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Abstract

Purpose. Using a variant of the Monte-Carlo Tree Search (MCTS) algorithm, we
compute optimal personalized and generic training programs for athletic performance.

Methods. We use a non-linear performance model with population variability
for athletes and non-athletes previously used in the literature. Then, we simulate an
in-silico test population. For each individual of this population, we compute the per-
formance obtained after implementing several widely used training programs as well
as the one obtained by our variant of the MCTS algorithm. Two cases are considered
depending on individual parameters being observed and personalized programs be-
ing possible or only parameter distributions being available and only generic training
programs being implementable.

Results. Compared to widely used training programs, our optimization leads to
an increase in performance between 1.1 (95% CI: 0.9 – 1.4) percentage point of the
performance obtained with stationary optimal training dose (pp POTD) for athletes
and unknown individual characteristics to 10.0 (95% CI: 9.6 – 10.3) pp POTD for non-
athletes and known individual characteristics. The value of information when using
MCTS optimized training strategies, i.e. the difference between the performance that
can be reached with knowledge of individual characteristics and the performance that
can be reached without it is 14.7 (95% CI: 12.8 – 16.7) pp POTD for athletes and 3.0
(95% CI: 2.6 – 3.4) pp POTD for non-athletes.

Keywords: exercise prescription, performance optimization, sport, Monte-Carlo Tree
Search algorithm, artificial intelligence.
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1 Introduction

Exercise and sport prescription is fundamental for health and fitness but also disease
or injury recovery as well as professional training. For all these uses, a subject has a given
objective and should plan her practice accordingly. In order to help subjects optimizing
their training strategy, mathematical models have been developed. They help better un-
derstand the link between training and performance and in doing so allow a better course
of action. One of these models is the Banister Impulse-Response (BIR) Model or Fitness-
Fatigue Model [1, 9, 10, 13]. In this mainly phenomenological model,1 training implies
fitness but also fatigue and both should be managed together for an optimal performance.
Even though the BIR model provides a coherent framework for sport exercise studies and
hence provides a useful tool for training planning and optimization, it has been also criti-
cized for its lack of predictive ability [6, 8, 11, 26]. One of the main changes proposed in
the literature since the seminal studies is the introduction of non-linearities in the way per-
formance (through either of or both fitness and fatigue terms) reacts to different training
loads [4, 5, 12, 24, 31].

This way, the BIR model becomes more realistic but optimizing its output is generally
more complex. As a consequence, optimization in this field of research has been restricted
to predefined sets of training programs or training strategies. Among these strategies, the
ones that have been most studied without a doubt are the training strategies with tapering
training loads before a competition date [10, 19–25, 27–31]. This tapering period allows to
decrease both fatigue and fitness but with a profitable balance if done for the right amount
of time. Less known, yet consistently described in the literature is the advantage of a work
overload period before the tapering period [10, 20, 23, 27–29, 31]. Finally, even less known,
a third qualitative advantageous prescription is a slight workload increase at the end of the
tapering period [29, 31].

Our contribution in the present article is mainly methodological and two-fold. Using
a non-linear variant of the BIR model that has been introduced before, we theoretically
optimize the training programs of subjects with the objective of the highest possible per-
formance at a given date. In order to do this, first, we insist on the degree of information
available. In the first informational context, the training program designer does not have
access to personal parameter values for the subjects but only population distributions.
This case can occur when a prescription must be made before personalized tests have been
run by the subject. It can be useful for a general web application or in any "one size fits all"
context. In the second informational context, the training prescription maker has access

1Some physiological correlates have been found ex-post, see [2, 7, 32] for instances.
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to individual characteristics and can issue personalized prescriptions. By comparing the
maximum performances obtained in both treatments – informed and non-informed about
individual parameters –, we have access to the value of information, i.e. the increase of
performance that can be obtained by a better knowledge of each subject. To the best of our
knowledge, this value of information has never been quantified and yet is of importance
since acquiring knowledge has a cost (sum of monetary costs for an accurate measure,
costs of invasive interventions in the case of physiological measures, organizational costs
for physical tests, costs for a delayed intervention, cost of giving in personal information for
the patient, and more...) and this cost should certainly be compared to the corresponding
expected value.

The second interest of our study is the introduction of a variant of the Monte-Carlo
Tree Search (MCTS) algorithm [3] in order to find optimal training programs. The MCTS
algorithm is widely used in artificial intelligence and the variant we use here has been
recently implemented and proved useful in different contexts: the use of drugs to mitigate
the spread of an infecting organism and the emergence and spread of resistance [14], drug
regimen design in oncology [15, 18], immunotherapy [16] and chemotherapy [17].

We show, using different parameter values previously cited in the literature for different
sport champions or non-athletes, that the use of our optimization algorithm can improve
performance by 1.1 (95% CI: 0.9 – 1.4) pp POTD2 (for athletes) to 9.7 (95% CI: 9.4 –
10.0) pp POTD (for non-athletes) in the context of no knowledge of subject characteristics
and by 5.1 (95% CI: 4.7 – 5.5) pp POTD (for athletes) to 10.0 (95% CI: 9.6 – 10.0) pp
POTD (for non-athletes) when personalized training programs are designed. Qualitatively,
the optimized training programs we issue all show (i) a tapering workload period (ii)
preceded by training overload and (iii) a slight increase of the workload right before the
target date, which is the date at which the performance should be as high as possible
in our objective function. Hence, even though our algorithm is totally a priori free and
has an agnostic approach regarding exercise prescription, we qualitatively observe what
is usually intuitively prescribed. Moreover, with our algorithm, the quantitative aspects
(when should the workload tapering period start, what shape should this tapering have,
when and by how much should workload increase again...) are better founded and more
precisely characterized for a better performance.

Finally, we show, that the value of information, i.e., again, the value of knowing the
individual parameters rather than population distribution and hence, being able to design
training programs accordingly, is a performance gain of 14.7 (95% CI: 12.8 – 16.7) pp

2Results are given in percentage points of the performance obtained with stationary optimal training
dose (pp POTD).
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POTD for athletes and 3.0 (95% CI: 2.6 – 3.4) pp POTD for non-athletes. If compared
with the figures given above, information has a large value for athletes (for a point of
comparison, its value is larger than using MCTS algorithm for performance optimizing)
but much less for non-athletes (its value is much smaller than using MCTS algorithm for
performance optimizing).

