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ABSTRACT 

CovidSIMVL is an agent-based infectious disease modeling tool that is designed specifically to simulate 
localized spread of infectious disease. It is intended to support tactical decision-making around 
localized/staged re-institution of pre-pandemic levels and patterns of social/economic/health service 
delivery activity, following an initial stage of pan-societal closures of social/economic institutions and 
broad-based reductions in services. 

By design, CovidSIMVL supports the generation of dynamic models that reflect heterogeneity within and 
between a network of interacting localized contexts. This heterogeneity is embodied in a hierarchically 
organized set of rules. Primary rules reflect the pathophysiology of transmission.  Secondary rules 
(“HazardRadius” and “Mingle Factor” in CovidSIMVL) relate transmission to proximity and movement 
within physically demarcated and relatively contained spaces (“Universes”). Tertiary rules (“Schedules”) 
relate probabilities of transmission to movement of people between a network of localized contexts (a 
CovidSIMVL “Multiverse”).   

This report focuses mainly on calibration of secondary rules. To calibrate the HazardRadius and 
MingleFactor parameters, growth curves were generated with CovidSIMVL by setting different 
configurations of values on those two proximal determinants of viral transmission. These were 
compared to the characteristic shapes of curves generated by equation-based compartmental models 
(e.g., SEIR models) that fit different real-world datasets embodying different reproduction numbers (R0).  

By operating with parameter values in CovidSIMVL that generate “real-world” growth curves, the tool 
can be used to produce plausible simulations of localized chains of transmission. These include 
transmission among different groups of persons (e.g., staff, patients) who are co-located within a single 
setting such as a long-term care facility. The Multiverse version of CovidSIMVL can be used to simulate 
localized cross-over transmission among arrays consisting of both unaffected and impacted contexts and 
associated sub-populations, via agents who interact within and across arrays of contexts such as schools, 
multigenerational families, recreational facilities, places of work, emergency shelters for homeless 
persons, or other settings in which people are in close physical proximity. 
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INTRODUCTION 

Context – why/when are agent-based models fit for purpose? 

Ogden1 reviews two streams of activity within the Public Health Agency of Canada (PHAC) to assess the 
impact of different non-pharmaceutical interventions (NPIs) on spread of SARS-CoV-2. These two 
approaches, which Ogden and associates characterize as complementary, consist of equation-based 
compartmental models, and agent-based models. 

The compartmental equation-based approaches typically operate on the basis of a “mass action 
incidence” model that assumes all individuals within a population make contact with one another at an 
identical rate, and have identical probabilities of transmission to any other member of the population 
per unit time. This assumption may be reasonable when the number of infective persons in a population 
is large and cases are geographically well-distributed.2,3 To introduce some measure of sub-population-
level heterogeneity, meta-population variants of equation-based compartmental models, including 
“patch” variants,4 may capture some of the structural inhomogeneity in contact patterns that reflect 
“real-world” features, e.g., children in schools. However, use of compartmental models to inject local 
realism into models of infectious disease transmission becomes challenging at the level of computation 
and estimation, when the number of units (patches) associated with subsets of observations grows in 
order to incorporate even a coarse level of local topographical realism into models, and when the 
network of connections between patches grows in order to capture the dynamics of movement 
associated with non-localized secondary spread of the infection.5  

Compartmental equation-based models describe/predict rates of change over time and are well-suited 
to the task of motivating policy/regulatory bodies to institute large-scale protections necessary to  
mitigate risks, when the conditions necessary for continued spread are well distributed throughout the 
population. They are particularly relevant when reproduction numbers are relatively high (e.g., when 
rates are increasing exponentially) at the same time that the infection is distributed in a manner that 
crosses multiple population/clinical demographics and geographical boundaries. 

However, Brauer, as well as Ball et al.6 note that compartmental models are challenged to capture the 
network structures that govern transmission in the early stages of a pandemic, when cases are few in 
number, and hence sparsely distributed in the general population. In those cases, compartmental 
models may yield inaccurate estimates of likely spread.7 

As well, if a model operates on the basis of a mass action incidence assumption (of homogeneous 
spread) then the model can only yield recommendations that relate to the population treated as a 
homogeneous entity. Where a service organization such as a regional health authority, or a 
regulatory/policy making body is setting out tactics for staged or localized restart of some but not all 
services, employing potentially different levels of protection in different settings, a model that works 
from the mass action assumption is inherently limited in its ability to project effects of different 
constellations of localized protections. If the model does not contain elements that relate to entities 
that are impacted by localized strategies or tactics to mitigate spread – or to reduce financial impacts of 
possible mitigations – then the model does not support decision-makers in rendering transparent the 
basis for measures that are being encouraged, promoted and possibly enforced. 

Stated in slightly different terms – equation-based compartmental models, subject to mass action 
assumptions, are designed to reproduce historical data and predict future trends based on the systems 
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of equations that describe those historical data.  Agent-based models are designed to describe 
processes that take place within networks and give rise to those rates. This is illustrated graphically in 
the agent-based modeling stream of PHAC. 8  As such, these types of models can perform a distinctive 
function for decision-makers who have a delimited but direct span of control over networks of services 
associated with networks of movement of people through those services. An example would be a health 
region that delivers a broad array of secondary and tertiary services and must reconcile need for 
delivering health services with the attendant risk for healthcare associated transmission. An agent-based 
approach becomes particularly relevant when such a system is impacted by (and impacts on) local 
surrounding contexts in which risk is differentially impacted by selective/phased restart strategies that 
apply to various key entities (e.g., schools, restaurants/pubs, etc.) that cover the transmission 
topography. 

