatial clustering-based testing on rare variants (minor 

allele frequency ≤1%) in a family-based WGS-based association study of 2,247 subjects from 605 

multiplex AD families, followed by replication in 1,669 unrelated individuals.    

RESULTS: We identified 13 new AD candidate loci that yielded consistent rare-variant signals in 

discovery and replication cohorts (4 from single-variant, 9 from spatial-clustering), implicating these 

genes: FNBP1L, SEL1L, LINC00298, PRKCH, C15ORF41, C2CD3, KIF2A, APC, LHX9, NALCN, CTNNA2, SYTL3, 

CLSTN2. 

DISCUSSION: Downstream analyses of these novel loci highlight synaptic function, in contrast to 

common AD-associated variants, which implicate innate immunity. These loci have not been previously 

associated with AD, emphasizing the ability of WGS to identify AD-associated rare variants, particularly 

outside of coding regions.   
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Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and one of the most 

challenging societal problems in the industrialized world. Susceptibility to AD is determined by both 

monogenic and polygenic risk factors as well as environmental exposure. Monogenic AD most often 

presents as early-onset (<60 years) familial AD (EOFAD), constituting less than 5% of all cases, and 

caused by any of hundreds of very rare mutations in at least three genes: amyloid precursor protein 

(APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2). The vast majority of AD cases are sporadic or 

familial late-onset (>60 years) AD (LOAD) and are of a genetically complex, polygenic background with 

contributions from both genetic and non-genetic factors. The identification of genetic determinants 

underlying polygenic AD has been the aim of more than one thousand genetic association studies1, 

including more than 75 genome-wide association studies (GWAS) on AD and related traits as outcomes 

(according to EBI’s GWAS catalog2; https://www.ebi.ac.uk/gwas/). The largest AD GWAS3 to date was 

conducted on over 600,000 individuals and highlighted a total of 29 independent genome-wide 

significant (P<5x10-8) AD risk loci4, while the recent GWAS by Kunkle et al.5 found 25 loci in their 

analyses of clinically diagnosed LOAD in over 90,000 individuals. Essentially, these and other AD GWAS 

focused on common (typically with a minor allele frequency [MAF] ≥1%) variants either directly assayed 

or imputed using high-density reference panels. The few exceptions to these common-variant studies 

utilized either microarray-based or next-generation sequencing (NGS)-based genotyping limited to 

exonic variants and identified rare (MAF<1%) missense variants either increasing (TREM2, PLCG2, ABI3, 

ADAM10) or decreasing (APP, CD33) risk for AD6–9. 

In this study, we performed deep (>40x) whole-genome sequencing (WGS) to search for novel 

AD variants in 2,247 individuals from 605 multiplex AD families from the National Institute on Mental 

Health (NIMH)10 and National Institute on Aging (NIA) Alzheimer’s Disease Sequencing Project (ADSP)11 

data sets. Analyses were focused on rare variants with MAF <1% (based on the non-Finnish European 
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subset of gnomAD v312, unless stated otherwise) and entailed single-variant and spatial clustering-

derived (i.e. “region-based”) testing. Suggestive findings (P<5x10-4) were validated in publicly available 

WGS (NIA ADSP case-control population13) data on more than 1,650 independent AD cases and controls. 

In total, we highlight 4 single-variant and 9 region-based findings exhibiting consistent rare-variant 

association with AD across the discovery and replication phases in our study. None of the newly 

implicated loci were previously highlighted in any of the common-variant AD GWAS. Functionally, our 

results extend existing knowledge on the underlying disease pathways highlighted by common variants 

and converge upon a role for neuroplasticity and synaptic function, emphasizing the power of WGS in 

the context of rare-variant-based gene discovery efforts. 
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Results 

Description of general sequencing metrics. After sample quality control (QC) (see Methods), WGS data 

from 2,247 individuals (NIMH n=1,393 and NIA ADSP families n=854; hereafter referred to as the 

“discovery sample” (Supplementary Table 1; see Fig. 1 for an overview of the study design) was available 

for subsequent analyses. Median read depth across the genome in NIMH was 40.4-fold (mean 41.2). 

Within the discovery sample, we identified a total of 54,669,406 sequence variants, of which 40,542,616 

were listed in the non-Finnish European subset of the Genome Aggregation Database (gnomAD [URL: 

gnomad.broadinstitute.org]; v3, n=32,399, Supplementary Fig. 1). 907,273 (2%) of these were located in 

protein-coding exons (Supplementary Fig. 2). Of all identified variants, the vast majority, i.e. 31,200,539 

(77%) were “rare” (MAF ≤1%), while 2,855,054 (7%) were “infrequent” (≤5% MAF >1%), and 6,487,023 

(16%) were “common” (MAF >5%). Overall, we captured a large proportion of the “common” (95.8%) 

and “infrequent” (90.9%) variant space, using gnomAD as reference. As expected, the captured 

proportion was smaller for “rare” variants (11.7%), which can be attributed to the difference in sample 

sizes. After variant QC (Methods), 18,263,694 variants, 11,012,452, of which were rare, were used in 

subsequent analyses. 

Single-variant AD association results. To probe for association between single markers and AD status, 

we used the FBAT Toolkit14 in the family-based discovery dataset and logistic regression in the case-

control replication data (Methods). These analyses revealed a total of 24,301 rare variants showing 

association with AD at P<0.01. As can be seen from the corresponding QQ plot (Fig. 2), we observed a 

deflation of test statistics starting from P<0.05. This deflation can be attributed to the fact that the 

FBAT-statistics is conservative in the case of a small number of informative families and/or low allele 

frequencies. Of the variants showing association at P<0.01, a total of 271 attained P<5x10-4  

(Supplementary Table 2) and were prioritized for validation assessments in the independent WGS case-

control dataset (NIA ADSP non-Hispanic whites (NHW), n=1669; hereafter referred to as “replication 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.20225540doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225540


6 

dataset”; Fig. 1). These assessments converged on two variants in two regions (rs74065194 approx. 

200kb downstream from SEL1L [MAF = 0.0066; Pmeta = 0.011] and rs192471919 intronic of FNBP1L [MAF 

= 0.0054; Pmeta = 0.017]) to show at least nominal replication with the same direction of effect as in the 

discovery datasets (Fig. 3a, Table 1a). In addition, we highlight four variants which yielded P = 0.000538, 

i.e. just above our screening threshold, located approx. 100kb downstream of STK31 [MAF = 0.0067; 

Pmeta = 0.0035].  