2 Model

2.1 Performance model

The performance model we build on is the non-linear variant of the Banister Impulse-
Response model [1, 9] introduced in [4] and widely used since. In this model, performance
at a given date n is the sum of a basic level p0 – obtained without ever training – and
the response to training impulses (wj)j∈J0,n−1K where wj is the training load at date j.
Formally,

p((wi)i∈J0,n−1K) = p0 + k1

n−1∑
j=0

wj exp (−(n− j)/τ1)

−
n−1∑
j=0

k2((wl)l∈J0,jK)wj exp (−(n− j)/τ2)
(1)

with the k2 function

k2((wl)l∈J0,jK) = k3

j∑
l=0

wj exp (−(j − l)/τ3) . (2)

Then, response to training is the sum of a positive term (fitness) and a negative one
(fatigue), both of which have a magnitude proportionately increasing with the amount
of training and exponentially decreasing with time between the training date and the
measurement date. Non-linearity exists because the marginal increase in fatigue is itself
increasing with training loads (k2 increasing, see Equation 2).

For the sake of conciseness, let us introduce the following notation. ∀h ∈ J1, 3K, Th =

exp (−1/τh) and Πh =

(
Th

1− Th

)
.

It is straightforward to show that the performance obtained for a constant training dose
w repeated infinitely is given by3

p((w)i∈J0,∞K) = wk1Π1 − w2k3

(
1

1− T3

)
Π2. (3)

3In all this article, we will compare performances obtained by different training programs. Hence, with
no loss of generality, we will assume p0 = 0.
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This constant training dose performance reaches its maximum value for a training dose
– the optimal training dose – that we denote OTD

OTD = arg max
w

p((w)i∈J0,∞K) =
k1
2k3

(
Π1

Π2

)
(1− T3) , (4)

and we denote this performance value – the performance at the optimal training dose –
POTD

POTD = p((OTD)i∈J0,∞K) =
k21
2k3

Π1

(
Π1

Π2

)(
1

2
− T3

)
. (5)

Notice that a constant training amount above 2.OTD yields a negative performance
as fatigue becomes permanently larger than fitness. We will denote OTD− = 2.OTD this
training amount, above which the fatigue effect is stronger that the fitness one at stationary
state.

The performance model depends on 5 parameters: k1, k3 the gain term for the initial
increase in fitness and the gain term for the marginal effect of training on fatigue respec-
tively and τ1, τ2, τ3, the decay time constants of fitness, fatigue and the marginal effect of
training on fatigue respectively. In the current work, we will use the population parameter
values distributions given in [4, 27, 29] for athletes and non-athletes. These parameter
values are displayed in Table 1.4

Parameter Athletes Non-athletes
k1 N (3.42× 10−2, 9.6× 10−3) N (3.1× 10−2, 7.3× 10−3)
k3 N (3.4× 10−3, 3.3× 10−3) N (3.5× 10−5, 10−5)
τ1 N (43.6, 12.1) N (30.8, 1.6)
τ2 N (12.7, 7.2) N (16.8, 3.3)
τ3 N (4.1, 1.6) N (2.3, 1)

Table 1: Parameter distributions for populations of athletes and non-athletes.

In order to compute different training strategies performances and compare them, we
simulated two populations of 480 athletes and 480 non-athletes with parameters randomly
drawn from the distributions given in Table 1. For informational purpose, OTD and
POTD for these in-silico populations are displayed in Figure 1. The empirical average and
standard deviation for athletes OTD are 18.99 and 114.62 respectively. They are 381.54
and 284.56 for non-athletes. The empirical average and standard deviation for athletes
POTD are 12.81 and 66.02 respectively. They are 192.60 and 170.20 for non-athletes.

4We also computed results with the population parameter values distributions for gymnasts [23], skaters
[20] and swimmers [28]. Results are given in Appendix.
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(a) OTD, athletes. (b) POTD, athletes.

(c) OTD, non-athletes. (d) POTD, non-athletes.

Figure 1: OTD and POTD empirical distributions for the 480 simulated athletes and 480
non-athletes. Dashed lines for the average individual parameter values.

Notice that for the distributions of k1 and τ3, the coefficient of variation across individ-
uals are comparable for athletes and non-athletes. On the contrary, for the distributions of
k3, τ2 and τ3, the coefficients of variation are much larger for athletes than for non-athletes.
This also translates into much larger coefficients of variation for athletes than non-athletes
for the distributions of OTD and POTD. Summing up roughly, the variability of athletes
is much larger than the variability of non-athletes.

2.2 Training programs and strategies

In order to estimate the value of our optimization algorithm, we will compare it to the
simple and natural training strategies that have been extensively studied in the literature
and that we sum-up in the following. Notice that this list is certainly not exhaustive,
yet we chose to keep its elements based on simplicity, performance and representativeness
arguments.
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OTDshare The OTDshare(q,n) training program consists of a daily training with inten-
sity q.OTD between day 0 and day n− 1, i.e. for n days.5

Step The Step(q, n′, n) (with n′ < n) training program consists of a daily training with
intensity q.OTD between day 0 and day n′ followed, if n − n′ − 1 > 0,6 by n − n′ − 1

(between days n′ + 1 and n− 1) days without training or, equivalently, with intensity 0.

Linear The Linear(q, n′, n) (with n′ < n) training program consists of a daily training
with intensity q.OTD between day 0 and day n′ followed, if n− n′ − 1 > 0,7 by n− n′ − 1

days with training intensity linearly decreasing between q.OTD and 0. Formally, at day

i ∈ Jn′ + 1, n− 1K, the training intensity is
(
n− 1− i
n− 1− n′

)
q.OTD.