Motivation 

CovidSIMVL is an agent-based model that can simulate transmission within a single bounded location (a 
“Universe”) or it can simulate transmission in a network of interacting universes (a “Multiverse” instance 
of a CovidSIMVL simulation).  It is intended to achieve the following objectives: 

1. More accurate determination of the likely progress of epidemics within scenarios consisting of a 
delimited, heterogeneous array of Universes (a Multiverse). This progression from one or a small 
number of infective persons to agents located in Universes within a Multiverse simulation is 
expressed in terms of the distribution of chains of different lengths that share common 
ancestors and the topological structure of the network of connections between chains. 
Constructs such as “superspreader events” would be expressed in terms of the topological 
features of transmission chains that emerge over iterations within CovidSIMVL trials.9 Different 
mixtures of chains, and the timing and localized contexts associated with the emergence of 
chains of different length carry different implications for risk mitigation.10,11,12 

2. More precisely timed and targeted testing in a network of interacting Universes, based on 
relative risk for transmission associated with component Universes, and based on lower/higher 
probability chains that span Universes within a Multiverse simulation. This is accomplished in 
CovidSIMVL via the “Risk-per-Hour” (i.e., hours-to-next-infection) metrics.  Universes with 
smaller values of this metric, or Universes that could achieve high degrees of adherence to 
protections that increase hours to next infection, would be those locations likely to benefit most 
from proactive testing and contact tracing 

3. Clearer understanding of the dynamics of spread within complex interacting systems. The 
objective is to expose Universes (spaces) where most transmissions are taking place, and those 
which are least active in terms of transmissions. 

4. Generate sets of results associated with static configuration of key parameters, where variance 
reflects stochasticity at the level of movement and transmission within Universes. Any observed 
outbreak, or any simulated outbreak incorporating elements of stochasticity, represents a single 
path profile for all possible paths conditioned by the pathophysiology of the infective organism 
and the local and population-based terrain that the outbreak traverses.13 The objective is to 
enable mathematical modeling of these results, thereby associating probabilities with outcomes 
associated with a series of trials employing the same parameters to depict scenarios. This is 
achieved via production of a version of CovidSIMVL that can be called as a function within R, in 
order to generate the requisite datasets and distributions.  

5. Provide a basis for generating estimates of the size of undetected fractions of infected 
populations based on distributions of transmission chains of different lengths in the population.  
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Better estimates of the total size of the infected population enables better estimates of key 
quantities such as Infected Fatality Rates.  

METHODS 

CovidSIMVL – Open-Source Agent-Based Modeling Tool 

CovidSIMVL is a short-hand reference to “COVID-19 Simulation, Viral Load Version”. This is an agent-
based infectious disease modeling tool that is configurable to generate products that characterize 
infection spread in local contexts.14  

CovidSIMVL is an open source public domain system freely available under the GNU Open License 
Framework, and can be found at www.github.com/ecsendmail/MultiverseContagion. It is written in 
Javascript and runs in most modern browsers such as Chrome, Edge, Safari and Firefox. 

The repository named above contains the Handbook in the directory /docs, which contains step by step 
instructions for running CovidSIMVL on the browser.  

Different trials described in this report require different .csv files located in the above-mentioned github 
repository, in the /data directory:  

• “population.csv”, “FiftyAgents.csv”, and “HundredAgents.csv” – to create populations of 
susceptible agents for trials 

• “VL1.csv”, “VLfive.csv” – to insert different numbers of infective agents into trials. 

These files need to be cloned or copied to the user’s local directory to run the simulations set out in this 
report. 

Readers who wish to reproduce the trials set out in this paper should be aware that CovidSIMVL is an 
evolving system. For this reason, the README.md file should be reviewed before attempting to run the 
trials set out in this report. Note that the current version on github.com/ecsendmail/ 
MultiverseContagion has a parameter setting for MingleFactor (described later in this document) which 
differs from this paper by an order of magnitude. For example, what is shown in the Tables as 1.10 will 
need to be entered as 11 in newer versions of CovidSIMVL. 

Configuration of CovidSIMVL 

Primary, Secondary, Tertiary Rules 

CovidSIMVL enables model calibration by employing a hierarchically organized array of rules, to support 
the injection of biological, behavioural and local contextual heterogeneity/realism into models: 

1. Primary – rules/parameters that embody physiologically ‘hard-coded’ features of the viral 
spread, such as usual incubation period or duration of infectivity.  

i. These rules may be modified to reflect differences in the response of individuals or 
clinical demographics to the infectious organisms, where those differences impact 
on key timings in the models. For example, if severity of illness is associated with 
viral load over time, primary rules can be adjusted to reflect different periods of 
time for key phases of viral transmission (incubation, infectiousness).  

ii. These rules are designed to capture the pathophysiologically necessary conditions 
for the possibility of infection. 
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2. Secondary – rules/parameters that determine whether/when a susceptible person becomes 
infected, or when an infectious person transmits to another person. For example, different 
degrees of physical proximity carry different risks for viral transmission.  

i. The CovidSIMVL HazardRadius and MingleFactor parameters function as a 
secondary rule that places risk for transmission within a spatial frame of reference.  

ii. By analogy, these secondary rules may be thought of as the proximal determinants 
(in both the causal and geospatial sense) of infectious disease transmission. 

iii. Secondary rules, together with primary rules, constitute necessary and sufficient 
conditions for the possibility of transmission.  

iv. Stochasticity enters into the simulations through these secondary rules and 
associated probability distributions to which they are keyed. 

v. However, these secondary rules do not determine the likelihood of transmission 
associated with movement of people between contexts. These are embodied in the 
Tertiary rules. 

3. Tertiary – rules/parameters that prescribe patterns of behaviour for agents between local 
contexts.  

i. These bias odds for or against cross-over transmission from one context to another. 
As such, these rules determine dispersion of the infection beyond the boundaries of 
a given local context.   

ii. The CovidSIMVL schedules describe movements of agents between local Universes. 
They determine the manner in these local Universes interact to generate the 
dynamic of viral spread in a Multiverse model – see Appendix I.   

iii. These tertiary rules may be thought of as the “distal determinants” of infectious 
disease transmission, in the sense that they condition the probabilities that 
transmission associated with the proximal determinants are actualized by a group 
bounded by a Multiverse scenario. 

