${f S1}$ Table. Population size and compartments. | Parameter | Description | value | |---|--|------------------| | \overline{N} | Population size | 250,000,000 | | S(0) | No. susceptible | 249,999,999 | | $E_k(0)$ $E_k^*(0)$ $\tilde{E}_k(0)$ | No. single infected in kth latent states ($1 \le k \le n_E$)
No. transient multi infections in latent states ($1 \le k \le n_E$)
No. multi infected in kth latent states ($1 \le k \le n_E$) | 0
0
0 | | $ \begin{array}{c} P_k(0) \\ P_k^*(0) \\ \tilde{P}_k(0) \end{array} $ | No. single infected in kth prodromal states ($1 \le k \le n_P$)
No. transient multi infections in prodromal states ($1 \le k \le n_P$)
No. multi infected in prodromal states ($1 \le k \le n_P$) | 0
0
0 | | $ \begin{array}{c} I_1(0) \\ I_k(0) \\ I_k^*(0) \\ \tilde{I}_k(0) \end{array} $ | No. single infected in first fully contagious Erlang state No. single infected in kth fully contagious states $(2 \le k \le n_I)$ No. transient multi infections in kth fully contagious states $(1 \le k \le n_I)$ No. multi infected in full contagious states $(1 \le k \le n_I)$ | 1
0
0
0 | | $L_k(0)$ $L_k^*(0)$ $\tilde{L}_k(0)$ | No. single infected in k th late-infectious states $(1 \le k \le n_L)$
No. transient multi infections in k th late-infectious states $(1 \le k \le n_L)$
No. multi infected in k th late-infectious states $(1 \le k \le n_L)$ | 0
0
0 | | R
D | No. recovered
No. dead | 0 | Population size and compartments and their respective parameter choices.