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ABSTRACT 

The pediatric Focused Assessment with Sonography for Trauma (FAST) is a sequence of 

ultrasound views rapidly performed by the clinician to diagnose hemorrhage. One limitation of 

FAST is inconsistent acquisition of required views.  We sought to develop a deep learning model 

and classify FAST views using a heterogeneous dataset of pediatric FAST. This study of 

diagnostic test developed and tested a deep learning model for view classification of archived 

real-world pediatric FAST studies collected from two pediatric emergency departments. FAST 

frames were randomly distributed to training, validation, and test datasets in a 70:20:10 ratio; 

each patient was represented in only one dataset to maintain sample independence. The outcome 

was the prediction accuracy of the model in classifying FAST frames and video clips. FAST 

studies performed by 30 different clinicians from 699 injured children included 4,925 videos 

representing 1,062,612 frames from children who were a median of 9 years old. On test dataset, 

the overall view classification accuracy for the model was 93.4% (95% CI: 93.3-93.6) for frames 

and 97.8% (95% CI: 96.0-99.0) for video clips. Frames were correctly classified with an 

accuracy of 96.0% (95% CI: 95.9-96.1) for cardiac, 99.8% (95% CI: 99.8-99.8) for thoracic, 

95.2% (95% CI: 95.0-95.3) for abdominal upper quadrants, and 95.9% (95% CI: 95.8-96.0) for 

suprapubic. A deep learning model can be developed to accurately classify pediatric FAST 

views. Accurate view classification is the important first step to support developing a consistent 

and accurate multi-stage deep learning model for pediatric FAST interpretation. 

Keywords: Abdominal Injuries/diagnostic imaging, Ultrasonography, Pediatric Trauma, 

Machine learning, Deep learning,  
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INTRODUCTION 

Focused Assessment with Sonography for Trauma (FAST) is a point-of-care ultrasound 

diagnostic study, in which a sequence of thoracic and abdominal ultrasonographic views 

performed by the treating provider is used to rapidly identify free fluid (hemorrhage) secondary 

to blunt abdominal trauma.  The FAST is beneficial because it avoids the use of ionizing 

radiation, decreases computed tomography (CT) usage, and improves outcomes in injured 

adults.(1) However, FAST has not been shown to improve outcomes in injured children, mainly 

because of variable diagnostic test characteristics.(2) The varying diagnostic test characteristics 

of FAST in children arise from patient characteristics, but also inconsistent provider experience 

in technical reliability in image acquisition and interpretation, leading to variable diagnostic 

accuracy and provider confidence.(3-5) Expertise in FAST improves the overall accuracy of the 

study, and therefore, the utility in potentially reducing unnecessary CT use.(6) However, barriers 

in education, training, skill maintenance, and quality assurance have perpetuated a lack of global 

FAST expertise.(3, 7, 8) This lack of expertise is often cited as the primary reason for FAST not 

being accurately implemented in clinical practice.(9-11) Therefore, it would be advantageous to 

develop novel methods of disseminating widespread expertise in pediatric FAST, as a potentially 

life-saving and radiation-sparing diagnostic tool for use in the treatment of injured children.  

Deep learning has been shown to be useful in many aspects of clinical image processing 

including automatic classification of diagnostic ultrasound, but not yet in pediatric FAST.(12) 

View classification models are often the first step in creating robust and interpretable deep learning 

models for successful diagnostic ultrasound applications.(13, 14) View classification allows 

researchers insight into the feasibility of a deep learning approach, while also contributing to the 

understanding of a multistage model.(15, 16) Previous diagnostic ultrasound deep learning 
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classification models, including those for echocardiography and radiology-performed diagnostic 

ultrasound, have utilized imaging data acquired from operators often with advanced training and 

accreditation in image acquisition.(13, 14, 17) Accredited operators are apt to derive standard 

sequences and higher quality image capture.(18, 19) In contrast, pediatric FAST represents a 

distinct challenge because image acquisition and interpretation are performed by treating providers 

with varying ultrasound training and skill levels. As such, provider-performed FAST studies have 

variability in image acquisition,(20) creating a layer of complexity when building a classification 

model.  Therefore, we sought to evaluate the ability of a deep learning model to recognize point-

of-care ultrasound features for view classification, in an effort toward eliminating barriers to 

clinical implementation of FAST in the treatment of injured children.  

