
  

Genome-wide analysis of blood lipid metabolites in over 5,000 South Asians 

reveals biological insights at cardiometabolic disease loci 

 

SUPPLEMENTARY MATERIAL 

 

Supplementary Methods 

Lipid profiling, genotyping, and genetic analyses in INTERVAL 

Further details of candidate gene annotation in PROMIS and INTERVAL 

 

Supplementary Tables 

Supplementary Table 1. Number of significant variants and loci associated with each 

lipid subclass 

Supplementary Table 2. Summary of significant associations between lipid 

metabolites and genetic variants from univariate genome-wide association study in 

PROMIS 

Supplementary Table 3. Summary of significant associations between lipid 

metabolites and genetic variants from conditional analyses of univariate genome-

wide association study results in PROMIS 

Supplementary Table 4. Summary of significant associations between lipid 

metabolites and genetic variants from univariate genome-wide association study in 

INTERVAL 

Supplementary Table 5. Summary and classification of analysed ratios in PROMIS 

Supplementary Table 6. Summary of significant associations between ratios of lipid 

metabolites and genetic variants from univariate genome-wide association study in 

PROMIS 

Supplementary Table 7. Prediction of causal genes in PROMIS based on integration of 

information from bottom-up and top-down SNP annotation approaches 

Supplementary Table 8. Annotation of genome-wide significant associations in 

PROMIS from the level of the variant (bottom-up) 



2 

 

Supplementary Table 9. Annotation of genome-wide significant associations in 

PROMIS by proximal (±500-Kb from lead variant) gene function (top-down) 

Supplementary Table 10. Lead variants in PROMIS residing in exonic sequence 

Supplementary Table 11. Lead variants in PROMIS in high linkage disequilibrium (r2 ≥ 

0.8) with ≥ 1 non-synonymous SNP 

Supplementary Table 12. Lead SNP cis-eQTLs in PROMIS in lipid-relevant human 

tissues 

Supplementary Table 13. Enrichment analysis of cell-type specific enhancer overlap 

with our set of 90 lead SNPs from conditional analyses in PROMIS using HaploReg 

v4.1 

Supplementary Table 14. Prediction of causal genes in INTERVAL based on integration 

of information from bottom-up and top-down SNP annotation approaches 

Supplementary Table 15. Summary of associations between lipid metabolites in 

PROMIS and 175 major lipid loci 

 

Supplementary Figures 

Supplementary Figure 1. Extended heat map showing associations of significant loci 

from conditional analyses with all lipid metabolites, major lipids, and lipid-related 

diseases/disorders 

Supplementary Figure 2. Genetic architecture of serum lipid levels 

Supplementary Figure 3. Number of lipids associated with each variant 

Supplementary Figure 4. Increased de novo lipogenesis in lipodystrophy and NAFLD 

patients 

Supplementary Figure 5. Flow diagram outlining strategy for mediating gene 

prioritisation 

Supplementary Figure 6. Association of lipids with significantly associated loci from 

conditional analyses 

 

  



3 

 

SUPPLEMENTARY METHODS 

Lipid profiling, genotyping, and genetic analyses in INTERVAL 

INTERVAL is a cohort study of nearly 50,000 healthy blood donors in the UK, the details 

of which have been described previously [1]. In this study we analysed data from 13,814 

participants with genetic and lipid-profiling data. 

 

We performed DIHRMS on INTERVAL participants using the same protocol that we used 

for PROMIS, as described previously [2]. We obtained data on 432 lipids, 253 in positive 

ionisation mode and 179 in negative ionisation mode, which make up 19 lipid subclasses 

(Supplementary Table 1). 

 

DNA was extracted from buffy coat at LGC Genomics (UK) using a Kleargene method and 

samples of sufficient concentration and purity were aliquoted for shipment to Affymetrix 

for genotyping [3]. Duplicate samples and samples that were not of European ancestry 

were excluded. Additionally, SNPs were excluded if (1) the variant had fewer than 10 called 

minor allele homozygotes, (2) the cluster plot contained at least one sample with an 

intensity at least twice as far from the origin as the next most extreme sample, (3) the 

outlying sample(s) had an extreme polar angle (<15° or >75°) in the direction of the minor 

allele, (4) call rate < 99% per batch and < 75% overall, (5) MAF < 0.05, (6) HWE P < 1 

x 10-6, or (7) r2 ≥ 0.2 between pairs of variants [3]. The dataset was phased using 

SHAPEIT3 (in chunks of 5,000 variants with an overlap of 250 variants between chunks) 

and subsequently imputed using the 1000 Genomes Phase 3-UK10K imputation panel, 

resulting in 87,696,910 imputed variants in the dataset [3]. In total, 13,814 individuals 

from INTERVAL had overlapping information on lipidomics data and imputed SNPs. 