In a second filtering paradigm, we selected variants showing consistent (i.e. Pdiscovery<0.05 and same 

direction of effect in discovery and replication datasets) association at P<0.0005 following meta-analysis. 

This revealed three additional single variant associations in two loci (i.e. rs147918541 intronic of 

LINC00298 and approx. 700kb upstream of ID2 [MAF = 0.0072; Pmeta = 2.44x10-4], and rs147002962 and 

rs141228575, both intronic of C15orf41 [MAF = 0.0069; Pmeta = 3.03x10-4]; Fig. 3b; Table 1b). 

Furthermore, we assessed the recently described9 “exome-chip”-based rare-variant association signals 

in TREM2 as well as PLCG2 and ABI3 (Supplementary Table 3). This revealed significant association with 

one of the two TREM2 variants (rs75932628 [MAF = 0.0021; Pmeta = 0.0329) as well as suggestive support 

for rs72824905 in PLCG2 in the discovery sample only [MAF = 0.0087; Pdiscovery = 0.0546, Pmeta = 0.259]). In 

contrast, we did not observe evidence for association with the second TREM2 variant (rs143332484) or 

rs616338 in ABI3 in either the discovery or the replication samples. Finally, we identified at least 786 

nominally (P<0.05) significant rare-variant signals in genes corresponding to loci previously associated 

with AD in common-variant GWAS3,5 (Supplementary Table 4) suggesting that at least some of the 

common-variant signals in these loci can be attributed to rare sequence variation (in line with earlier 

findings15,16). For comparison, we also plotted single-variant association results in the discovery cohorts 

without MAF restriction, i.e. for both rare and common variants (Supplementary Fig. 3 and 

Supplementary Fig. 4) and compared these with the 29 GWAS SNPs from Jansen et al.3 (Supplementary 

Table 5) and 25 GWAS SNPs from Kunkle et al.5 (Supplementary Table 6). As expected, these analyses 
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revealed a pronounced, genome-wide significant (P<5x10-8) signal with markers in the APOE region on 

chromosome 19q13 as well as suggestive signals with several of the other common-variant GWAS 

signals. 

Spatial-clustering AD-association results. Our second analysis arm computed aggregated results on 

consecutive runs of rare variants in the discovery dataset. In principle, this is similar to “gene-based” 

testing (such as performed by VEGAS17 or MAGMA18) except the approach applied here19 utilizes all 

available variants, including those located between genes that are otherwise typically omitted from this 

type of analysis, e.g. VEGAS. These analyses revealed a total of 1,756 regions showing association with 

AD at P<0.01 (for a Manhattan and QQ plot of all spatial-clustering-based rare-variant results see Fig. 4 A 

and B and Fig. 5). Using P<5x10-4 as threshold yielded signals in 47 regions in the discovery datasets 

(Supplementary Table 7),  four of which also showed at least nominal evidence for independent 

replication in the NHW ADSP dataset (PRKCH [Pmeta = 8.17x10-6], C2CD3 [Pmeta = 5.12x10-5], KIF2A [Pmeta 

= 1.00x10-4], APC [Pmeta = 1.79x10-4]; Table 2a). A further six (five of which were novel) candidate gene 

regions (PRKCH, LHX9, NALCN, CTNNA2, SYTL3, CLSTN) were highlighted in the secondary analyses 

focusing on top meta-analysis results (Pmeta < 5x10-5 and Pdiscovery < 0.05) only, yielding association signals 

with P-values ranging from 3.27x10-5 to 8.17x10-6 (Table 2b). 

Finally, we also performed gene-based burden testing on rare variants in known AD genes (i.e. APP, 

PSEN1, PSEN2 as well as those recently highlighted as genome-wide significant loci in GWAS (Jansen et 

al.3 and Kunkle et al.5). This revealed two nominally significant association signals in ZCWPW1 (P = 0.028) 

and PICALM (P = 0.03) and two suggestive association signals in ALPK2 (P = 0.053) and MS4A6A (P = 

0.084), upon meta-analysis (Supplementary Table 8).  

For comparison, we also plotted spatial-clustering-based association results without MAF restriction in 

the discovery cohorts, i.e. for both rare and common variants and, as expected, the top-associated 
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region in these analyses maps to the APOE locus on chromosome 19q13.32 (Supplementary Fig. 5 and 6, 

and Supplementary Table 9). 

Taken together, our WGS-based association results revealed 13 novel potential AD loci (4 from single-

variant, 9 from spatial-clustering analyses) with consistent rare-variant signals in both discovery and 

replication cohorts. Importantly, none of the identified loci have been previously highlighted in any 

common variant or WES/exome-chip association study in the field, emphasizing the added resolution 

and power afforded by genome-wide sequencing performed outside coding regions. Notwithstanding, 

some of the loci highlighted here may reflect spurious associations due to type-I error; thus, any future 

consideration of our results should await further validation in independent samples.  

In silico functional implications of the single-variant association findings. The leading SNV associations 

from the discovery (Table 1a) and the meta-analysis (Table 1b) include rs74065194, which is upstream of 

SEL1L, located within a transcription factor binding site cluster. The SNV rs192471919 is situated within 

the intron of FNBP1L and open chromatin specific to the brain cingulate gyrus, liver cells and monocytes. 

Three SNVs are intronic to LINC00298 (rs147918541), a long non-coding RNA gene mostly expressed in 

brain, and C15orf41 (rs147002962; rs141228575) which is mostly expressed in heart. The four variants 

assigned to STK31, which almost reach our P-value threshold, show significantly higher expression in the 

temporal cortex of AD patient samples when compared to controls (Padj. = 1.1x10-5). Of these SNVs, 

rs112941445 is the most likely to be the causal variant given that it has the most epigenetic support 

(Table 1a). 

