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1 SUTVA assumptions for PAF

To unambiguously define Y 0
i in formula (1), Stable Unit Treated Value (SUTVA)

assumptions of treatment variation irrelevance and no interference are made,
see [1] for details. These assumptions may often be questionable in situations
where attributable fractions are calculated. For instance, consider the exam-
ple of stroke burden attributable to waist hip ratio as described in the main
manuscript. Differing potential outcomes may result if high waist hip ratio
originates from genetic, dietary or reasons based on lifestyle, indicating that
Y 0 may not be unambiguously defined. Similarly, regarding no-interference,
perhaps an individual’s risk of lung cancer is lessened if her partner gives
up tobacco. In these scenarios, PAF can still be imagined and estimated as
referring to a hypothetical population where nobody was obese or nobody
smoked, but the calculated PAF would refer to the versions of the risk factor
(and lack of risk factor) in the collected data, and not necessarily to any
real world intervention on the risk factor. While we recognize these problems
and ambiguities, we adopt a potential outcome framework in the manuscript
as despite these caveats it provides a more coherent basis for attributable
fraction definitions. In addition, regarding SUTVA assumptions, the consid-
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eration and development of methods that respect the undelying continuity
of the exposure of interest are certainly a step in the right direction. For
instance, suppose an underlying exposure X, having well defined potential
outcomes Y x is categorized into A ∈ {0, 1} depending on whether or not
X ≥ 0. Then, while Y x is well defined, Y A=0 and Y A=1 are not. The in-
terpretation of the resulting attributable fraction (calculated according to
the values of A) is the percentage prevalence reduction from a randomized
intervention that assigns a random value of the exposure X according to the
conditional distributions within Y = 1 and A = 1.

2 Confidence intervals

While we have used Bootstrap techniques to find confidence intervals for
PAF in the examples in the main manuscript, when the minimal risk ex-
posure level, xmin, is well defined and can be estimated as the unique sta-
tionary point of the function f(x) = P (Y x = 1), it is possible to derive
analytic confidence intervals using the theory of M-estimators (see [2] for in-
stance). M-estimators solve for the zero of a multivariate function relating
the data and true parameters, constructed so that the population value of
the function (or equivalently expectation of the function) is 0. For instance,
suppose the relationship between the response, Y, covariates, C, and expo-
sure X is modeled with a logistic regression. Parameter estimates can be
found by solving the p equations defined by setting the sample score vec-
tor ∑

i≤N Si(β) = ∑
i≤N

δ
δβ
logf(Yi|xi, ci, β) to 0. In addition, xmin needs

to satisfy the equation: ∑
i≤N

d
dx
P (Y = 1|ci, xmin) = 0, or equivalently∑

i≤N
d
dx
logOdds{P (Y = 1|ci, xmin)} = 0. Sometimes, the assumption of no

interactions between exposure and covariates will be made. Then the por-
tion of the linear predictor that depends on the exposure is typically modelled
via a basis expansion ∑

j≤p γjBj(x), with γ being a subvector of β and this
second equation simplifies to: ∑

j≤p
d
dx
γjBj(xmin) = 0, the dependence on
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i now removed. Finally, we need an equation (or equations) that relates
the parameters (β, xmin) to PAF, which we represent here by the parameter
π. This will typically vary depending on the study design. For case con-
trol designs, the appropriate equation is ∑

i≤N I(Yi = 1)(1− P (Yi=1|xmin,ci)
P (Yi=1|xi,ci) )−

π = 0. For prospective designs, 3 equations might instead by used; namely
1
N

∑
i≤N Yi − π1 = 0, 1

N

∑
i≤N P (Y = 1|xmin, ci) − π2 = 0 and π − π1−π2

π1
=

0. In either case, we relabel this set of equations as the vector equation∑
m(Yi, Xi, Ci, β, xmin, π) = 0 or ∑

m(Yi, Xi, Ci, β, xmin, π1, π2, π3) = 0, with
different components of m corresponding to the subequations defined by the
score vector, minimum risk level xmin and π. Solving the system will lead
to the estimates of PAF suggested in this manuscript. Under reasonably
mild conditions detailed in [2], it follows that the joint parameter estima-
tor (β̂, x̂min, π̂) is asymptotically normal with mean (β, xmin, π) and variance
E( d

dθ
m(Yi, Xi, Ci, θ))−1E(m(Yi, Xi, Ci, θ)m(Yi, Xi, Ci, θ)T )E( d

dθ
m(Yi, Xi, Ci, β, θ))−1

with θ representing the entire parameter vector. Data based estimates of the
components of this variance matrix, and hence the PAF can be estimated
via the Sandwich estimator.

3 Derivation of estimation formula for PAFq
Here we show that the counterfactual formula for PAFq that is:

PAFq = P (Y = 1)− P (I{X ∈ Rq}Y + I{X /∈ Rq}Y fq(X) = 1}
P (Y = 1)

can be re-expressed as:

PAFq = EC(I{X /∈ Rq}(E(Y |X,C)− E(Y | fq(X), C)))
P (Y = 1)

under the assumptions of exchangeability Y fj,q ⊥⊥ X|C for boundary points
fj,q j = 1, ..., of Rq with fq(X) defined as the closest boundary point toX.We
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also assume the boundary points of Rq have equi-distributed counterfactuals,
that is: Y fj,q |C = c ∼ Y f1,q |C = c, for all boundary points fj,q.