Exponential The Exponential(q, n′, n) (with n′ < n) training program consists of a
daily training with intensity q.OTD between day 0 and day n′ followed, if n − n′ −
1 > 0,8 by n − n′ − 1 days with training intensity exponentially decreasing between

q.OTD and
q.OTD

100
. Formally, at day i ∈ Jn′ + 1, n − 1K, the training intensity is

exp

(
− ln(100)

(
i− n′

n− 1− n′

))
q.OTD.

MCTS The MCTS(q,n) training program is the output of the optimization algorithm
described in Algorithm 1.9 Informally, we build the MCTS training program as follows.
First, we consider the set of training programs that consist on a first day (date 0) with
variable training amounts and then n − 1 days with a default training amount, q.OTD.
For date 0, we keep the training amount that yields the best performance at date n in
this context. For date 1, we consider the set of training programs with the training dose
found earlier at date 0, variable training amounts for date 1 and then n − 2 days with
the default training amount q.OTD. For date 1, we keep the training dose that yields the
best performance at date n in this context. We go on implementing the same procedure

5Let us clarify a terminology point here. We will call a training program a set of impulses. We will call
a training strategy a family of training programs. For instance, the OTDshare(1,350) training program
belongs to the OTDshare training strategy.

6Notice that, by definition, the Step(q, n − 1, n) training program is the same as the OTDshare(q,n)
training program.

7Notice that, by definition, the Linear(q, n− 1, n) training program is the same as the OTDshare(q,n)
training program.

8Notice that, by definition, the Exponential(q, n − 1, n) training program is the same as the
OTDshare(q,n) training program.

9For the sake of simplicity, we omit the dependence on the individual parameter values.
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for n days. Notice that depending on the default training dose, the algorithm may yield
different results.

Algorithm 1 Pseudo algorithm returning the MCTS training program computed for an
individual with parameters p, a default training dose q.OTD and a target date n.
1: function computeTP-MCMC(parameters p, training dose share q, date n)
2: TP-MCMC ← ∅
3: while size(TP-MCMC) < n do
4: maxPerf ← −∞
5: argMaxPerf ← −∞
6: for q′ ← 0, ..., 2 do
7: TP’ ← concatTrainingPrograms(TP-MCMC,{q′.OTD})
8: while size(TP’) < n do
9: TP’ ← concatTrainingPrograms(TP’,{q.OTD})
10: end while
11: Perf ← computePerformance(TP’,p,n)
12: if Perf>maxPerf then
13: Perf ← maxPerf
14: argMaxPerf ← q’
15: end if
16: end for
17: TP-MCMC ← concatTrainingPrograms(TP-MCMC,{argMaxPerf.OTD})
18: end while
19: return The MCTS training program TP-MCMC.
20: end function

21: function computePerformance(trainingProgram TP, parameters p, date n)
22: return The performance at target date n after implementing TP for an individual

with parameters p as given by Equation 1.
23: end function

24: function concatTrainingPrograms(trainingProgram TP,trainingProgram TP’)
25: return The training program with size size(TP) + size(TP’) obtained by concate-

nating the two input training programs.
26: end function

For all training programs we impose q between 0 and 2 which implies maximum training
load of OTD−, the value above which training as a negative effect at stationary state. We
call n, the target date which is the date at which we will compare the performances of the
different training programs.
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2.3 Information

The role of information is crucial in our study. Individual parameter values may be
known for each individual or alternatively, only the parameter distributions across individ-
uals may be known. In order to illustrate this point and its consequences, let us see how
the information available to the training program designer is of importance by focusing on
the OTDshare training strategy for now.

First, let us only consider an average individual. In this case, the performances of the
training programs OTDshare(q,n) with q – the training dose (as a share of OTD) – and n
– the target date – variable are displayed in Figures 2a and 2c for athletes and non-athletes
respectively.10 From this figure, we can extract, for any target date n, the share of OTD
for which the performance of the OTDshare training strategy is the best. This maximum
is displayed as a plain black line in Figures 2a and 2c and the share of OTD which yields
this maximum performance is displayed as a dashed line in Figures 3a and 3b for athletes
and non-athletes respectively.

Now, when we face not only the average individual but a whole population, the question
arises of the knowledge of each individual parameter values. First, let us assume that the
parameters are not observed or observable. Only the parameters distributions are available
to the training program designer. In this case, our purpose will be to design a training
program that yields the best results on average over the population. In Figures 2b and 2d,
we show the average or expected performance of the training programs OTDshare(q,n) with
q and n variable for our simulated populations of athletes and non-athletes respectively. In
dashed lines, for each target date n, we display the performance of the best program of the
OTDshare training strategy in this informational context. Since the individual parameters
are not known, it is the training program that yields the best performance on average
for a population with parameters distributed as described in Table 1. The share of OTD
that yields this best performance is displayed in plain black line in Figures 3a and 3b for
athletes and non-athletes respectively.

Now, let us assume that we know individual parameters. In this case, it may be
more profitable to design a personalized training program for each individual. For the
populations of athletes and non-athletes we simulated, the optimal shares of OTD for the
OTDshare training strategy yielding the best performances (one optimal share of OTD for
each individual) are displayed in light lines in Figures 3a and 3b. Once these personalized
training programs are implemented, the expected performance for the population is given
in plain black lines in Figures 2b and 2d.11

10Throughout, performance is expressed relatively to POTD.
11In Appendix, we show similar figures for the Step training strategy (Figures App-2, App-6), the Linear
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure 2: Performance of the OTDshare training strategy as a function of the target date
n for the average athlete or non-athlete or for our simulated populations of 480 athletes
and non-athletes. Color lines indicate the expected performance after completion of an
OTDshare(q,n) training program with q indicated by the color of the line. The dotted line
shows the expected performance of OTDshare(1,n). The dashed black line shows the ex-
pected performance of the best OTDshare training program when the individual parameter
values are unknown, i.e. it shows, for each target date, the expected performance of the
OTDshare training program that yields the best result for the population on average. The
plain black line shows the expected performance of the best OTDshare training program
when the individual parameter values are known, i.e. it shows, for each target date, the
average performance of the best OTDshare training programs, possibly different for each
individual. Notice that, by definition, the dashed and plain lines are identical when only
an average individual is considered.

training strategy (Figures App-3, App-7) and the Exponential training strategy (Figures App-4, App-8).
The corresponding performance profiles for those strategies and the others studied in the remainder of this
article are given in Figures App-10, App-11, App-12, App-13 and App-14.
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(a) Athletes. (b) Non-athletes.