The most highly significant SNV-associated meta-analysis gene was LINC00298. This long intergenic non-

coding RNA (lincRNA) has no known function20, but exhibits CNS-specific expression, with a 50-fold and 

24-fold enrichment in the nervous system and brain samples in FANTOM 5 CAT (P = 2.9x10-23 and 

4.6x10-21 respectively)21, including iPSC-derived neurons. Orthologous transcripts to LINC00298 can be 
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only be found in primates (~45% exonic identity in Pan troglodytes, Chlorocebus sabaeus, Papio anubis), 

and with brain-specific expression22. A resource for experimental characterization of lincRNA (lncBase v2 

database), reveals that LINC00298 contains an experimentally supported microRNA binding site for miR-

7, discovered by brain high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation 

(HITS-CLIP) experiments23. miR-7 is expressed highly in the brain and has been implicated in numerous 

mechanisms in neurodevelopment, healthy brain function as well as in brain diseases, including AD, 

neuroinflammation, Lewy body dementia, psychiatric disorders, and Parkinson’s disease24. Of the 73 

rare-variant-associated genes co-expressed with LINC00298 in our study, 17 are included in protein-

protein interactions with our newly AD-associated genes, including APC (corr 0.449) and CTNNA2 (corr 

0.381) (Fig. 6), and also the known AD and frontal lobe dementia-associated gene encoding tau protein, 

MAPT (corr 0.379). Functional enrichment for LINC00298-correlated expression of genes found in our 

study results in one significant enrichment for the HIPPO signaling pathway (Padj. = 2.2x10-7; 

Supplementary Table 10) and weaker correction-adjusted significance for GO processes synapse 

organization, spindle formation, cell-cell adhesion, and neuron projection morphogenesis.  

Functional enrichment of the genes associated with the highest-ranked 1000 SNVs from the meta-

analysis (Supplementary Table 11) identified 151 processes and pathways after correcting for multiple 

testing. The most highly enriched terms included flavonoid glucuronidation (Padj. = 1.09x10-7) (involved 

in removal of xenobiotics), and many neuroplastic/developmental-associated processes including 

synapse organization (Padj. = 1.32x10-7), axon guidance (Padj. = 6.51x10-6), development and elongation, 

and also cell adhesion (Padj. = 0.001; Supplementary Table 12). Only two pathways were significantly co-

enriched with the GO/pathway gene set enrichment for genes associated with common variants 

reported in the GWAS by Jansen et al.3: cell adhesion molecules and herpes simplex infection 

(Supplementary Table 13). In contrast to the broad diversity of functions, such as immune-related and 

amyloid processing, found to be enriched by genes annotated in the GWAS by Jansen et al.3, 10 of the 
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21 top-level functions showing enrichment in our rare-variant analysis had roles related to the 

maintenance and development of neurons, cardiac tissue and synapses, and neuroplasticity-related 

terms including synaptogenesis, activity and synaptic integrity, neurogenesis, sensory organ 

development, cardiac development, tissue morphogenesis, and limb development. None of the enriched 

pathways, here, exhibited immune-related roles. 

In silico functional implications of the spatial-clustering association findings. Four of the nine leading 

regions associated with AD are significantly enriched for regulatory annotation (Table 2). The CLSTN2 

and PRKCH regions are respectively enriched for enhancers and promoters across a number of cell 

types, while the LHX9 and NALCN loci significantly overlap with transcription factor binding sites. NALCN 

additionally is enriched for active CTCF binding sites. Unlike the SNVs, these nine regions mostly cover 

intronic and exonic locations. The four genes APC, CTNNA2, KIF2A, and NALCN are all primarily 

expressed in brain tissue while PRKCH expression is significantly reduced in the temporal cortex of AD 

patients (Padj. = 0.0001).  

Functional enrichment of genes associated with the highest-ranked 1000 spatial clustering-based results 

(Supplementary Table 14) revealed 127 significantly enriched pathways after correcting for multiple 

testing. The most highly enriched terms included neuron projection guidance (Padj. = 1.6x10-5), kidney 

development (Padj. = 2.32x10-5), cell-cell adhesion (Padj. = 6.53x10-5), negative chemotaxis (Padj. = 2.17x10-

4), brain development (Padj. = 4.23x10-4) and synapse organization (Padj. = 7.02x10-4). 7 of the 20 most 

enriched terms were related to development, and 81 of the total significantly 127 enriched terms 

related to development or neuroplasticity (Supplementary Table 15). Meanwhile, no process out of 422 

was significantly enriched in common with the Jansen et al. study3. Protein localization to membrane 

(Padj. = 0.0126, Jansen, Padj. = 0.0631, regional geneset; Supplementary Table 16) was the closest to 

reaching significance. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.20225540doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225540


11 

Common functional themes between single-variant and regional analysis. A total of 90 genes were 

found in common between the most highly ranked 1000 single-variant and regional findings. These 

include three highlighted genes LINC00298, SEL1L, and STK31 and genes that rank highly in both gene 

lists: ROBO1, PRDM9, LINC02439, and TMEM132C. 152 processes and pathways reached significance for 

the co-enrichment of regional- and SNV-associated genes. The top 5 terms enriched were positive 

regulation of nervous system development (Padj. = 0.0025, SNV; Padj. = 0.000079, regional), heart 

development (Padj. = 0.0015, SNV; Padj. = 0.0039, regional), sensory organ development (Padj. = 0.0005, 

SNV; Padj. = 0.01, regional), trans-synaptic signaling (Padj. = 0.0015, SNV; Padj. = 0.0031 regional) and tissue 

morphogenesis (Padj. = 0.002, SNV; Padj. = 7x10-5 regional). Of the 19 significantly co-enriched terms, 10 

were related to development or neuroplasticity, the remainder addressed maintenance and cellular 

activity-related functions such as cell-cell adhesion, negative chemotaxis, signaling by receptor tyrosine 

kinases and organelle localization (Supplementary Table 17; Supplementary Fig. 7). 

To investigate the impact of selecting only variants within transcribed gene boundaries on the functional 

enrichment results, we restricted our analysis to only those SNVs and regions occurring within a gene 

transcript, i.e. intronic or exonic variants. The most highly enriched categories (Padj. <= 0.035) included 

organelle localization, cell-cell adhesion, cell morphogenesis in neuron differentiation, synapse 

organization, modulation of chemical transmission, and protein localization to the centrosome 

(Supplementary Fig. 8). 