Proof:

First note that Y fq(X) = ∑
j I(fq(X) = fj,q)Y fj,q . It follows that

Y fq(X)|X = x,C = c ∼∑
j

I(fq(X) = fj,q)Y fj,q |X = x,C = c ∼

∑
j

I(fq(X) = fj,q)Y fj,q |C = c ∼

Y f1,q |C = c

for all x and c. Where the second last statement is from the above con-
ditional exchangeability and the last statement from the equi-distributed
counterfacturals.

Now, let B(X) = I(X ∈ Rq). Note that the numerator of PAFq involves

P (B(X)Y + (1−B(X))Y fq(X) = 1) =

EC,B(P (B(X)Y + (1−B(X))Y fq(X) = 1|C,B(X)}) =

EB(X),C(P (B(X)Y + (1−B(X))Y fq(X) = 1|C,B(X)}) =

EC(P (B(X) = 1|C)P (Y = 1|C,B(X) = 1) + P (B(X) = 0|C)P (Y fq(X) = 1|C,B(X) = 0))

Note also that:
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P (Y fq(X) = 1|C,B(X) = 0) =

EX|B(X)=0P (Y fq(X) = 1|C,X) =

EX|B(X)=0P (Y f1,q = 1|C = c) =

P (Y f1,q = 1|C = c) =

P (Y f1,q = 1|C = c,X = f1,q) =

P (Y = 1|C = c,X = f1,q)

again by conditional exchangeability, so that the above becomes:

P (B(X)Y + (1−B(X))Y fq(X) = 1} =

EC(P (B(X) = 1|C)P (Y = 1|B(X) = 1, C) + P (B(X) = 0|C)P (Y = 1|C = c,X = f1,q)

Now writing:

P (Y = 1) = EC(P (B = 0|C)P (Y = 1|B = 0, C)+P (B = 1|C)P (Y = 1|B = 1, C),

and writing PAFq = P (Y=1)−P (B(X)Y+(1−B(X))Y fq(X)=1}
P (Y=1) , the result follows by

simple algebra. The proof for equation (13) in the main manuscript follows
along similar lines.

4 PAFq → PAF as q → 0, assuming that X is
a continuous random variable and f (x) is a
continuous function

(Here we assume the technical condition that Rq, the set of risk factor values
of measure equal to q with the smallest supremal value of f , is uniquely
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defined for each q > 0. This will be the case if the set yx = {x : f(x) = y}is
finite for each y), or informally that the graph f(x) is ’nowhere flat’.

First note that by the definition of PAF and PAFq, the statement follows
directly if we can prove P (Y fq(X) = 1) ↓ P (Y xmin = 1) as q ↓ 0. Suppose this
is not the case; then for some ε > 0, P (Y fq(X) = 1) ≥ P (Y xmin = 1) + ε, for
all q > 0.

Next, since f(x) is continuous at xmin, we can choose δ be such that if
|x− xmin| < δ, then |f(x)− f(xmin)| < ε

Now, since X is continuous (more technically absolutely continuous w.r.t.
Lebegue measure), we have that

P (Sδ) = P{|X − xmin| < δ} = q∗ > 0.

By definition Rq ⊂ Rq∗ if q < q∗(recall Rq is the set of risk factor values
of measure equal to q with the smallest maximal value of f(x)). Supposing
then that q′ < q∗, Sδ = {x : |x−xmin| < δ} is a set of P -measure larger than
Rq′ and as a result we can choose x∗ ∈ Sδ/Rq′ . Again by the definition of
Rq′ , f(x∗) ≥ f(x) for all x in Rq′ . It follows that f(x∗) ≥ P (Y fq′ (X) = 1),
since P (Y fq′ (X) = 1) can be calculated as a weighted average of values of
f(x), with x in Rq′ . But f(x∗) < f(xmin) + ε by the continuity of f. This in
turn implies that P (Y fq′ (X) = 1) < P (Y xmin = 1) + ε, a contradiction.

5 Proof of formula for discretized estimation

Here we prove the equality of equations (14) and (15) in the main manuscript,
under conditional exchangeability. That is:

P (Y = 1)− EC(P (Y = 1|A = 0, C = c))
P (Y = 1) (1)
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=
P (Y = 1)− EC{(

�
x:A=0 P (Y x = 1|c)f(x|c, A = 0)dx)
P (Y = 1)

when Yx ⊥⊥ X|C for all x. Note that:

EC(P (Y = 1|A = 0, C))

= ECEX|A=0,C((P (Y = 1|A = 0, C = c,X))

= EC

�
x:A=0

P (Y = 1|A = 0, C = c,X = x)f(x|c)/P (A = 0|c)

= EC

�
x:A=0

P (Y x = 1|A = 0, C = c,X = x)f(x|c)/P (A = 0|c)

= EC

�
x:A=0

P (Y x = 1|C = c)f(x|c)/P (A = 0|c)

where the 4th equality uses consistency and the 5th conditional exchange-
ability. Inserting the above into (1) gives and noting f(x|c)/P (A = 0|c) =
f(x|c, A = 0) gives the result.
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