Setting population size to reflect saturation effects. 

The agent-based infectious disease simulation tool CovidSIMVL is based on a conceptual framework 
originally developed to describe biological systems, where two species interact in such a way that the 
actions of one group of agents (e.g., predators) results in a reduction in the size of another population or 
resource (e.g., prey). These types of models were generalized by Kermack & McKendrick15 in the 1920’s 
to provide mathematical descriptions of infectious disease transmission – where persons who carry an 
infection impact on populations of persons who are susceptible, in such a way that the number of 
infective or infected and recovered or deceased persons increases, while the number of susceptibles 
diminishes.  

In the case of CovidSIMVL, this dynamic can be embodied in the generation of simulations where the 
number of susceptibles at the point of initialization is small enough, conditional upon settings for  
MingleFactor and HazardRadius, that saturation effects become important determinants of spread, or 
impacts of interventions that are introduced over time, e.g., vaccines.16 This is reflected in some of the 
simulations appearing in this report that self-extinguish. 

CovidSIMVL Trials 

Each set of parameters in CovidSIMVL represents a specific starting state. The stochastic nature of agent 
movements, viral transference, and initial spatial arrangement of the population makes each such trial 
unique, within confines set by the range of values that a given parameter can assume. The allowable 
ranges of values for parameters for a given series of trials locates a stochastically-varying set of results 
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for those trials into a class that has statistical properties that characterize the likelihood of different 
outcome states.  

Iterations within Trials 

Each trial entails a number of iterations, each of which culminates in a description of number of key 
quantities, namely, the numbers of Susceptibles, Incubating Persons, Asymptomatic Infectives, 
Symptomatic Infectives, and Inerts (i.e., no longer impacted by  close proximity to any other agents by 
virtue of having recovered or died or been effectively quarantined). Changes in those quantities over 
time reflect the dynamics of spread of the infectious organism and its carriers within the contexts built 
into the model.  

The duration of the iterations can be set within a series of trials. For example, the duration could be set 
to an hour, which is useful when modeling dynamics that are associated with changes to agents within a 
24 hour period, e.g., students spending a portion of the day in school, and a portion of the day at home. 

A duration could be set for a day if the intention is to look at changes in rates over the course days, and 
there is no need or interest to factor in and portray changes at a more granular level 

Stochasticity in CovidSIMVL, Reproducibility of CovidSIMVL trials 

CovidSIMVL is a simulation program based on stochastic Monte-Carlo probabilistic generations of agent 
moves and viral dynamics in each generation. Each simulation is seeded with a base value for 
HazardRadius. However, for each generation (iteration) within a given run, this radius changes 
stochastically from a base value, according to a given agent’s viral load. As well, movement of agents 
within a local context over the course of generations is treated by CovidSIMVL in the MingleFactor as a 
random walk keyed to a Pareto distribution.  The proportion of the local arena covered by random walks 
of the agents together determine the likelihood of contact between agents. The positioning of agents 
(also stochastic) determines the specific sequence of transmission from one agent to another.  

Stochasticity in CovidSIMVL is located within changes to initial parameter values used to produce a 
simulated outbreak that unfolds over the course of several iterations.  As such, multiple simulations for 
a given set of initial parameter values will not produce exactly the same results.  

In order to glean information about the distributional characteristics of outcome measures (e.g., 
number of iterations to extinction of spread), multiple trials would need to be run. The calibration trials 
appearing in this report are intended to demonstrate that scalar values on key parameters can be set to 
values that reproduce a range of growth curves associated with different R0 values. Work is underway to 
determine what the underlying distributions look like for different sets of parameter values for 
populations of different sizes, moving between different Universes in a Multiverse simulation.  

Calibration  

Approach 

Calibration of CovidSIMVL occurs at three levels, reflecting the three levels of rules that together 
determine the outcome of a simulation, subject to the stochasticity built into the model. 

1. Primary Rules – as detailed later in this document - these are calibrated to published 
information about differences in viral load associated with different phases in the course of the 
infection within an individual. Agents within/across Universes can be recalibrated should new 
data highlight different levels/periods of infectivity for different cohorts, e.g., children below the 
age of 10 in school, children above the age of 10 in school, etc.  
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2. Secondary rules – these rules operationalize a physical model used by CovidSIMVL to simulate 
spread of infection among agents. This physical model is embodied in two scalar quantities - 
HazardRadius and MingleFactor. The strategy for their calibration entails systematic variation of 
values on these two parameters to determine which combinations of values produce results 
that conform to the curves generated by equation-based models with the reproduction number 
R0 set to values <1, between 1 and 2, and greater than 2.  

a. HazardRadius – reflecting degree of infectiousness.  
i. This is a joint function of viral load, mechanism of transmission, e.g., fomite 

transmission, droplet (projectile) transmission, aerosol transmission, and 
physical proximity.   

ii. Physical proximity is a function of density of persons within a space and 
movement within the space.  

iii. HazardRadius can also be adjusted in a series of simulations, or midway through 
a set of iterations within a trial, to reflect different NPIs, such as physical 
distancing and/or wearing masks. For example, a lower value for HazardRadius 
could be set, either at initiation of a trial or midway through a simulated 
outbreak, to reflect a context where people are physically distanced, or 
functionally ‘distanced’ by wearing masks.   

iv. The HazardRadius is a single scalar quantity that can be adjusted in the 
simulation engine to reflect the joint contribution of these factors to the 
potential for viral transmission to occur. 

b. MingleFactor – this reflects movement within a space of a given size and density.  
i. It is set to reflect only movement, not the context within which the movement 

takes place. For example, MingleFactor for homeless persons in a congregate 
housing situation (e.g., an emergency shelter) would be set at a comparable 
level to persons in a pub. It would be set to a lower level for persons in a large 
grocery store, where density is lower.  

ii. MingleFactor is expressed as a single stochastically varying scalar quantity. 
3. Tertiary rules – these are embodied in schedules that describe movement of agents over 

specified periods of time across component Universes that collectively constitute a Multiverse 
simulation.  

i. They are intended to reflect the movements and situations of people in the real 
world. 

ii. As well, Universes need to be seeded with initial values for numbers of infective 
persons. To the extent that these reflect real rates of infection over time within 
arrays of real-world contexts, e.g., children in elementary school settings, parents 
working in intensive care units, volunteers working in homeless shelters, the 
simulations will acquire more/less resemblance to real-world risk profiles.  

iii. In the Multiverse version of CovidSIMVL, it will be important to capture relative 
rates of real-world infection in multiple locations in order to generate realistic 
estimates of where greater/lower levels of risk are concentrated.  