Figure 3: Share of OTD for the optimal OTDshare training programs as a function of
the target date n for athletes and non-athletes. Light lines for each of the 480 simulated
individuals in the populations. Plain black line for the optimal OTDshare training program
for the populations without knowledge of individual parameter values. Dashed black line
for the optimal OTDshare training program for the average individual.

Notice that, by definition of OTD, when the target date is infinite, the best program of
the OTDshare strategy is obtained for a constant training amount OTD, i.e. an optimal
OTD share of 1. This remark holds whatever the informational context, each individual,
known or not, average or part of a population, reaches at most performance POTD when
the target date goes to infinity.

The value of information is the difference of the performances that can be reached with
or without knowledge of individual parameter values.12 As we remarked above, the value
of information tends to 0 when the target date goes to infinity. However, even though
it can hardly be seen on the figures because it is very low in the case of the OTDshare
training strategy, it is not necessarily 0 for small target dates. It can be as much as 2.6
(95% CI: 2.1 – 3.1) pp POTD for athletes and 0.6 (95% CI: 0.6 – 0.7) pp POTD for non-
athletes (both maximum values of information are obtained for a target date of 10 days).
The values of information as functions of the target day for the OTDshare training strategy
are displayed in Figure 4.

12Notice that the value of information is irrelevant when we consider only average individuals of which
we necessarily know the parameter values.

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.31.20223768doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.31.20223768


(a) Athletes. (b) Non-athletes.

Figure 4: Value of information for the OTDshare training strategy as a function of the tar-
get date for the athletes and non-athletes populations. Light lines show the 95% confidence
interval for our 480 simulated individuals.

Notice that because we are dealing with an in-silico population, when we compare two
treatments (with or without knowledge of the individual parameter values in the case of
Figure 4 for instance), we can compare the performances obtained by each individual with
identical characteristics. Then statistics are more powerful than a real trial that would
compare two populations with different parameters only.

3 Results

In this section, we will focus on target date 350, when the boundary effect of date 0
has vanished.13

3.1 Average individual

First, let us focus on the case with only the average individuals for both the athletes
and non-athletes populations. As already noticed, at target date 350, for both the average
athlete and non athlete, the best training program of the OTDshare strategy is obtained
with a daily training dose of OTD (OTDshare(1,350)) and yields a performance of 1 (by
definition of OTD since the stationary state is virtually reached at date 350).

For athletes, the best Step training program is Step(327,2,350) and yields a performance
of 1.71, the best Linear training program is Linear(308,2,350) and yields a performance
of 1.87, the best Exponential training program is Exponential(322,2,350) and yields a

13Main results as functions of the target date are displayed in Appendix.
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performance of 1.79. The best MCTS training program is obtained for a default training
dose 0.52OTD and it yields a performance of 1.89.

For non-athletes, the best Step training program is Step(349,1,350)14 and yields a per-
formance of 1, the best Linear training program is Linear(305,2,350) and yields a perfor-
mance of 1.22, the best Exponential training program is Exponential(320,2,350) and yields
a performance of 1.03. The best MCTS training program is obtained for a default training
dose 0.8OTD and it yields a performance of 1.32.

Hence, the MCTS training strategy leads to the best performances for target date 350
in all cases.15 Results are summed-up as differences in performance to MCTS in Table 2.

Training programs difference Athletes Non-athletes
MCTS-OTDshare 0.889 0.320

MCTS-Step 0.182 0.320
MCTS-Linear 0.023 0.103

MCTS-Exponential 0.094 0.288

Table 2: Difference in performance between the best MCTS training program and the best
other training programs for an average athletes, average non-athletes and for a target date
of 350.

The daily training doses of the best MCTS training programs for athletes and non-
athletes are displayed in Figure 5. We can see that the MCTS training programs obtained
by optimization qualitatively reproduce three well-known features of the literature: the
work overload16 followed by a tapering workload period by the end of which, the training
doses are increased a bit again.

14Notice that, by definition, Step(349,1,350) is precisely OTDshare(1,350). Hence the Step strategy
offers no improvement over the OTDshare strategy in this case.

15With no surprise but still performing a powerful test, this statement is actually true for all target
dates (see Section C in Appendix), all informational contexts (see the remainder of this article) and also
for gymnasts, skaters and swimmers (see Section D in Appendix).

16As in [24], there is no constraint in our model, on this overload amount of work long before the target
date.
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(a) Average athletes. (b) Athletes – Zoom.

(c) Non-athletes. (d) Non-athletes – Zoom.

Figure 5: Daily training doses (wi)i∈J0,349K obtained by the best MCTS training program
for an average athlete, an average non-athlete and for target date 350.

3.2 Unknown individual parameter values

Let us now turn to the case where we are dealing with whole populations for which we
know the parameters distributions but we cannot observe individual characteristics so that
we cannot consider personalized training programs. Instead, only training programs that
apply to all individuals indiscriminately can be considered and we search the ones that
yield the best performances in expectation over our simulated populations.

In this case, at date 350, for both populations of athletes and non-athletes, the best
OTDshare training program – i.e. the one that gives the highest expected performance – is
obtained with a daily training dose of OTD (OTDshare(1,350)) and yields a performance
of 1.00 (95% CI: 1.00 – 1.00), for the same reasons as above.