 

Linear regression was performed using BOLT-LMM v2.2 [4] to determine the association 

of each lipid with each SNP. Residuals were calculated from the null model for each lipid 

with adjustment for plate, age, sex, centre, appointment month, appointment hour, 

processing time in hours, and the first three genetic principal components. The threshold 
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for genome-wide significance level was set to P < 4.464 x 10-10 (5 x 10-8 / 112), as 112 

principal components explained >95% of the variance in lipid levels. 

 

Further details of candidate gene annotation in PROMIS and INTERVAL 

To prioritise candidate genes underlying the associations with lipid metabolites in PROMIS 

and INTERVAL, we applied the ProGeM framework, which combines information from 

complementary “bottom-up” and “top-down” approaches to assess the credibility of 

potential candidate genes [5]. The process described below is for PROMIS, though we also 

used the same approach for INTERVAL. 

 

For the bottom-up approach, we annotated SNPs based on their putative effects on 

proximal gene function if any of the following conditions were met: (1) the SNP resided 

within an exonic sequence of a gene (Supplementary Table 9); (2) the SNP resided within 

a splice-site (±2-bp from an intron-exon boundary); (3) the SNP was in high linkage 

disequilibrium (LD) (r2 ≥ 0.8) with a non-synonymous SNP (Supplementary Table 10); 

and/or (4) the SNP was a cis-eQTL for a local gene (Supplementary Table 11). To identify 

any exonic and splice site SNPs within our SNP list, we ran the Variant Effect Predictor 

(VEP) (http://www.ensembl.org/common/Tools/VEP?db=core) on the list of variants with 

the “pick” option (which outputs one block of annotation per variant) and used Ensembl 

transcripts as the reference for determining consequences. SNPs in high LD with our list 

of associated SNPs were identified within our imputed dataset and run through VEP to 

select only non-synonymous SNPs. Cis-eQTLs within our list of associated SNPs were 

identified using eQTL data provided by the Genotype-Tissue Expression (GTEx) project 

(http://www.gtexportal.org/home/datasets), keeping only significant SNP-gene 

associations (filename: “GTEx_Analysis_v7_eQTL.tar.gz”). We only annotated SNPs if they 

were significant eQTLs in at least one of the following tissues we deemed most relevant 

for lipid-related phenotypes: subcutaneous adipose tissue, visceral adipose tissue, liver, 

and/or whole blood. 

 

http://www.ensembl.org/common/Tools/VEP?db=core
http://www.gtexportal.org/home/datasets
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In the top-down approach, for each of our associated SNPs, we first identified all proximal 

genes located ≤ 500-Kb upstream or downstream using the ANNOVAR tool 

(http://annovar.openbioinformatics.org/en/latest/). We then identified all genes 

previously associated with a lipid-related biological process or function from the following 

databases: (1) LIPID MAPS Proteome Database (LMPD) 

(http://www.lipidmaps.org/data/proteome/LMPD.php); (2) Gene Ontology (GO) 

(http://geneontology.org/); (3) Online Mendelian Inheritance in Man catalogue (OMIM); 

(4) Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org/); (5) 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/); 

and/or (6) Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com/products/ipa). 

 

LMPD is an object-relational database of lipid-associated genes and proteins across 

multiple species including human, mouse, and fruit fly; we simply extracted all human 

genes (1,116 genes in total) from this database (accessed 16-Mar-2016). For GO and 

OMIM, we first identified all terms or Mendelian diseases containing one or more lipid-

related keyword(s) using HumanMine (http://www.humanmine.org/), then we extracted 

all human genes associated with one or more of these terms (accessed 01-Apr-2016 and 

07-Apr-2016). Similarly, for MGI we extracted all mouse genes using MouseMine 

(http://www.mousemine.org/mousemine/begin.do) (accessed 31-Mar-2016) that were 

associated with the following manually-selected lipid-related terms and their children: (1) 

abnormal lipid homeostasis (MP:0002118); (2) abnormal lipoprotein level (MP:0010329); 

(3) abnormal lipid metabolism (MP:0013245); and (4) adipose tissue phenotype 

(MP:0005375). From the KEGG database we extracted all lipid compounds (with “C” 

number IDs) with biological roles in order to identify all genes associated with reactions 

(with “R” number IDs) involved in lipid biology using MitoMiner (http://mitominer.mrc-

mbu.cam.ac.uk/release-3.1/begin.do) (accessed 31-Mar-2016). Finally, from IPA we 

downloaded the interaction networks for all fourteen of the lipid subclasses in order to 

extract all genes in a compound-specific manner (accessed 13-Apr-2016). 