Calibrating HazardRadius and MingleFactor to R0. 

In standard epidemiological studies of contagions, R0 is the number of successful transmissions to 
susceptibles by infectious agents within the duration of infectivity of that agent.  

R0 is estimated in equation-based modelling to reflect changes in the total number of identified cases 
within the population over time. Agent-based models work differently. They start with events associated 
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with individual agents interacting with other individual agents. They count events and generate 
aggregate results from information that starts at the level of individuals who have properties that play 
out in one or more contexts. 

CovidSIMVL, as an agent-based model of viral transmission, counts contacts and successful 
transmissions for each infective agent. The Multiverse version of CovidSIMVL counts chains of 
transmission associated with index cases. Within this agent-based paradigm, the reproduction number is 
seen as a property of the individual interacting in one or more contexts in a manner that engenders risk 
or protects from transmission. The model can supply a point in time R0 value associated with component 
locations or for a collection of locations that are bound together by people whose movements span the 
collection of contexts. 

The calibration question that arises for CovidSIMVL can be expressed as follows:  for what range of 
values do parameters such as MingleFactor and HazardRadius produce curves that have the same shape 
as compartmental model (equation-based) curves reflecting values of R0 falling in three ranges: 

1. R0<1 – virus is extinguishing. 
2. R0>2 – protective measures are failing to mitigate the inherent potential for each person to 

spread the infection to more than one person, given prevalent patterns of behaviour and the 
pathophysiology of viral transmission. This manifests as exponential growth. 

3. R0>1 but < 2 – dynamic equilibrium when there remains a reservoir of susceptible persons 
interacting with infective persons, but transmission is being held in check by various mitigations 
such as social distancing, infrequent mingling, the wearing of masks, reducing time indoors, etc. 

We have used the following parameters to run these trials: 
1. The population size. Because CovidSIMVL operates within Universes of finite size, this 

population size is related to density. 
2. The HazardRadius of the agents (uniform to start with at 2, 3, 4 and 5, and then varying 

stochastically). 
3. The MingleFactor (degree of activity) of the agents: individually they are pre-set to 3, and then 

these are modified stochastically by a universal MingleFactor for the space, which modifies the 
activity of the individual as a product. That is, the final MingleFactor of an agent is the 
(individual MF) x (Universal MF). 

Outcomes 

For the material presented in the remaining portion of this document, we have run a series of trials with 
different parameter settings, to obtain two sets of outcomes: 

1. For different combinations of HazardRadius and MingleFactor - the value of R0 at the time of the 
termination of a trial. 

2. The values of the Critical Exposure Times in the deciles 1 to 5 to reflect rates of infection 
(detailed in Results section in the discussion of “Risk per Hour”).  

RESULTS 

Calibrating Primary Rules – temporal dynamics of infection within an agent 

The Primary rules built into CovidSIMVL govern the temporal dynamics of emergence of infectivity 
within an agent. These temporal dynamics are keyed to changes in the viral load within a 
contacted/infective/recovered person over time. Timings for incubating/infective/recovered periods are 
based on a paper published by Xi, He et al.17, as shown in Figure 1.  
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Figure 1.  Configuring Primary Rules – Temporal Dynamics in Viral Shedding 

 

 
 

Temporal dynamics can be recalibrated should new data highlight different levels/periods of infectivity 
for different cohorts, e.g., children below the age of 10 in school, children above the age of 10 in school.  
 

Calibrating Secondar Rules – HazardRadius and MingleFactor 

Sample CovidSIMVL trial  

For the simulation depicted in Figure 2, the .csv files used are “2020.08.23HundredResOneU.csv” and 
“VL5.csv”, also found in the directory /data in the github repository. The Hazard Radius was set prior to 
the run (see Handbook) to 15, and the MingleFactor left unchanged at 10, with an initial set of five 
transmitters. 

Graphical conventions used to depict HazardRadius and MingleFactor 

HazardRadius - because risk for transmission varies inversely as a function of distance, larger values of 
HazardRadius are used to characterize settings in which people are in closer physical proximity. In 
CovidSIMVL, this is reflected in the size of circles representing agents. See Figure 2, below. The density 
of circles within the display reflects the distribution of agents within a field of finite dimensions.  

MingleFactor – each iteration of CovidSIMVL produces a graphic depiction of the current state of the 
progress of an infection in one or more Universes.  A series of such depictions of iterations within a 
single simulation captures the dynamic of spread. These dynamics are reflected in the distribution of 
agents in different stages of infectivity in Figure 2. The uneven spacing reflects stochasticity of agent 
movement within the space, since the simulation is seeded with all agents evenly dispersed. 

Graphical conventions used to depict Agent States in CovidSIMVL visualizations.  

Each agent can be in one of the following states at any given point in time:  
Green = Susceptible  
Yellow = Exposed and incubating 
Blue = Aymptomatic or undetected but infective 
Red = Symptomatic (detected) infective 
Orange = Inert (e.g., recovered and assumed no longer infective; deceased; quarantined).  