For athletes, the best Step training program is Step(330,2,350) and yields a performance
of 1.58 (95% CI: 1.52 – 1.64), the best Linear training program is Linear(310,2,350) and
yields a performance of 1.75 (95% CI: 1.71 – 1.80), the best Exponential training program
is Exponential(324,2,350) and yields a performance of 1.67 (95% CI: 1.61 – 1.72). The best
MCTS training program is obtained for a default training dose 0.56OTD and it yields a
performance of 1.77 (95% CI: 1.72 – 1.82).17

For non-athletes, the best Step training program is Step(349,1,350) and yields a perfor-
17The MCTS algorithm must be slightly modified in this case where the individual parameter values are

unknown. These modifications are described in Section A in Appendix.
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mance of 1.00 (95% CI: 1.00 – 1.00),18 the best Linear training program is Linear(306,2,350)
and yields a performance of 1.22 (95% CI: 1.19 – 1.24), the best Exponential training pro-
gram is Exponential(322,2,350) and yields a performance of 1.04 (95% CI: 1.01 – 1.06).
The best MCTS training program is obtained for a default training dose 0.88.OTD and it
yields a performance of 1.31 (95% CI: 1.30 – 1.33).

Hence, the best MCTS training program is the training program that gives the best
performance for target date 350. Because we are dealing with an in-silico population,
we can compare the performances obtained by each individual when treated by each of
the training strategies. The expected differences in performance between the best MCTS
training program and the best programs of other strategies are given in Table 3. We can
see that the gain in performances obtained using the MCTS training strategy is significant
in all cases.

Training programs difference Athletes Non-athletes
MCTS-OTDshare 0.767 (0.720–0.815) 0.313 (0.295–0.331)

MCTS-Step 0.185 (0.174–0.195) 0.313 (0.295–0.331)

MCTS-Linear 0.011 (0.009–0.014) 0.097 (0.094–0.100)

MCTS-Exponential 0.101 (0.094–0.107) 0.277 (0.271–0.284)

Table 3: Differences in performance between the best MCTS training program and the best
other training programs for athletes, non-athletes and for a target date of 350. Individual
parameter values are unknown. 95% confidence interval for our 480 simulated individuals
in parenthesis.

The best MCTS training programs for athletes and non-athletes are displayed in Figure
6. They are qualitatively very close to what was implemented for the average athlete and
non-athlete. In particular, they display the overload before the tapering workload period
ending with a slight increase in training dose.

18Hence, for non-athletes, the best Step training program is, again, an OTDshare training program.

15

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.31.20223768doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.31.20223768


(a) Athletes. (b) Athletes – Zoom.

(c) Non-athletes. (d) Non-athletes – Zoom.

Figure 6: Daily training doses (wi)i∈J0,349K obtained by the best MCTS training program
for populations of athletes and non-athletes with unknown individual parameter values
and for target date 350.

For informational purpose, let us consider what would be the performances obtained by
our simulated populations implementing the best MCTS training programs computed in
Section 3.1 – i.e. the training programs that were obtained when considering the average
individuals only. These results are the ones that one would get if not the whole information
about parameter distributions was used but only the average statistics. For athletes (re-
spectively non-athletes), implementing the best MCTS training program computed on the
average individual would yield an expected performance of 1.75 (95% CI: 1.71 – 1.80) (resp.
1.31 (95% CI: 1.30 – 1.33)). The per-individual differences in performance between the
two treatments (MCTS computed on the whole population versus MCTS computed on the
average individual) is 0.008 (95% CI: 0.003 – 0.014) (resp. 1.3×10−5 (95% CI: −9.3×10−5 –
1.2 × 10−4)). Hence, we can conclude that, given the populations we consider here, there
is almost no cost in terms of performances to use the average individual instead of the
whole population in order to compute the best MCTS training program. Yet, the gains in
terms of computational power needed (and as a consequence, time of computation and/or
resource usage) are large.

3.3 Known individual parameter values

We will now study the case where not only do we know the distributions of the param-
eters in the population but, we can also observe the parameter values for each individual.
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In this case, the training program to be implemented can be personalized, i.e. for each
individual, we can reach the best performance for any training strategy.

In this case, at date 350, for both populations of athletes and non athletes and for
each individual, the best OTDshare training program – i.e. the one that gives the highest
performance – is obtained with a daily training dose of OTD (OTDshare(1,350)) and yields
an average performance for all individuals of 1.00 (95% CI: 1.00 – 1.00). Notice this allows
to check that for all individuals, date 350 is enough to avoid date 0 boundary effect.

For athletes, when her best Step training program is implemented for each individual,
it yields an average performance of 1.74 (95% CI: 1.68 – 1.79), when her best Linear
training program is implemented for each individual, it yields an average performance of
1.86 (95% CI: 1.81 – 1.91), when her best Exponential training program is implemented
for each individual, it yields an average performance of 1.81 (95% CI: 1.75 – 1.86), when
her best MCTS training program is implemented for each individual, it yields an average
performance of 1.91 (95% CI: 1.86 – 1.96).

For non-athletes, when her best Step training program is implemented for each individ-
ual, it yields an average performance of 1.08 (95% CI: 1.06 – 1.09), when her best Linear
training program is implemented for each individual, it yields an average performance of
1.24 (95% CI: 1.22 – 1.26), when her best Exponential training program is implemented
for each individual, it yields an average performance of 1.13 (95% CI: 1.12 – 1.15), when
her best MCTS training program is implemented for each individual, it yields an average
performance of 1.34 (95% CI: 1.33 – 1.36).

Differences between the MCTS strategy and other strategies, when performances at
date 350 are compared for each individual, are given in Table 4. Again, the gains in using
MCTS are always significant.

Training program difference Athletes Non-athletes
MCTS-OTDshare 0.915 (0.866–0.964) 0.343 (0.326–0.360)

MCTS-Step 0.175 (0.165–0.184) 0.265 (0.257–0.273)

MCTS-Linear 0.051 (0.047–0.055) 0.100 (0.096–0.103)

MCTS-Exponential 0.106 (0.099–0.113) 0.210 (0.204–0.215)

Table 4: Difference in performance between the best MCTS training program and the best
other training programs for athletes, non athletes and for a target date of 350. Individual
parameter values are known. 95% confidence interval for our 480 simulated individuals in
parenthesis.

A representation of the best MCTS training programs for athletes and non-athletes
are displayed in Figure 7. Here again, they are qualitatively very close to what was im-
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plemented for the average athlete and non-athlete and for unknown individual parameter
values. Overload before a workload tapering period and a workload increase at the end of
this workload tapering period can be observed.