Identification of cell-specific signatures. To assess whether our prioritized variants show an association 

with single-cell-restricted states, we applied an Expression Weighted Cell Type Enrichment (EWCE) test25 

to genes from our prioritized SNV and regional analysis results. EWCE is used to predict the primary cell 

origins of a disease. Using single-cell mouse data, primarily from the hippocampus and hypothalamus, 

we discovered an enriched signal of our SNVs in pyramidal CA1 neurons (Supplementary Table 18). In 

contrast, common loci associated with AD26 have been significantly enriched in microglia (Fig. 7).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.20225540doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225540


12 

Network generation of shared functions and relationships with known AD-associated genes and 

processes. Using known protein-protein interactions as a guide, a network of interactions was 

constructed between a total of 1,274 interacting proteins which include known AD-associated genes26, 

our single-variant, and regional-associated genes. Of the 14 leading genes we pinpointed in this study, 8 

(protein-coding) were linked directly by protein-protein interaction to additional AD-associated genes 

discovered within this study or to 21 known AD-associated genes in a subnetwork (Fig. 6). Highlighted 

genes that interact with known AD genes include FNBP1L, which directly interact with the validated 

GWAS AD genes, PICALM and BIN1, as well as KIF2A, which directly interacts with AD gene HLA-DRB1. 17 

genes in the subnetwork also co-express with the highlighted gene, LINC00298.  

Functional enrichment of the subnetwork of directly interacting proteins revealed 196 enriched GO 

process/KEGG pathway terms (Supplementary Table 19). The 3 highest ranked GO processes (nervous 

system development, 236 genes, FDR 1.32x10-9; neurogenesis 168 genes, FDR 4.74x10-7; developmental 

process, 460 genes, FDR 3.74x10-7) reflected neuroplasticity/developmental processes, of 90 processes 

enriched for development, differentiation, or biogenesis. Neurogenesis, a GO process term that 

annotates 1,519 genes, was co-enriched with PRKCH, LHX9 and CTNNA2 from our pinpointed genes, and 

SORL1, PICALM, CNTNAP2 and APOE, and BIN1 from our reference list of known AD genes (PICALM is a 

known AD gene also discovered in our top 1000 regional analysis-associated genes). Co-expression 

analysis using pathway co-activation mapping (PCXN.org27) revealed that nervous system development 

and several of the associated enriched GO terms show significant correlated gene expression activity, 

even when there was low gene overlap between enriched term genesets (Supplementary Table 20).  

Discussion  

Based on WGS of 2,247 subjects from 605 multiplex AD families and a case-control cohort of >1,650 

individuals, we have identified 13 rare-variant signals (4 from single-variant, 9 from spatial-clustering 
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analyses) exhibiting association with AD across the discovery (families) and replication (case-control) 

cohorts. Our work represents one of the first and, to the best of our knowledge, the currently largest, 

systematic WGS-based genetics study in the AD field. In AD, we are only aware of two published WGS-

based studies28,29 both utilizing different analyses paradigms and much smaller sample sizes. Of note, 

data from the latter of these WGS projects were utilized in the current study for purposes of 

independent replication.  

The top signals emerging from our single variant-associated analyses were associated with the genes: 

FNBP1L and SEL1L (and STK31), while the secondary analysis pointed to LINC00298 and C15orf41. All 

genes directly overlapped with the single variant associations except for SEL1L, which encodes the 

suppressor/enhancer of lin-12-like (Sel1L) adaptor protein for an E3 ligase involved in endoplasmic 

reticulum-associated degradation (ERAD) for protein quality control. Interestingly, ERAD has been 

reported to regulate the generation of amyloid-beta by gamma secretase30. Deficiency of SEL1L  has also 

been show to activate ER stress and promote cell death31. Additionally, an SNV in intron 3 of SEL1L has 

previously been reported to confer susceptibility to AD32.  

The FNBP1L gene, which encodes the formin-binding protein 1-like protein, has been associated with 

adult33 and childhood intelligence34. FNBP1L has also been reported to be essential for autophagy of 

intracellular pathogens, such as Salmonella Typhimurium, which serves to curb intracellular growth35. 

This is particularly interesting given the emerging evidence for the role of microbes in driving AD 

neuropathology36. FNBP1L, also known as TOCA-1, is implicated in neurite elongation and axonal 

branching37. Thus, FNBPL1 may play a role in neuroplasticity-related AD pathology.  

The STK31 gene encodes the cell cycle kinase, serine/threonine kinase 31, which is known to promote 

PDCD5-mediated apoptosis in p53-dependent human colon cancer cells38. It is tempting to speculate as 

to whether this kinase might also affect phosphorylation of tau and neurofibrillary tangle formation in 
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AD. However, we note that variants in this gene technically did not fulfill the significant thresholds and 

are highlighted here as additional results.  

LINC00298 is a long intergenic non-coding RNA and does not code for a protein. Its functional role is not 

known. It contains a target for brain-expressed non-coding miRNA mir-7, which has been associated 

with AD39. LINC00298 can be more broadly functionally characterized by where and when it is expressed 

and the genes with which its expression is correlated. LINC00298 is co-expressed with 33 SNV-

associated, and 40 regional-associated genes (lnchub40). LINC00298’s co-expressed genes appear to be 

enriched for developmentally-associated processes: Its bias for expression in the brain, its association 

with HIPPO pathway, which has a role in development, co-expression with genes involved in neuronal 

differentiation and expression in iPSC neuronal stem cells suggest that one of its roles may be in 

regulation involved in neuronal plasticity. C15orf41 encodes the codanin 1-Interacting nuclease gene 

(CDIN1), which is highly expressed in the heart, with much lower expression in the brain. CDIN1 is 

associated with erythrocyte differentiation and has genetic associations with congenital 

dyserythropoietic anemia type I41.  

Spatial clustering-based analyses highlighted a total of four independent genomic regions (Table 2a). 

One of these regions was in the gene encoding the protein kinase C receptor beta subunit (PRKCH). 

Interestingly, we have previously reported three highly penetrant rare mutations in another protein 

kinase C subunit alpha (PRKCA) that segregates with AD in five families. All three AD-linked PRKCA 

mutations displayed increased catalytic activity (by live imaging) versus wild-type PRKCA, and 

potentiated the ability of amyloid beta to suppress synaptic activity in hippocampal slices42. It will be 

interesting to determine whether mutations in PRKCH have similar aberrant effects on receptor activity. 