A HazardRadius of 15, together with a MingleFactor of 10,  values will generally produce a rapidly 
spreading infection in CovidSIMVL that will affect all or almost all persons within a given space. For the 
example in the illustrative run depicted in Figure 2, 63% of the 100 Susceptibles were infected after 7 
iterations. Over the course of the next 7 iterations, the remaining number of Susceptibles had fallen to 
7%. Over the course of the next 7 iterations, the number of Susceptibles was reduced to 3%.  After 39 
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iterations 100% of the Susceptibles were infected. As will be shown in the following material, when 
different values are assigned to parameters, the simulated outbreak may self-extinguish before all 
Susceptibles have been infected.  

Figure 2. Single Universe Simulation, 63% infected after 7 iterations, 93% after 14 iterations, 97% after 
21 iterations 

 

Outcome Measures – Calibrating HazardRadius and MingleFactor to R0 Values 

The R0 trials were performed by using a population of 100 identical agents, with a single initial 
transmitter, and Hazard Radius and MingleFactors set as per Table 1. The trials were run either until 
50% of the agents were still surviving (Green) or the trial self-extinguished. At that point, the R0 value 
was recorded.  

The CovidSIMVL simulation has the capacity to record every single transmission that an infective agent 
produces until the transmitted becomes inert (from Red symptomatic to Orange inert), about 10 days 
after onset of symptoms. Therefore at the end of the trial, the total number of transmissions by the 
Inerts, averaged, is the estimate of R0. The .csv files used for these trials were “HundredAgents.csv” and 
“VL1.csv” found in /data directory in the repository. 

Table 1 shows a structured series of trials with variation in HazardRadius (Y axis) and MingleFactor (X 
axis). Cells contain R0 values at the end of the trials. Note in this table that there are specific ranges in 
which combinations of HazardRadius and MingleFactor produce epidemics that terminate with the 
population all infected, for which we report R0 values. For HazardRadius 4 and 5, we do not go beyond 
MingleFactor values that produce R0 > 10. 

Table 1.  HazardRadius and MingleFactor for calibration trials 

 

The corresponding graph for the trials as set out in Table 1 is displayed in Figure 3. 

The important observations in Figure 3 are: 
1. For different HazardRadius values, the values of R0 falling between 1 and 2 (black and red dotted 

lines) are different for the distinct MingleFactors. For example, most values of R0 for 
HazardRadius of 5 are greater than 2 when MingleFactor is greater than 0.5. 

P=100

Radius MF 0.5 MF 0.6 MF 0.7 MF 0.8 MF 0.9 MF 1.0 MF 1.1 MF 1.2 MF 1.3 MF 1.4 MF 1.5 MF 1.8 MF1.90 MF 1.95 MF 2.0 MF 2.1 MF 2.2 MF 2.3 MF 2.4 MF 2.50

Radius 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.8 1.9 1.95 2 2.1 2.2 2.3 2.4 2.5

Radius 2 1 1.14 0.625 0.86 1.775 1.56 1.79 1.32 2.47 2.38

Radius 3 1.34 1.86 2.01 1.6 1.94 2.26 3.29 3.04 4.11 3.38 4.14 2.53 5 3.64

Radius 4 1.75 2.09 1.96 2.22 1.17 2.59 2.6 4.25 8.8 10.67 9

Radius 5 1.67 2.49 2.04 3 2.36 2.58 3.75 6.83 4.25 5 8.67 7.75 13
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2. For HazardRadius = 2, the values of R0 are consistently below 2, and for MingleFactor < 1.8, the 
values of R0 are < 1. Assigning these values to HazardRadius and MingleFactor results in trials 
which terminate before the target of 50% infected. 

3. For each value of HazardRadius, the starting point at which R0 is meaningful is different. This is 
because, below these limits, the simulations terminate very early or do not proceed at all, that 
is, no contacts occur if the entities are very small and the movement is very small. 
 

Figure 3. R0 in relation to HazardRadius and MingleFactor.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Estimates of Risk per Hour (“RPH”) 

The results for calculating Risk per Hour and for the derivation of Transmission Trees are based on the 
ability of modern browsers to have a console.log, into which CovidSIMVL reported each transmission of 
the virus from one Named Agent to another Named Agent at the time (iteration) in which the 
transmission occurred. This time series forms the basis of the calculations of RPH and Transmission 
Trees. 

A given trial may be set up to iterate until values are produced for a series of outcomes or threshold 
states: 

1. The first 10% of agents newly infected 
2. The point at which 20% of agents are infected 
3. The point at which 30% of agents are infected 
4. The point at which 40% of agents are infected 
5. The point at which 50% of agents are infected 

 

RO in relation to HazardRadius and MingleFactor R0 in relation to HazardRadius and MingleFactor 

MingleFactor Values 
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Note that for certain configurations of parameters, a particular trial may end before a threshold is 
reached. For example, the trial may end after only a few transmissions if there are no longer any 
infectious persons within the population specified for the trial. In other words, herd immunity is 
achieved in these trials before all persons have been infected.  

We create the metric for the 10% threshold (“10% RPH”) as follows: we track the number of generations 
in the trial to reach 10% of the population as Newly Infected. For populations of 100, the number would 
be 10 new infections. If this took 100 generations, and the duration for each generation is 1 hour, then 
we have the following: 

- The average number of generations for each newly infected = 100/10 = 10 generations. 
- Within the first 10 new infections, the average span between infections is 10. 
- The risk is 1/10 that there will be an infection in a generation in an hour in this time segment. 
- The Risk per Hour (RPH) is defined as the inverse – i.e., 10. 
- The larger the value for RPH, the lower the chance that there is an infection in an hour (a 

generation). 
- The smaller the value for RPH, the more likely an infection will occur in the hour. 
- With the progression of a trial, the RPH can be increasing or decreasing. This reflects a 

combination of an increase in the number of infectives and their dispersion within a finite space 
causing RPH to drop), together with saturation effects (causing RPH to rise). 

- A falling RPH is an accelerating epidemic, while a rising RPH shows a decelerating epidemic. 
 
The same procedure is employed to generate RPH metrics for 20%, 30%, 40% and 50% to capture the 
number of generations the trial required to reach those levels of infection.  