(a) Athletes. (b) Athletes – Zoom.

(c) Non-athletes. (d) Non-athletes – Zoom.

Figure 7: Daily training doses proportions for our simulated populations of athletes and
nonathletes. For each date (abscissa), and each training dose level as a share of OTD
(ordinate), the color indicates the proportion of individuals in our populations who are
prescribed a training dose more than the ordinate training dose level at this date and when
each individual implements her best MCTS training program.

3.4 Value of information

Finally, let us compute the value of information. As explained above, it is the value, in
terms of performance gains, of having access to each individual parameter values instead
of having access only to the population parameters distributions. Then, in our case, it is
the difference in performance between a treatment where each individual can be trained as
prescribed by her own best training program of a given strategy (as computed in Section
3.3) on the one hand and a treatment where all individuals are trained as prescribed by
the same best on average training program of the same given strategy (as computed in
Section 3.2) on the other hand.

In Section 2.3, we saw that, for the OTDshare training strategy, the value of information
is quite small for all target dates and it is even tending to 0 when the target date tends to
infinity by definition. These results do not hold for the other training strategies. Indeed,
for the other training strategies, the value of information can be large. Knowing individual
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parameter values can increase the performance after training by 19.8 (95% CI: 17.7 –
21.9) pp POTD for athletes (for the Step training strategy and target date 60) and 11.3
(95% CI: 9.7 – 13.0) pp POTD for non-athletes (for the Exponential training strategy
and target date 120). Also, the value of information is not necessarily tending to 0 for
distant target dates. Values of information for the different strategies at target date 350
are displayed in Table 5.

Training strategy Athletes Non-athletes
OTDshare 0.000 (0.000–0.000) 0.000 (0.000–0.000)

Step 0.157 (0.134–0.181) 0.078 (0.064–0.093)

Linear 0.107 (0.090–0.124) 0.028 (0.023–0.033)

Exponential 0.142 (0.120–0.164) 0.098 (0.087–0.110)

MCTS 0.147 (0.128–0.167) 0.030 (0.026–0.034)

Table 5: Value of information for different training strategies at target date 350. 95%
confidence interval for our 480 simulated individuals in parenthesis.

We show the values of information as functions of the target date for the Step, Linear,
Exponential and MCTS training strategies in Figures 8, 9, 10 and 11 respectively.

(a) Athletes. (b) Non-athletes.

Figure 8: Value of information for the Step training strategy as a function of the target
date for the athletes and non-athletes populations. Light lines show the 95% confidence
interval for our 480 simulated individuals.
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(a) Athletes. (b) Non-athletes.

Figure 9: Value of information for the Linear training strategy as a function of the target
date for the athletes and non-athletes populations. Light lines show the 95% confidence
interval for our 480 simulated individuals.

(a) Athletes. (b) Non-athletes.

Figure 10: Value of information for the Exponential training strategy as a function of
the target date for the athletes and non-athletes populations. Light lines show the 95%
confidence interval for our 480 simulated individuals.
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(a) Athletes. (b) Non-athletes.

Figure 11: Value of information for the MCTS training strategy as a function of the target
date for the athletes and non-athletes populations. Light lines show the 95% confidence
interval for our 480 simulated individuals.

4 Discussion and conclusion

Apart from the MCTS training strategy, the best strategy for both populations of ath-
letes and non-athletes is the Linear strategy. In Figure 12, we sum up the comparisons we
found between the Linear and MCTS strategies depending on the different informational
contexts we studied in this article. In this figure, we can see that a way to illustrate our
results is by splitting the gains between implementing the Linear training strategy with-
out knowledge of the individual parameter values and implementing the MCTS training
strategy with knowledge of the individual parameter values into two parts: First the infor-
mational value of knowing the individual parameter values (informational component) and
second, the value to use the MCTS training strategy instead of the linear one (optimization
component).

Linear strategy
Param. distrib.

Linear strategy
Indiv. param. values

MCTS strategy
Param. distrib.

MCTS strategy
Indiv. param. values

10.7 (9.0–12.4)

14.7 (12.8–16.7)

1.1 (0.9–1.4) 5.1 (4.7–5.5)

(a) Athletes.

Linear strategy
Param. distrib.

Linear strategy
Indiv. param. values

MCTS strategy
Param. distrib.

MCTS strategy
Indiv. param. values

2.8 (2.3–3.3)

3.0 (2.6–3.4)

9.7 (9.4–10.0) 10.0 (9.6–10.3)

(b) Non-athletes.

Figure 12: Diagram of our results for athletes and non-athletes populations. An arrow
indicates an increase in performance with magnitude in pp POTD indicated as numbers
close to it. 95% confidence interval for our 480 simulated individuals in parenthesis.
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In the case of athletes, the performance gains come mainly from the informational
component whereas in cases of non-athletes, the gains come mainly from the optimization
component. The fact that the informational component is quite small in the case of the
non-athletes population comes obviously from the fact that variation coefficients are quite
small in this population. On the contrary, the optimization component is larger in the
non-athletes population.

The optimal MCTS training programs all show (i) an overload period before a (ii)
workload tapering period ending with a (iii) slight increase in training doses. Even though
our results are hard to compare with previous studies using the same performance model
and data [4, 27, 29] – because of the non-linearity of our tapering workload period or of the
subsequent increase, the difference in the preceding overload – we qualitatively find similar
results. It is to be noted that these results have been found here with an algorithm totally
open to very different training strategies. Said differently, even though our algorithm had
non reason to point to training programs that were previously studied in particular, we
found qualitative features for optimal training programs that were already present in these
previous studies. Of course our algorithm still brings quantitative precisions that could
not be reached before.