The three other genes implicated in the spatial clustering-based analyses included C2CD3, which 

encodes the C2 domain containing 3 centriole elongation regulator that is expressed at relatively high 
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levels in the brain. Mutations in human C2CD3 cause skeletal dysplasia, caused by defective assembly of 

the primary cilium, a microtubule-based cellular organelle involved in developmental signalling43. KIF2A 

encodes the kinesin family member 2A, which is required for normal mitotic spindle activity and normal 

brain development, most likely via its ATP dependent MT-depolymerase activity44. Like C2CD3, KIF2A has 

also been implicated to affect ciliogenesis, relating to its role in the cell cycle. KIF2A-related cortical 

development defects have been attributed to decoupling between ciliogenesis and cell cycle44. A KIF2A 

His321Asp missense mutation was identified in a subject with defective cortical development owing to 

impairment of KIF2A microtubule depolymerase activity45. Several members of the kinesin family are 

overexpressed in the brains of AD patients46, and KIF2A expression is specifically upregulated in axons, 

spinal neurons, and oligodendrocytes adjacent to spinal cord injuries47 Finally, APC encodes the 

Adenomatosis Polyposis Coli Regulator of WNT Signaling Pathway (as a negative regulator) and serves as 

a major tumor suppressor. The WNT signaling pathway plays an important role in the development of 

the central nervous system, including axonal pathfinding and synaptic plasticity, and has been linked to 

AD pathogenesis48. Aβ neurotoxicity in AD has been reported to downregulate WNT signaling49, and 

WNT signaling, in turn, has been shown to regulate β-secretase cleavage of APP50. Collectively, these 

findings indicate that inhibition of WNT signaling may play a role in the generation and neurotoxicity of 

Aβ. Thus, APC may influence AD neuropathogenesis via regulation of the WNT signaling pathway. 

In addition to these four loci, an additional five candidate regions were identified in the secondary 

analyses, based on the top meta-analysis results (P<5x10-5; Table 2b). These included LHX9, NALCN, 

CTNNA2, SYTL3, and CLSTN2. LHX9 is a LIM homeobox gene family member and is involved in the 

development of the forebrain51. This gene has also exhibited genetic association with “self-reported 

educational attainment”52. NALCN encodes a voltage-gated sodium and calcium channel that is 

expressed in neurons. Interestingly, the calcium-sensing receptor, CaSR, which has been reported to 

regulate NALCN, has been previously implicated as an important signaling molecule in AD53. CTNNA2 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.03.20225540doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20225540


16 

encodes the neural version of α-catenin (αN-catenin), a mechano-sensing protein that links cadherins 

with the cytoskeleton; as such, they are required for proper neuronal migration and neuritic 

outgrowth54. SYTL3 encodes the Rab effector protein, synaptotagmin-like 3, which plays a role in vesicle 

trafficking55, and has been genetically associated with lipoprotein (a) levels56. CLSTN2 encodes 

Calsyntenin 2, which modulates calcium-mediated postsynaptic signaling in the brain. Absence of 

CLSTN2 impairs synaptic complexes in mice57, and has been associated with episodic memory function in 

human subjects58. 

Pathway analyses based on our highlighted rare-variant-associated genes, emphasize functional roles in 

neuroplasticity, synaptic function and integrity, axonal maintenance, neuronal development, and heart 

tissue development. In contrast, genes identified through common-variant associations by GWAS have 

been more involved with pathways linked to immune-system response, lipid metabolism, and A 

deposition. This stark difference in enrichment profiles may represent an essential contribution of rare 

variants to the development of AD based more on neuronal and synaptic function. This finding is further 

substantiated by examining our SNV-associated genes and published common AD-associated genes for 

cell-specific biases in expression. We found that hippocampal CA1 neurons were significantly enriched 

for our rare signature whereas common genes from AD GWAS have primarily highlighted microglia as 

the likely primary cell type of effect (Fig. 7).  

Using whole-genome sequencing, we have performed a whole-genome global screen to search for 

association of rare variants with Alzheimer’s disease. It is noteworthy that our most significantly SNV-

associated gene, LINC00298, is non-coding and of unknown function. Furthermore, all nine regions of 

the genome we have identified to be associated with AD risk, overlap with regulatory annotations, of 

which four are significantly enriched. Thus, our study emphasizes the importance of focusing on the 

non-coding part of the genome for a better understanding of the genetic and functional basis of 

Alzheimer’s disease. 
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The methodologies applied and the results obtained are not without limitations. First and foremost, we 

note that the size (n~2,300) of the discovery sample is relatively small compared to common-variant 

GWAS in the field. This is due to the limited availability of samples (i.e. multiplex AD families) and funds 

(i.e. costs for generating WGS data are still 1-2 orders of magnitude higher than for common-variant 

GWAS which rely on microarray-based genotype calls). This increases both the type I (i.e. the chance of 

false positives) and type II (i.e. chance of false negatives) error rates of our study. We tried to alleviate 

this limitation by utilizing validation data from an independent case-control WGS dataset (NIA ADSP), 

but all of the main findings highlighted here should be considered preliminary until validated in 

additional datasets.  

Second, most variants highlighted to be associated with AD risk in our analyses are located in non-

coding regions of the genome. While this is to be expected given the proportions of coding (~2%) vs. 

non-coding (~98%) sequence variation in humans, it aggravates efforts to validate and functionally 

annotate our top findings. However, efforts like ENCODE (http://www.encodeproject.org), the NIH 

Epigenomics Roadmap Consortium (http://www.roadmapepigenomics.org/), or the International 

Human Epigenome Consortium (http://ihec-epigenomes.org/) continue to provide compelling evidence 

that an increasing fraction of disease-associated variation maps to the regions between genes, providing 

a strong argument for using whole-genome in addition to whole-exome approaches to capture the full 

rare-variant architecture underlying AD.  