MATERIALS AND METHODS 

Study Design & Setting 

We collected a convenience sample of archived pediatric FAST studies performed on 

children during routine emergency department (ED) care at two institutions, UCSF Benioff 

Children’s Hospital Oakland (BCHO) and UCSF Benioff Children’s Hospital San Francisco 

(BCHSF). UCSF Benioff Children’s Oakland is a regional trauma referral center and pediatric 

emergency department with approximately 45,000 visits annually, and BCHSF, is a tertiary 

referral center and pediatric emergency department receiving approximately 18,000 visits 

annually. Each hospital’s point-of-care ultrasound quality assurance program stores and catalogs 

FAST studies. FAST studies from March 1, 2018, through January 1, 2020, were retrieved in raw 

Digital Imaging and Communications in Medicine (DICOM) format from each hospital’s Picture 

Archiving and Communication Systems (PACS). This project received review approval by the 

Human Research Protection Program Institutional Review Board (IRB) from the University of 
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California, San Francisco and the UCSF Benioff Child’s Hospital Oakland. All data was held in 

a secure, high-performance computing environment in compliance with the IRB. Before 

processing, all images were deidentified according to the Health Insurance Portability and 

Accountability Act (HIPAA) Safe Harbor standards using a proprietary process developed at 

UCSF. Additionally, relevant clinical and trauma registry databases were queried from each site 

to be linked in a deidentified manner to the respective FAST study. All FAST studies were 

acquired with either the Sonosite Edge II (Fujifilm, Inc., Bothell, Washington) or the Sonosite X-

Porte (Fujifilm, Inc., Bothell, Washington) with transducer frequencies between 13 to 1 Mhz. 

Subjects 

We included FAST studies from patients younger than 18 years of age who were 

evaluated for a traumatic mechanism. FAST studies were excluded if FAST study and patient 

data could not be linked. 

Imaging Dataset and Preprocessing 

An imaging dataset of the pediatric FAST studies from children with blunt abdominal 

trauma was created. A FAST study was defined as one or more video clips from a single patient. 

Each video clip represents one of the possible FAST views (Figure 1). FAST views include 

standard abdominal and thoracic sonographic views, including the cardiac views, thoracic views, 

abdominal upper quadrant views, and suprapubic views. The ultrasound systems capture still 

frames at a rate of 30 still frames per second. Video clips for review were then generated at a rate 

of 60 still frames per second from labeling. These FAST still frames were all then resized to 

squared portable network graphics (PNG) of 299 x 299 pixels and normalized to appear with a 

standardized intensity. 
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Image Video Labeling 

All FAST studies were labeled by a fellowship-trained expert in pediatric FAST. FAST 

video clips were blindly labeled once as either: cardiac, thoracic, abdominal upper quadrant, or 

suprapubic. Where possible, the abdominal upper quadrant views also received a secondary label 

for laterality (corresponding to left [LUQ] or right [RUQ]) abdominal upper quadrants for a 

secondary sensitivity analysis). After labeling, FAST studies were randomly partitioned (Ratio: 

70-20-10) into training, validation, and test datasets.(21) A training dataset refers to a sample of 

data used to fit the deep learning model. The validation dataset refers to a new set of data used to 

provide an unbiased evaluation of a model fit on the training dataset. The test dataset refers to a 

separate set of data used to provide an assessment of a final model fit.  FAST video clips from a 

single patient could be included in only one dataset to maintain sample independence. A second 

ultrasound expert independently reviewed the test dataset labels to ensure reliability. The second 

expert was blinded to the results of the first expert. 