Finally, we would like to highlight a feature of the MCTS training strategy that would
certainly prove to be very important for future real-life implementation. The MCTS train-
ing strategies are based on Monte-Carlo simulations This implies that the MCTS training
strategy is very robust to any foreseen, unforeseen event or even information acquisition or
learning. For instance, let us assume that the individual for which we compute the optimal
training program suffers injury. Then, it is immediate to recompute the algorithm in order
to have the optimal training program being given the suffered injury and the constraints
it imposes on our new problem but also the learning of injury probabilities, possibly as a
function of training loads. This would not be the case for many other algorithms like a
genetic one for instance [24]. Such implementations are left for future works.
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Appendix
A MCTS variant for unknown individual parameter val-

ues

In Algorithm App-1, we show the variant to Algorithm 1, for a population with unknown
individual parameter values. In this case, the algorithm depends only on the parameter
distribution and basically, it works by first drawing by chance a population19 and then,
implementing the 1-individual MCTS algorithm with expected performance over the drawn
population as an objective function. Obviously, the population drawn in order to build the
MCTS training program (training population) should not be the same as the one that was
drawn in order to test the different training program treatments (validation population).

19Specifically, we draw a population of 480 individuals in all our simulations.

1

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 4, 2020. ; https://doi.org/10.1101/2020.10.31.20223768doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.31.20223768


Algorithm App-1 Pseudo algorithm returning the MCTS training program computed
for parameter distribution d, a default training dose q.OTD and a target date n.
1: function computeTP-MCMC(parameter distribution d, training dose share q, date
n)

2: TP-MCMC ← ∅
3: Generate a population with parameters P = {pi}i∈J0,size(P )K randomly drawn from

distribution d
4: while size(TP-MCMC) < n do
5: maxPerf ← −∞
6: argMaxPerf ← −∞
7: for q′ ← 0, ..., 2 do
8: TP’ ← concatTrainingPrograms(TP-MCMC,{q′.OTD})
9: while size(TP’) < n do
10: TP’ ← concatTrainingPrograms(TP’,{q.OTD})
11: end while
12: Perf ← computePerformance(TP’,P ,n)
13: if Perf>maxPerf then
14: Perf ← maxPerf
15: argMaxPerf ← q’
16: end if
17: end for
18: TP-MCMC ← concatTrainingPrograms(TP-MCMC,{argMaxPerf.OTD})
19: end while
20: return The MCTS training program TP-MCMC.
21: end function

22: function computePerformance(trainingProgram TP, population P , date n)
23: return The average performance at target date n after implementing TP for all

individuals in P as given by Equation 1.
24: end function

25: function concatTrainingPrograms(trainingProgram TP,trainingProgram TP’)
26: return The training program with size size(TP) + size(TP’) obtained by concate-

nating the two input training programs.
27: end function

B Best performances of the training strategies

B.1 Performances

In Figures App-1, App-2, App-3, App-4 and App-5, we show how the training strategies
studied in this article perform depending on the target date.
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure App-1: Performance of the OTDshare training strategy as a function of the target
date n for the average athlete or non-athlete or for our simulated populations of 480
athletes and non-athletes. The dashed black line shows the expected performance of the
best OTDshare training program when the individual parameter values are unknown. The
plain black line shows the expected performance of the best OTDshare training programs
when the individual parameter values are known. Light lines show the 95% confidence
interval for our 480 simulated individuals.
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure App-2: Performance of the Step training strategy as a function of the target date
n for the average athlete or non-athlete or for our simulated populations of 480 athletes
and non-athletes. The dashed black line shows the expected performance of the best Step
training program when the individual parameter values are unknown. The plain black line
shows the expected performance of the best Step training programs when the individual
parameter values are known. Light lines show the 95% confidence interval for our 480
simulated individuals.
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure App-3: Performance of the Linear training strategy as a function of the target date
n for the average athlete or non-athlete or for our simulated populations of 480 athletes
and non-athletes. The dashed black line shows the expected performance of the best Linear
training program when the individual parameter values are unknown. The plain black line
shows the expected performance of the best Linear training programs when the individual
parameter values are known. Light lines show the 95% confidence interval for our 480
simulated individuals.
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure App-4: Performance of the Exponential training strategy as a function of the target
date n for the average athlete or non-athlete or for our simulated populations of 480
athletes and non-athletes. The dashed black line shows the expected performance of the
best Exponential training program when the individual parameter values are unknown.
The plain black line shows the expected performance of the best Exponential training
programs when the individual parameter values are known. Light lines show the 95%
confidence interval for our 480 simulated individuals.
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(a) Average individual, athlete. (b) Simulated population, athletes.

(c) Average individual, non-athlete. (d) Simulated population, non-athletes.

Figure App-5: Performance of the MCTS training strategy as a function of the target date
n for the average athlete or non-athlete or for our simulated populations of 480 athletes and
non-athletes. The dashed black line shows the expected performance of the best MCTS
training program when the individual parameter values are unknown. The plain black line
shows the expected performance of the best MCTS training programs when the individual
parameter values are known. Light lines show the 95% confidence interval for our 480
simulated individuals.

B.2 Best performances arguments

In Figures App-6, App-7, App-8 and App-8, we show the best arguments for the training
strategies studied in this article.
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(a) Optimal share of OTD before decrease, ath-
letes. (b) Optimal decrease date, athletes.

(c) Optimal share of OTD before decrease, non-
athletes. (d) Optimal decrease date, non-athlete.

Figure App-6: Share of OTD before decrease and decrease date – as a difference to the
target date – (q and n′ with the notation of the main text) for the optimal Step training
programs as functions of the target date n for athletes and non-athletes. Light lines for each
of the 480 simulated individuals in the populations. Plain black line for the optimal Step
training program for the populations without knowledge of individual parameter values.
Dashed black line for the optimal Step training program for the average individual.
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(a) Optimal share of OTD before decrease, ath-
letes. (b) Optimal decrease date, athletes.

(c) Optimal share of OTD before decrease, non-
athletes. (d) Optimal decrease date, non-athlete.

Figure App-7: Share of OTD before decrease and decrease date – as a difference to the
target date – (q and n−n′ with the notation of the main text) for the optimal Linear training
program as functions of the target date n for athletes and non-athletes. Light lines for each
of the 480 simulated individuals in the populations. Plain black line for the optimal Linear
training program for the populations without knowledge of individual parameter values.
Dashed black line for the optimal Linear training program for the average individual.
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(a) Optimal share of OTD before decrease, ath-
letes. (b) Optimal decrease date, athletes.