Consider, for example, a trial that was set up to terminate as Newly Infected = 50%. At that point, the 
number of generations required to reach each interim/final goal state is recorded, as well as R0 at that 
point. The trials record appears in Table 2. For the data in this table, the Hazard Radius was its default 
value of 5, and the same “HundredAgents.csv” and “VL1.csv” files were used, with MingleFactors set by 
the user at run time as shown. These data produced the graph in Figure 4, although the data for 
MingleFactor 30 was not included in the Table2. 

Table 2. RPH values for different targets , holding HazardRadius constant and varying MingleFactors 

 
 
In Figure 4, each line represents a different value of MingleFactor. Recalling that lower RPH values 
represent infections spreading at a higher rate per hour, the results appearing in this figure show that as  
MingleFactor rises, the epidemic progresses more rapidly as reflected in lower RPH values.   

In this figure, the leftmost set of points, for the 10% decile, shows that a MingleFactor of 1.0 produced 
an RPH of 32.20, monotonically decreasing to and RPH of 3.30 (hours between infections as 
MingleFactor increases to 30.     

For each line, as we advance in deciles along the trial, the values of RPH continue to fall. This indicates 
that the epidemic is accelerating (lower hours between infections) as it progresses. This is despite the 
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removal of Susceptibles due to transmissions, which shows that as the epidemic progresses, the ratio of 
transmitters to Susceptibles continues to increase. 

The dynamics depicted in Figure 4 are keyed to a HazardRadius of 5 and a range of MingleFactors. 
Holding the range of MingleFactors constant but reducing the HazardRadius to 4 produces a different 
set of results, as depicted in Figure 5.  

In this figure, the lines for MingleFactor 0.80 and 0.90 fall to the second decile and then have upward 
slopes. This indicates that the values of RPH are rising as the trials progress.  

Figure 4. HazardRadius = 5, Rate per Hour among 1st…5th deciles for varying MingleFactors 

 
 
This rising RPH means that as the epidemic progresses, new infections occur more slowly. As such, this is 
the sign of an epidemic that is headed to self-extinction at best, and stability at worst. 

High MingleFactors produce higher Risk per Hour metrics, because the agents are more mobile, and 
they are more likely to make contact in any particular generation within the model.  The Susceptibles 
that are contacted and transform into infections diminish the total number of Susceptibles in the 
starting population and add to the number of infectives. This results in a greater effective density of 
infectives within the population, and greater risk for any of the uninfected (Susceptible) persons.  

Where the decline is steep in Risk per Hour, we would expect R0 to be large, and where the Risk per 
Hour increases with deciles, we would expect R0 to remain within the range of 1-2, depending on 
number and effective proximity of available Susceptibles and the ‘effectiveness’ of protections as 
reflected in the parameters. In the case of a steep decline in Risk per Hour, the range for R0 values could 
drop below 1 if the rate of new infections per agent drops below a critical value related to their duration 
of infectiveness. 
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Figure 5. HazardRadius = 4, Risk per Hour among 1st…5th deciles for varying MingleFactors 

 
 
These trials have been set to run at hourly intervals for 24hrs per day. As such, with CovidSIMVL, we can 
model spread in which the same people have different transmission risk profiles depending on where 
they are located at different times during the day.   

Take the example of a classroom, which has a student in it for 6 hrs a day. If the Risk per Hour is 30, or 1 
in 30 hours, this might be optimistically interpreted to be 5 days at 6 hours/day with the risk being 1/30 
per hour for an infection to take place. In 30 hours, we will get ONE infection, from this population. 

By contrast, if the Risk per Hour for that student in a different setting is 6, or 1 in 6 hours, this might be 
interpreted to be 1 infection per 6 hours of classroom time (1 school day), with a risk per hour of 1/6.  

DISCUSSION 

Evaluating Policy Options via a Structured Series of Simulations 

Various real-world policy options can be encoded via the parameters located within each of the three 
sets of rules that govern simulated dynamics in CovidSIMVL.  

Primary Rules – reflecting within-agent viral growth dynamics – policies relating to testing could 
have the effect of shortening the infective period. This would be captured in the primary set of rules. 

Secondary Rules – reflecting between-agent interactions in a fixed space – policies relating 
masks and physical distancing would be captured by HazardRadius and MingleFactor, the focus of this 
report on calibrating CovidSIMVL. 

Tertiary Rules- reflecting the movement of populations between common spaces (Universes) – 
these are governed by schedules that reflect location/movement of agents between Universes over 
time. These schedules can be adapted to reflect different options re: selective/staged restart of various 
services, such as components of the health service system, places of work, education, or recreation. 
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These tertiary rules impact on chains of transmission – both their length for a given set of Universes 
assembled into a CovidSIMVL Multiverse, and the distribution of chains of different length. See 
Appendix I for a brief discussion of the Multiverse version of CovidSIMVL. See Appendix II for an initial 
exploration of chains of transmission generated by CovidSIMVL Multiverse simulations.  

In keeping with the “all other things being equal” foundations of experimental scientific methods that 
can possibly yield interpretable results - agent-based tools such as CovidSIMVL can readily manage the 
configuration and implementation of a structured array of scenarios where select combinations of 
parameters can be varied, while others are held constant.  

The CovidSIMVL trials reported in this document illustrate the correspondences between R0 values 
falling within ranges that reflect distinct dynamics of spread and different configurations of 
HazardRadius and MingleFactor. These ranges supply a guide to setting parameters for modelling 
epidemics that display distinctive characteristics. As well, modifying the parameters with known 
characteristics to reflect changes in protections can, at a minimum, provide some insights into the 
possible impacts of those changes.  Locating those changes within Universes in CovidSIMVL Multiverse 
simulations (see Appendix I) can provide insights into the possibility of optimizing impacts by localizing 
protections. Work based on the Multiverse version of CovidSIMVL is the subject of papers currently 
drafted that reflect work that is underway.   

Agent-Based Models, Equation-Based Models – ‘Validating’ CovidSIMVL – against what? 