Finally, unlike genetic association analyses in case-control settings, our family-based approach is robust 

against common genetic confounders due to population substructure. However, given the fact that 

more than 80% of our discovery family-based sample were individuals of European ancestry, we limited 

our replication sample to individuals of the same ancestry. This comes at the price of reduced statistical 

power which we addressed by adjusting the discovery and meta-analysis significance thresholds. As a 

result, our top findings show P-values ranging between ~0.01 and ~8x10-7, which is still almost two 
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orders of magnitude above a recommended threshold (P<1x10-8) for rare-variant-based studies in 

European-based samples59. Eventually, only the generation and analysis of additional datasets 

investigating these and other rare variants in relation to AD susceptibility will allow us to distinguish true 

from false-positive findings.  

In summary, here, we describe the first WGS-based rare-variant association study in AD, and highlight 

several novel variants and regions found to be associated with disease risk. Subsequent functional 

annotation assessments imply several molecular pathways to be relevant in AD based on rare variant 

analysis, e.g. neuronal development and synaptic integrity. This contrasts with innate immune and lipid 

pathways previously implicated by network analyses of AD GWAS based on common variants. Together 

with the results of common-variant AD risk GWAS, our study highlights several novel promising routes of 

AD research and provides new potential targets for therapeutic interventions aimed at the early 

treatment or prevention of AD. 
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Methods 

Sample descriptions. The discovery cohort was composed of two WGS familial cohorts with 1,393 

(NIMH; AD: n=966) and 854 (NIA ADSP families; AD: n=543) individuals. A subject was considered to be 

affected if he/she was included in these categories: “definite AD”, “probable AD” or “possible AD”. 

Unaffected subjects were taken from one of the following categories: no dementia (667 subjects), 

suspected dementia (46 subjects) or non-AD dementia (10 subjects). It is important to note that NIA 

ADSP families by design did not include individuals with two APOE-ε4 alleles. Since our discovery cohort 

consisted of mostly individuals of European ancestry, we used a matching subset (non-Hispanic whites 

[NHW]) from the replication cohort (NIA ADSP unrelated, n=1669). A total of 564 individuals (AD: n=307) 

were obtained with RNA-Seq data in the temporal cortex from Mayo Clinic Alzheimer’s Disease Genetics 

Studies (MCADGS60). All datasets are described in Supplementary Table 1. 

Whole-genome sequencing methods. Plated DNA was obtained from the Rutgers Cell Repository and 

sent to Illumina Inc (San Diego, CA, USA) and used to create short-insert paired-end libraries. Paired-end 

libraries are manually generated from 500ng–1ug of gDNA using the Illumina TruSeq DNA Sample 

Preparation Kit. Samples are fragmented and libraries were size selected targeting 300 bp inserts and 

sequenced using the HiSeq 2000 System. Illumina-provided BAM files were re-aligned to the human 

reference genome (GRh38) with bwa-mem61 (v0.7.7, default parameters). Reads were marked for 

duplication using samtools62 (v0.1.19). Germline variants were jointly called for each family using 

FreeBayes63 (v0.9.9.2-18) and GATK64 (v3.0) best practices method 

(https://software.broadinstitute.org/gatk/best-practices/) as part of the bcbio-nextgen workflow 

(https://github.com/chapmanb/bcbio-nextgen) before being squared-off with bcbio.recall 

(https://github.com/chapmanb/bcbio.variation.recall) across the whole cohort to distinguish reference 

calls from no variant calls. Library and read quality was assessed using FastQC (v0.10.1; 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Qualimap65 (v0.7.1). 
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Quality control of WGS-derived variant calls. We first performed individual-based quality control. Based 

on genotyping rate and inbreeding coefficient we removed three outliers in the NIMH dataset. Further 

12 duplicates and 24 individuals with wrong family assignments, as per estimated identity by descent 

(IBD) sharing, were removed as well (Supplementary Table 20). 1,393 clean individuals from NIMH were 

combined with 854 individuals from NIA and analysis was performed only on variants present in both 

datasets. This was done to ensure a consistent discovery dataset for region-based rare-variant analysis. 

Next, family-based discovery datasets were filtered for monomorphic variants, singletons, variants with 

a missingness rate higher than 5%, Mendelian errors, and variants which had a Hardy-Weinberg 

equilibrium P<1x10-8. Only variants which had a filter “PASS” in the vcf file were included in the analysis.  

In the case-control replication datasets, variant-based filtering was performed as in family-based 

datasets, i.e. monomorphic variants, singletons, variants with a missingness rate higher than 5% and 

variants that had a Hardy-Weinberg equilibrium P<1x10-8 were excluded. Only variants that had a filter 

“PASS” in the vcf file were included in the analysis. We kept only unrelated individuals of European 

ancestry, in order to closely match our discovery dataset population. Principal components were 

calculated based on rare variants using the Jaccard index66. Outliers based on principal components 

were excluded. 

External minor allele frequency reference dataset (gnomAD). We have downloaded v3 of the Genome 

Aggregation database (gnomAD)12, which included 71,702 whole genomes (32,399 non-Finnish 

European). For minor allele frequency we used the AF NFE field, which corresponds to allele frequency 

in the non-Finnish European population. Variants were considered rare, if AF NFE was less than 1% or 

more than 99%. 

Single-variant association analyses. In the family-based discovery datasets we used the FBAT Toolkit14 

to perform association analysis on variants seen in at least one informative family in combined 
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NIMH/NIA dataset. We used an offset of 0.15 which approximately corresponds to the population 

prevalence of disease. In the case-control replication datasets we performed a logistic regression (with 

option “firth-fallback”) for case/control status as implemented in PLINK 267. We included sex, age, 

sequencing center and 5 Jaccard principal components66 with standardized variance as covariates. We 

next performed a fixed-effects meta-analysis of 2 datasets. The meta-analysis was performed with the 

METAL toolkit68 with a sample-size-based weighting scheme. Quantile-quantile plots were drawn in R for 

all results and for variants with at least ten informative families. 

Spatial-clustering/region-based association analyses. In the family-based discovery dataset, we 

systematically grouped the whole-genome sequencing data into non-overlapping regions using a spatial-

clustering approach19. Briefly, regions include variants which are in close proximity to each other. We 

included only variants, seen in at least two families. After partitioning the chromosomes into non-

overlapping windows. FBAT-RV69, which is a multimarker test with minor allele frequency (MAF) 

weighting, was used to test identified non-overlapping regions in the combined family-based dataset. 

First, only rare variants were included in the analysis. Next, we performed a second run including all 

variants.  