(c) Optimal share of OTD before decrease, non-
athletes. (d) Optimal decrease date, non-athlete.

Figure App-8: Share of OTD before decrease and decrease date – as a difference to the
target date – (q and n−n′ with the notation of the main text) for the optimal Exponential
training program as functions of the target date n for athletes and non-athletes. Light
lines for each of the 480 simulated individuals in the populations. Plain black line for the
optimal Exponential training program for the populations without knowledge of individual
parameter values. Dashed black line for the optimal Exponential training program for the
average individual.
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(a) Athletes. (b) Non-athletes.

Figure App-9: Default training dose for the optimal MCTS training programs as a function
of the target date n for athletes and non-athletes. Light lines for each of the 480 simulated
individuals in the populations. Plain black line for the optimal MCTS training program
for the populations without knowledge of individual parameter values. Dashed black line
for the optimal MCTS training program for the average individual.

B.3 Performances as functions of time

In Figures App-10, App-11, App-12, App-13 and App-14, we show the time profile of
performance when the optimal training programs for the different strategies are imple-
mented.
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(a) Individual parameters unknown, athletes. (b) Individual parameters known, athletes.

(c) Individual parameters unknown, non-
athlete. (d) Individual parameters known, non-athletes.

Figure App-10: Performance depending on date for the OTDshare strategy for athletes
and non-athletes with known or unknown individual parameters, target date 350. Very
light lines for each of the individuals in the simulated population. Dashed line for average
individual (only for known individual parameters), dark plain line for average performance
across population. Light lines show the 95% confidence interval for our 480 simulated
individuals.
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(a) Individual parameters unknown, athletes. (b) Individual parameters known, athletes.

(c) Individual parameters unknown, non-
athlete. (d) Individual parameters known, non-athletes.

Figure App-11: Performance depending on date for the Step strategy for athletes and
non-athletes with known or unknown individual parameters, target date 350. Very light
lines for each of the individuals in the simulated population. Dashed line for average
individual (only for known individual parameters), dark plain line for average performance
across population. Light lines show the 95% confidence interval for our 480 simulated
individuals.
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(a) Individual parameters unknown, athletes. (b) Individual parameters known, athletes.

(c) Individual parameters unknown, non-
athlete. (d) Individual parameters known, non-athletes.

Figure App-12: Performance depending on date for the Linear strategy for athletes and
non-athletes with known or unknown individual parameters, target date 350. Very light
lines for each of the individuals in the simulated population. Dashed line for average
individual (only for known individual parameters), dark plain line for average performance
across population. Light lines show the 95% confidence interval for our 480 simulated
individuals.
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(a) Individual parameters unknown, athletes. (b) Individual parameters known, athletes.

(c) Individual parameters unknown, non-
athlete. (d) Individual parameters known, non-athletes.

Figure App-13: Performance depending on date for the Exponential strategy for athletes
and non-athletes with known or unknown individual parameters, target date 350. Very
light lines for each of the individuals in the simulated population. Dashed line for average
individual (only for known individual parameters), dark plain line for average performance
across population. Light lines show the 95% confidence interval for our 480 simulated
individuals.
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(a) Individual parameters unknown, athletes. (b) Individual parameters known, athletes.

(c) Individual parameters unknown, non-
athlete. (d) Individual parameters known, non-athletes.

Figure App-14: Performance depending on date for the MCTS strategy for athletes and
non-athletes with known or unknown individual parameters, target date 350. Very light
lines for each of the individuals in the simulated population. Dashed line for average
individual (only for known individual parameters), dark plain line for average performance
across population. Light lines show the 95% confidence interval for our 480 simulated
individuals.

C Differences in performance between MCTS and the
other training strategies

In Figures App-15, App-17 and App-16, we show the difference in performance between
the best MCTS training program and the best of each of the other training strategies
studied in this article as functions of the target date.
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(a) MCTS-OTDshare,
average athlete.

(b) MCTS-Step, aver-
age athlete.

(c) MCTS-Linear, aver-
age athlete.

(d) MCTS-Expo, aver-
age athlete.

(e) MCTS-OTDshare,
average non-athlete.

(f) MCTS-Step, aver-
age non-athlete.

(g) MCTS-Linear, av-
erage non-athlete.

(h) MCTS-Expo, aver-
age non-athlete.

Figure App-15: Difference in performance between the best MCTS training program and
the best training programs for other strategies as functions of the training date for an
average athlete and an average non-athlete. Light lines show the 95% confidence interval
for our 480 simulated individuals.

(a) MCTS-OTDshare,
athlete distribution.

(b) MCTS-Step, ath-
lete distribution.

(c) MCTS-Linear, ath-
lete distribution.

(d) MCTS-Expo, ath-
lete distribution.

(e) MCTS-OTDshare,
non-athlete distribu-
tion.

(f) MCTS-Step, non-
athlete distribution.

(g) MCTS-Linear, non-
athlete distribution.

(h) MCTS-Expo, non-
athlete distribution.

Figure App-16: Difference in performance between the best MCTS training program and
the best training programs for other strategies as functions of the training date for our
simulated population of athletes and non-athletes with unknown individual parameter
values. Light lines show the 95% confidence interval for our 480 simulated individuals.
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(a) MCTS-OTDshare,
athlete distribution.

(b) MCTS-Step, ath-
lete distribution.

(c) MCTS-Linear, ath-
lete distribution.

(d) MCTS-Expo, ath-
lete distribution.

(e) MCTS-OTDshare,
non-athlete distribu-
tion.

(f) MCTS-Step, non-
athlete distribution.

(g) MCTS-Linear, non-
athlete distribution.

(h) MCTS-Expo, non-
athlete distribution.

Figure App-17: Difference in performance between the best MCTS training program and
the best training programs for other strategies as functions of the training date for our
simulated population of athletes and non-athletes with known individual parameter values.
Light lines show the 95% confidence interval for our 480 simulated individuals.

D Extension to gymnasts, skaters and swimmers

In this section, we extend the main results of our article to gymnasts, skaters and
swimmers as specified in different articles in the literature, see Table App-1.
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