 

http://annovar.openbioinformatics.org/en/latest/
http://www.lipidmaps.org/data/proteome/LMPD.php
http://geneontology.org/
http://www.informatics.jax.org/
http://www.genome.jp/kegg/
http://www.ingenuity.com/products/ipa
http://www.humanmine.org/
http://www.mousemine.org/mousemine/begin.do
http://mitominer.mrc-mbu.cam.ac.uk/release-3.1/begin.do
http://mitominer.mrc-mbu.cam.ac.uk/release-3.1/begin.do
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Once we had obtained lists of lipid-related genes from the aforementioned databases, we 

then searched for overlap with our list of proximal (≤ 500-Kb) genes based on HUGO Gene 

Nomenclature Committee (HGNC) symbols, thereby annotating SNPs with proximal genes 

where there was evidence that at least one might be involved in lipid-related biology. For 

each lead SNP we first recorded whether there was any compound-specific evidence from 

IPA for a SNP-gene assignment whereby both the SNP (from this study) and the gene 

(from IPA) were associated with the same lipid subclass. Then from the five remaining 

(compound non-specific) databases we categorised overlapping genes as either (1) 

recurrent candidates, in that they were highlighted in at least two different databases, or 

(2) single candidates. Further, we assigned the recurrent candidates a score out of five for 

prioritisation purposes, with one point awarded for each database highlighting them as 

being lipid-related. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Extended heat map showing associations of significant loci 

from conditional analyses with all lipid metabolites, major lipids, and lipid-related 

diseases/disorders 
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Caption for Supplementary Figure 1 (previous page): 
The effect estimates of the associations between significant variants with all lipid metabolites are plotted as a 
heat map. Results are shown for the association of all lipid metabolites (rows) with the most strongly associated 
genetic variant within each locus (columns). The associations with major lipids from the GLGC (total cholesterol, 
HDL-C, LDL-C, and triglycerides), DIAGRAM Consortium (type 2 diabetes), and CARDIoGRAMplusC4D Consortium 
(coronary artery disease) are also shown. The magnitude and direction of the effect estimates (standardised per 
1-SD) are indicated by a colour scale, with blue indicating a negative association and red indicating a positive 
association with respect to the SNP effect on the trait. Asterisks indicates the degree of significance of the P-
values of association. * = P < 1 x 10-4; ** = P < 5 x 10-8; *** = P < 8.9 x 10-10. Note: A high-resolution version 
of this figure is available as Additional file 3. 
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Supplementary Figure 2. Genetic architecture of serum lipid levels 

 

 

 
 

n = 5,662 participants. (a) Number of significantly associated loci per lipid. (b) Number of 

conditionally significant associations within each lipid QTL. (c) Histogram of variance 

explained by conditionally independent variants. (d) Effect size versus MAF. 
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Supplementary Figure 3. Number of lipids associated with each variant 

 

 
Results are shown for the number of lipids associated with each variant at genome-wide significance (P < 8.9 x 10-10). 
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Supplementary Figure 4. Increased de novo lipogenesis in lipodystrophy and NAFLD 

patients 

 

 
 

Increased de novo lipogenesis in lipodystrophy patients (left panel based on Eiden et al 

2015) [6] and NAFLD patients (right panel based on Sanders et al 2018) [7] both show 

an increase in TAG(48:1) and TG(50:1) originating from the liver, leading to lower levels 

of TG(52:4) and other triglycerides associated with APOA5-C3 variants. 
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Supplementary Figure 5. Flow diagram outlining strategy for mediating gene prioritisation 

 

 
 
The flow diagram shows how the “bottom-up” and “top-down” approaches were used and then integrated to identify probable causal genes for each 
significantly associated variant. A proxy is defined as those variants with r2 ≥ 0.8 with the lead (EUR population, 1000 Genomes). Abbreviations: eQTL 

= Expression Quantitative Trait Locus; GO = Gene Ontology; GTEx = Genotype-Tissue Expression; KEGG = Kyoto Encyclopedia of Genes and Genomes; 
Lipid MAPS = Lipid Metabolites and Pathways Strategy; MGI = Mouse Genome Informatics; OMIM = Online Inheritance in Man. Adapted from Stacey et 
al [5]. 
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Supplementary Figure 6. Association of lipids with significantly associated loci from 

conditional analyses 

 

(a) ANGPTL3 
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(b) APOA5-APOC3 
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(c) APOE-APOC1-APOC2-APOC4 
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(d) C19orf80 
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(c) CERS4 
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(d) CETP 
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(e) ELOVL2 
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(f) FADS1-FADS2-FADS3 
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(g) GAL3ST1 
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(h) GCKR 
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(i) LIPC 
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(j) LPL 

 

 
 



25 

 

(k) MBOAT7 
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(l) MLXIPL 
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(m) PAQR9 
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(n) PCTP 
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(o) PIGH-TMEM229B 
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(p) PLA2G10-NTAN1-NPIPA5 
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(q) PNPLA3 
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(r) SCD 
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(s) SGPP1 
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(t) SPTLC3 
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(u) UGT8 
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(v) XBP1 

 

 
 
Forest plots showing the association of the top 20 most significantly associated lipids with the lead 

variant in each significant locus from the conditional analyses. Note: * = P < 0.001; ** = P < 5 x 
10-8; *** = P < 8.9 x 10-10. 
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