In the case-control replication datasets, joint variant testing was performed on rare variants using the 

burden test as implemented in the SKAT package70. We next used SKAT-RC71 to incorporate all variants 

with no MAF threshold. We used the same set of covariates as in the single-variant analysis. For 

consistency, we tested the same non-overlapping regions, which were identified in the combined 

NIMH/NIA dataset. This allowed us to perform a meta-analysis of the identified regions, using Fisher’s 

combined probability test. 

Variant and regional association with genes. Disease-associated variants are often assigned to genes by 

their close proximity, where only genes overlapping or closely flanking the reported SNVs are 
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considered. The overlap-only strategy excludes other potentially causal genes within the associated 

haplotype. However, expanding gene association to include non-overlapping SNVs or regions is 

complicated by the current diversity and inconsistency of annotation for non-coding regions of the 

genome. As regulatory regions proximal and distal to a gene are becoming extensively annotated72, we 

have leveraged the functional significance of sets of cis-regulatory regions of the vertebrate genome. 

We applied The Genomic Regions Enrichment of Annotations Tool (GREAT) to leverage functional cis-

regulatory regions identified by localized measurements of DNA binding events across the genome73. 

Applied to non-gene overlap regional and SNV loci; GREAT associated additional genes to both SNVs and 

regions. 

Differential gene expression. A mixed effect linear regression was performed on the RNA-Seq output 

with Bioconductor (v3.7) using CQN74 and limma75 adjusting for clinical and technical variations. A 

multiple testing correction was applied.  

Annotation and geneset enrichment. Prioritized variants and regions were annotated for relationships 

to eQTLs (GTEX76), CpG islands, DNase hypersensitivity, RNA gene locations and RNA binding sites 

(UCSC77), enhancers, promoters, transcription start sites, transcription factor binding sites and other 

regulatory features (Ensembl78; FANTOM579), histone marks and GC-content (GWAVA80), 3D genomic 

interactions and open chromatin (3DSNP81), cell-specific enhancers (INFERNO82) and the Illumina 

bodyMap2 transcriptome (GSE30611).  

Regulatory enrichment within spatial-clustering/region-based association. To test whether the top 

regions of interest were overpopulated with regulatory annotations, we computed 103 random 

permutations per region, across the genome of the same length to count the number of overlapping 

annotations. These regions were restricted to regions with similar numbers of genes. A fisher's exact 
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test was used to compare annotations within the top leading regions against these permuted regions. 

Multiple testing correction was applied for every region x annotation that was tested.  

Cell-specific enrichments. We performed Expression Weighted Cell Type Enrichment with EWCE25 using 

mouse single-cell transcriptomic data from the cortex and hippocampus83. EWCE aims to identify the 

cellular origins of a disorder by examining where a disease-associated gene list is primarily expressed 

and testing this against a distribution obtained from 10,000 permutations of random lists. We selected 

four gene lists to be tested: the leading SNV/region-associated genes from Table 1 and 2 (n=5), SNV-

associated genes (Pmeta < 0.01; n=185), region-associated genes (Pmeta < 0.0005; n=55), and published 

common-variant AD-associated genes26 (n=32). 78% of these genes had a mouse homolog which were 

then used in the analysis. 

Functional enrichment analysis for associated genes. Functional enrichment for the SNV- and regional-

associated genes or for genes found to be co-expressed with LINC00298, was performed via the 

Metascape server84 which applies the hypergeometric test85 and Benjamini-Hochberg P-value correction 

algorithm86 to identify terms (all GO ontologies, Reactome and KEGG pathways) that contain a 

statistically greater number of genes in common with an input list than expected by chance. Enriched 

terms were filtered at an FDR <= 0.1.  

Network relationships with known AD genes. First, we set out to understand novel but direct 

relationships between genes associated with our identified variants and regions and already published 

Alzheimer’s-associated genes. These known Alzheimer’s genes were selected from a recently published 

review26 and include genes which cause familial forms of the disease (e.g. APP, PSEN1 and PSEN2) as 

well as genes which have the highest association in GWA studies3,5,9,87,88. We used the StringDB protein-

protein interaction resource89 using only identified protein-protein interactions. Using this background 

that agglomerates protein-protein interaction datasets, we identified direct (curated AD genes directly 
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interacting with our associated genes) associations in a global network which contained 22 known AD 

genes, 73 regional-associated genes and 59 SNV-associated genes (Supplementary Table 22). This 

network was reviewed for direct interactions between known AD genes and SNV/regional associated 

genes. Genes related to each other in this manner were then visualized using Cytoscape90. Genes in this 

network co-expressed with LINC00298 were highlighted when correlated in expression as defined 

according to pre-calculated correlations available at the lncHUBhub server 

(https://amp.pharm.mssm.edu/lnchub/; Supplementary Table 23). The server provides gene-lncRNA 

correlation computed from 11,284 TCGA normalized samples processed by recount240, gene counts are 

quantile normalized and the Pearson correlation is computed.  

Functional enrichment within this network was performed using the remote StringDB server linked to 

Cystoscape “String App Enrichment function”91, producing enrichments using the hypergeometric test, 

with P-values corrected for multiple testing using the method of Benjamini and Hochberg in known 

molecular pathways and GO terms as described in Frenceschini et al.92. Enriched GO/pathway terms 

were considered at an FDR <=0.05. Genes from our study and known Alzheimer’s genes coding for 

proteins directly interacting with proteins identified by genes from Table 1 and Table 2 were examined 

for common enrichment and grouped around the genes we highlighted in these tables into functional 

clusters where possible. Genes from our study or known AD genes which show protein-protein 

interaction links with Table 1- and Table 2-identified genes were grouped most closely in the common 

annotation clusters. The top GO enrichment classes (nervous system development and generation of 

neurons) were annotated to nodes using the String enrichment color palette function to produce 

highlighted node borders. Immune-related functions which showed enrichment for currently known AD-

related genes were used to group both known AD genes and regional-associated and SNV-associated 

into annotation clusters. 
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Figures 

Fig. 1. Data analysis workflow.  