“There is no there there”18 

Traditional compartmental models convey an understanding of epidemics by retrofitting equations to 
sets of datapoints that are treated as representative of “reality”. They are validated by demonstrating a 
close fit between real-world datapoints (e.g., number of test positive) and the curves generated by 
systems of equations. These curves have properties such as shape (e.g., rising, flat), elevation, and 
derivative properties such as rate of increase, summarized by metrics such as R0.  

However, the ecological validity of a model that has been constructed to fit a context and time-bound 
set of datapoints is contingent on the validity of the assumptions (e.g., mass action incidence) in the 
model that enable its results to be extrapolated to other contexts – or even applied to the population on 
which the results have been derived, if that population does not in fact conform to the assumptions of 
the model. In particular, if the model assumes homogeneous spread among all susceptible persons in a 
population, the model may supply pertinent information if policies are going to be applied equally to all 
members of the population, regardless of local differences.  However, if the assumptions are manifestly 
not true when the viral spread topography is viewed at a more granular/local level, the policies may not 
secure the scope and level of social acceptance necessary for them to produce the desired effect.  

Heterogeneity of reported metrics such as R0 across geographic/political locale, as the SARS-CoV-2 
pandemic unfolds, demonstrates that there is no one typical infection for a multi-host pathogen like 
SARS-Cov-2.19 As such, this report does not seek to validate CovidSIMVL by showing that it can 
reproduce an underlying reality associated with any particular set of real-world datapoints. Instead, it 
seeks to demonstrate how the rules can be configured in order to generate simulations of a variety of 
real-world scenarios that are characterized by a range of values on metrics such as R0. As demonstrated 
in this report, parameters in the single universe version of CovidSIMVL, which mirror that ‘standard’ 
tripartite set of parameters20 that govern spread in equation-based models (duration of contagiousness, 
likelihood of infection per contact, and contact rate) can generate results that reproduce the curves 
associated with different values of R0 that describe different real-world infectious disease dynamics.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2020. ; https://doi.org/10.1101/2020.11.01.20217943doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.01.20217943
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

What vs how? 

CovidSIMVL does not seek to predict a real-world future state based on a set of historical data. This is a 
task for which equation-based approaches are more naturally suited – if the intent is to predict spread in 
large populations where heterogeneity is not pertinent to decisions supported by the predictions. It 
does seek to enable exploration of possible consequences of policies, implemented on a local level, in 
order to generate results that relate policies to change in total infections, or infections per hour, or 
length/distribution of chains of infections. In other words, the equation-based models may be suited to 
the task of predicting what might happen. CovidSIMVL is more focused on the question of how an 
infection such as SARS-CoV-2 could spread in an interacting set of local contexts in which a diverse array 
of factors can be varied systematically in order to highlight the relative impact of these factors in a 
population assumed to be heterogeneous in a variety of consequential ways. 
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APPENDIX I  

Multiverse Version of CovidSIMVL 

Transmission within a Dynamically Interacting Array of Local Universes 

CovidSIMVL is a simulation engine that models a primary set of rules (reflecting biologically-determined 
growth dynamics), and a secondary set of rules (between agent interactions in a fixed space – the 
subject of the above).  These rules determine infection growth in a way that is intrinsic to the 
pathophysiological determinants of viral transmission (Primary rules), and to the interaction of those 
inherent characteristics of the virus with the physical proximity and movement of agents, regardless of 
the particular physical location in which they are moving (Secondary rules). 

CovidSIMVL also generates simulations that reflect a tertiary set of rules. These are rules which enable 
the modeling of scenarios where individual agents spend time in different contexts (e.g., home, place of 
employment), and these different contexts may embody different levels of risk. For example, a person 
wearing PPE at work is less likely to become infected or transmit an infection than the same person 
participating in a group exercise class without a mask.  

These tertiary level rules enable the depiction of scenarios that reflect transmission within an 
interlocking networks of component spaces (which we call Universes), such that  

• Each Universe (e.g., homeless persons housed in a shelter) is relatively homogeneous 
with respect to risk for transmission by agents who are physically located within the 
particular Universe. However, 

• The same agents in a different Universe (e.g., homeless persons presenting in an 
Emergency Department, or homeless persons entering into a withdrawal management 
program) may engage in different levels of risk-engendering or risk-mitigating 
behaviours that are characteristic of that particular location, and 

• The same person may encounter different agents depending on location, e.g., a 
homeless person, and a collection of persons associated with an interlocking array of 
Universes may interact with different persons, depending on where they are located. 

 
“School-based transmission” reflects a good example of interacting Universes coming together to form a 
single “Multiverse”.  The infection may be contracted or transmitted to students/teachers in schools – 
and at least for high school or perhaps middle-school-aged children, a viral load that would be sufficient 
to transmit the infection to/from an adult would be sufficient to transmit the infection to/from another 
student, or teacher – or parent when the child returns home.  Parents who work in healthcare could 
then transmit to/from other staff or patients in a healthcare location.  In this scenario, school-aged 
children may transmit to parents but they will not transmit directly to patients.  See Figure 6,  below for 
a screenshot of a multiverse configuration of CovidSIMVL that includes different locations with a school 
environment, home, a public recreational space such as a pub, and a place of work (long term care 
facility). 
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Figure 6. CovidSIMVL – Multiverse version, including schools homes, bar/pub, and a long-term care 
facility. 
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APPENDIX II 

Transmission Chains 

In the Multiverse version of CovidSIMVL, there can be chains of different length, spanning different 
component Universes, that link index cases to secondary or tertiary or n-ary cases. 
 

The console.log in CovidSIMVL produces, infection by infection, a trace of who infected whom in what 
generation (time), in what Universe in a Multiverse simulation, identifying the family membership, and 
preceded by the sequence number of the new infection. The console.log looks like this: 
 

 
 
 
 
 
 
 
 
These data permit us to look more closely at the relationship between the length of the chains of 
transmission, and the frequency distribution of the numbers of infections that are incurred by infectious 
agents; in particular, whether there are super-spreaders as a side-effect of nature of contagion-based 
epidemics. 