 

 

 

Fig. 2. QQ plot of rare (MAF<=0.01) single-variant association results in the family-based discovery 

dataset (NIMH and NIA cohorts). Red line corresponds to all statistics, where at least one informative 

family is observed. Green line corresponds to statistics with at least ten informative families. 
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Fig. 3. Manhattan plot of rare (MAF<=0.01) single-variant association results in the family-based 

discovery dataset (NIMH and NIA cohorts). Genes which correspond to replicated variants as described 

in the workflow (Fig. 1) are highlighted.  
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Fig. 4. Manhattan plot of spatial clustering association results based on rare (MAF<=0.01) variants in 

the family-based discovery dataset (NIMH and NIA cohorts). Highlighted are genes, which correspond 

to replicated regions, described in the workflow (Fig. 1).  
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Fig. 5. QQ plot of spatial clustering association results based on rare (MAF<=0.01) variants in the 

family-based discovery dataset (NIMH and NIA cohorts). 
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Fig. 6. Network of direct interactions between highly ranked SNV and regional genes and known AD-

associated genes. Direct protein-protein relationships (blue links) between reference AD genes (red), 

Table 1 and 2 (yellow), Supplementary Table 11 and 14 (blue) protein-coding genes. LINC00298 co-

regulated expression of directly interacting genes is highlighted (turquoise border). Proteins that are in 

direct interaction with genes from Table 1 and 2 have been grouped where possible according to shared 
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GO biological processes (green ellipse). Proteins that may not be directly interacting but are found 

commonly enriched in immune-related processes are grouped (pink square). Proteins with dark green-

colored borders are enriched in GO:BP nervous system development while a navy blue border is 

enriched for generation of neurons. Gene-gene relationships are listed in Supplementary Table 22. The 

network can be interactively explored via the NDEX project website (https://tinyurl.com/y6p9xjlw). 
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Fig. 7. Cell-specific enrichment results from the EWCE tool. We compared genes identified in our rare-

variant analysis to common variants published in AD26 and which cell type each is significantly enriched 

in. Zero represents the mean expression in each cell based on 10,000 permutations of gene lists of the 

same size. The data for this figure can be found in Supplementary Table 18.  
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Main tables 

Table 1. Top single-variant AD association results. a, Single-variant AD association results with P<0.0005 (P<0.0006) in the discovery dataset and 

consistent (i.e. P<0.05 and same direction of effect) association in ADSP NHW WGS replication dataset. b, Single-variant AD association results 

with consistent (i.e. P<0.05 and same direction of effect in discovery and replication dataset) association at P<0.0005 after meta-analysis. 
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2 7933102 rs147918541LINC00298 0.00466 0.0072 A G 0.005 -1.98 0.04776 4 0.00839 -3.57588 0.00035 1669 -- -3.668 0.00024 7 0 0 0 0.33 Intronic Not testedMostly expressed in brainDigestive tissueCL:0000576_monocyte,CL:0000775_neutrophil

15 3.7E+07 rs147002962C15orf41 0.00893 0.00694 G C 0.01 2.048 0.0406 7 0.00869 3.48814 0.00049 1669 ++ 3.613 0.0003 6 0 0 0 0.46 Intronic No changeMostly expressed in heart0 CL:0000540_neuron,CL:0002620_skin_fibroblast

15 3.7E+07 rs141228575C15orf41 0.00892 0.00689 T C 0.009 2.048 0.0406 7 0.00869 3.48814 0.00049 1669 ++ 3.613 0.0003 6 0 1 0 0.43 Intronic No changeMostly expressed in heart0 CL:0000540_neuron,CL:0002620_skin_fibroblast
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Table 2. Top spatial-clustering-based AD association results. a, Replicated spatial-clustering-based AD association results for regions showing 

P<0.0005 in the discovery dataset. b, Top spatial-clustering-based AD association results based on meta-analysis (Pmeta < 5x10-5 and Pdiscovery < 

0.05). The PRKCH region was identified in both arms of the regional study, hence appears in both: a and b. Overlapping/GREAT-assigned gene did 

not differ from the nearest gene assignment. *significantly more annotations than expected by chance after correcting for multiple testing. 
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14 14:61176726:A:G14:61188023:C:GPRKCH 53 2.51E-05 53 0.021069 8.17E-06 Upstream Sig. lower Mostly expressed in white blood cells86 6 14 10 0 61* 0 9 81 0 17

11 11:74025114:T:C11:74031365:C:TC2CD3 47 8.36E-05 42 0.045428 5.12E-05 Intronic and exonicNo change Ubiquitous expression0 3 0 0 0 15 0 2 12 0 8

5 5:61972635:T:C5:61975793:G:AKIF2A 13 0.000169 16 0.046496 0.0001 Upstream No change Mostly expressed in white blood cells and brain0 0 0 0 0 0 0 0 4 0 1

5 5:112819545:A:G5:112827357:A:GAPC 25 0.000337 29 0.043747 0.000179 Intronic and exonicNo change Mostly expressed in brain0 5 0 10 0 0 0 0 15 0 5

14 14:61176726:A:G14:61188023:C:GPRKCH 53 2.51E-05 53 0.021069 8.17E-06 Upstream Sig. lower Mostly expressed in white blood cells86 6 14 10 0 61* 0 9 81 0 17

1 1:197917553:C:A1:197929226:C:TLHX9 44 0.007622 39 0.000131 1.48E-05 Intronic and exonicNot tested Mostly expressed in testes429* 24 1 0 0 104 15* 31 117 2 15

13 13:101143359:A:G13:101164882:T:CNALCN 106 0.002585 134 0.000427 1.63E-05 Intronic and exonicNo change Mostly expressed in brain0 2 2 26 1 0 19* 73* 31 0 18

2 2:79853746:G:A2:79856892:C:TCTNNA2 15 1.22E-05 18 0.154028 2.67E-05 Intronic No change Mostly expressed in brain0 0 1 6 0 0 0 19 7 0 3

6 6:158677635:G:A6:158683441:G:ASYTL3 29 0.017664 28 0.000116 2.9E-05 Intronic and exonicNot tested Ubiquitous expression0 0 0 0 1 0 0 0 6 0 3

3 3:140398927:A:G3:140449630:G:ACLSTN2 233 1.19E-05 273 0.196429 3.27E-05 Intronic and exonicNo change Mostly expressed in ovaries0 9 7 32* 2 57 0 16 40 0 44
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