Here is a trace of infections with the parameters set with Population = 100, HazardRadius = 5, and 
MingleFactor for the Universe of 2, with the agent base MingleFactor set at 3, and the resulting R0 at 50 
infected persons being 4.61, which indicates an expanding epidemic. 

 
continued… 

CONSOLE.LOG SORTED BY "by" SORTED BY "infected"

Infected By Gen Infected By Gen Count Infected By Gen

52 10 2 67 3 417 1 0 59 553

30 10 11 60 6 172 3 1 30 154

71 10 23 21 6 352 3 92 300

6 10 72 21 6 352 6 10 72

57 10 101 97 7 568 1 7 74 368

36 10 153 52 10 2 6 8 84 550

1 30 154 30 10 11 12 82 351

60 6 172 71 10 23 13 54 498

92 30 177 6 10 72 17 21 453

58 52 219 57 10 101 21 6 352

75 30 220 36 10 153 21 6 352

55 30 240 17 21 453 1 26 37 354

74 30 247 1 30 154 7 29 82 360

82 30 248 92 30 177 30 10 11

66 52 251 75 30 220 36 10 153

54 57 251 55 30 240 37 30 256

37 30 256 74 30 247 39 88 531

88 60 274 82 30 248 40 51 481

3 92 300 37 30 256 41 55 338

86 60 301 47 36 352 1 42 54 404

41 55 338 26 37 354 2 43 84 544

45 66 347 53 37 517 45 66 347

12 82 351 59 41 440 1 47 36 352
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These numbers are derived directly from the console.log, using Excel to delete unneeded text, and 
separating the numbers with the Excel option in “DATA” of “Text to Columns”. 

The first set of columns are by order of generations, with the Person Number of the Infected in the first 
column, the Infecting Person Number in the second column, and the third being the generation number. 
In some instances, the same infection is recorded twice, as in generation 351, Person 21, but it is only 
counted once. 

The second set of columns duplicate the first set, but sorted using the “By” person number. This permits 
the easy tracking of a chain of transmission. For example, in the Generation set, the first entry shows 
Person 52 infected by Person 10. Going to the second set, and looking into the “By” column for 52, the 
entry shows that Person 66 was infected by Person 52, and we can continue this way. 

The third set of columns is sorted by the “Infected” Person Number. This allows us to track the 
contagion in a backwards direction. For example, Person 95 in the first column, all the way down, was 
infected by Person 86, and in turn, locating 86, was infected by 60, and then finding 60, was infected by 
Person 6, and so on, finding 6 infected by 10, the Index case. 

Using these data the longest chain was found to be: 

    10 → 30 → 55 → 41 → 59 → 0 
while the shortest was just  
    10 → 71 
 

CONSOLE.LOG SORTED BY "by" SORTED BY "infected"

Infected By Gen Infected By Gen Count Infected By Gen

21 6 352 65 42 535 1 48 56 536

47 36 352 40 51 481 1 51 58 385

21 6 352 58 52 219 2 52 10 2

26 37 354 66 52 251 53 37 517

84 82 358 42 54 404 3 54 57 251

29 82 360 93 54 438 55 30 240

7 74 368 13 54 498 56 55 400

80 88 381 41 55 338 2 57 10 101

69 60 381 56 55 400 58 52 219

51 58 385 48 56 536 1 59 41 440

95 86 387 54 57 251 1 60 6 172

56 55 400 51 58 385 1 61 93 535

42 54 404 0 59 553 1 65 42 535

67 3 417 88 60 274 3 66 52 251

93 54 438 86 60 301 67 3 417

59 41 440 69 60 381 69 60 381

17 21 453 45 66 347 1 71 10 23

40 51 481 7 74 368 1 74 30 247

13 54 498 12 82 351 3 75 30 220

53 37 517 84 82 358 80 88 381

39 88 531 29 82 360 82 30 248

65 42 535 43 84 544 2 84 82 358

61 93 535 8 84 550 86 60 301

48 56 536 95 86 387 1 88 60 274

43 84 544 80 88 381 2 92 30 177

8 84 550 39 88 531 93 54 438

0 59 553 3 92 300 1 95 86 387

97 7 568 61 93 535 1 97 7 568
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Tracking the tree of infections from the Index Case Person 10 through the 568 generations, we find that 
the distribution of Infectiveness is: 
 

 
 

The most frequent infectious intensity is one infection (16 of these events) while Person 30 infected 7 
persons, and Person 10 (the Index Case) infected 6 persons. These do not tell us when these chains 
occurred.  

The distribution of chain lengths (from the Index Case to a leaf in the transmission tree – either a node 
has become inert, or it has not infected any – had no descendants at the termination of the trial) are as 
follows for this trial: 

 
 
 
 
 
 
 
 
 
We can see that the most frequent length of transmission trains was 4, with 10 occurrences, and next 
were chains of length 3, with 8 such chains. 

Chain Length – and the challenge of estimating the size of hidden populations 

In expanding epidemics, the overall rate of infection is higher, so that one would expect shorter chains 
compared to epidemics that progress slowly or are self-extinguishing. Similarly, one would expect a 
higher average number of infections per infectious agent, with a more uniform distribution of infections 
per agent. 

As infectiousness in CovidSIMVL is determined by HazardRadius and MingleFactor for defined 
population densities, it will be illuminating to identify the distributions of chain length and infectivity of 
agents over time, for varying parameters of HazardRadius and MingleFactors. 

If these distributions can be characterized, it may then be possible to take tracking data from the field as 
samples into these distributions, and use the distribution of the chain lengths of the samples, fit them to 
the distributions from the synthetic epidemics, in order to estimate the hidden true population of 
infected.  

Infects Frequency

1 16

2 5

3 4

4 0

5 0

6 1

7 1

Chain Len Number

1 1

2 3

3 8

4 10

5 1
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