Model Architecture and Training 

The deep learning model, ResNet-152, is a convolutional neural network (CNN) pre-

trained on Imagenet, that reduces the time to computationally converge on a successful model 

and maximize the available computed feature set across a deep neural network. ResNet-152 is 

based on the extraction of defining features from objects within images. A one-cycle training 

was implemented with a batch size of 40 images and a final dropout of p=0.5. We utilized a 

predefined training technique including 12 epochs (complete passes over the dataset), with 8 

epochs focused on the top layer of ResNet-152, and 4 epochs allowing changes to weights across 
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the entire network.(22) Model optimization was implemented using an adaptive gradient descent 

method with weight decay and a flattened cross-entropy loss function. 

Data Augmentation 

Spatial transformations and other standard image manipulations were incorporated in an 

additional candidate model to introduce artificial noise in the dataset to reduce the chance of 

model overfitting. The transformation techniques included: 1) rotation (0.75 probability of 

rotation 0 to 180 degrees right or left), 2) cutout (0.75 probability loss of up to 4 regions 10 to 

160 pixels in size), 3) crop and resize (0.75 probability of a 299 x 299 pixel region selected from 

image scaled 0.75x to 2x original), and 4) adjustment of brightness and contrast (0.75 probability 

of a .05x to 0.95x brightness and/or 0.1x to 10x contrast change) to modify a subset of our 

images. This is a standard approach in computer vision tasks (15, 16) which we applied here to 

assess the classifier’s ability to handle increasingly varied images that differ significantly from 

the standard ultrasound presentation.  

Outcome Measures 

The primary outcome measure was the deep learning model’s classification of FAST 

view by (1) video clip and (2) still frame on the independent test dataset. The secondary outcome 

tested the model’s accuracy for view classification with the addition of differentiation of the two 

abdominal upper quadrant views, left and right, by video clips and still frame. The reference 

standard was expert FAST interpretation. The time required for the model to make a prediction 

was also reported by study.  

Evaluation of Model Performance  
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Descriptive statistics were reported as frequencies and proportions to describe the sample 

study population and expert classification. In the portion of the studies reserved for testing model 

performance, the output labels for both single still frames and full video clips were compared to 

the expert’s manual label. For each still frame the model assesses, it independently outputs a 

“probability” of class membership for each of the four classes. The class with the highest 

probability score is assigned as the output label for a single still frame, and the video clips are 

assigned an output label by using a plurality classification from all the still frames generated 

from a single video clip. (13)  

We calculated a confusion matrix and computed diagnostic accuracy measures for the 

model’s predicted classes. Model training and statistical analyses were performed using Python 

version 3.7 (Python Software Foundation) software, and R, version 3.6 (R Foundation for 

Statistical Computing). Class-specific accuracies are computed as the total proportion of true 

positive and true negatives for each predicted output class. Overall model accuracies are 

calculated as the total proportion of all correct classifications across all included views. F-scores 

were additionally computed as twice the harmonic mean of the positive predictive value (PPV) 

and sensitivity. Clopper-Pearson confidence intervals were also included for each proportion 

estimated. We sought to plot a visual representation of the transformed images as interpreted by 

the model. In a random sample of still images from the test dataset, we selected the 4096-

dimensional vector output from the last fully connected network layer (FC7) before the model’s 

output prediction image. These high-dimension vectors were initially reduced to 50 dimensions 

with principal components analyses and then further to two dimensions with T-Distributed 

Stochastic Neighbor Embedding (t-SNE) to visualize dimensionality reduction.(23) Similarity 

among the model’s interpretation of the images is represented by the lower Euclidian distance 
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between the points when plotted.(23, 24) We utilized gradient-weighted class activation mapping 

(Grad-CAM), a technique for the visual representation of the contribution of regions within an 

image to the model’s prediction.(25) The code used to generate this model and statistical analysis 

will be available upon request. However, ultrasound images are unavailable because of 

institutional regulation. 

 

RESULTS 

We deidentified 701 FAST studies with recorded video clips. Two studies were excluded 

for missing linked patient-level data. 699 FAST studies were included in our analysis. There 

were a total of 4,925 video clips representing 1,062,612 still frames.  The video clips were 

comprised of abdominal upper quadrant (45.8%), suprapubic (24.8%), cardiac (18%), and 

thoracic (12%). The majority of the FAST studies came from children less than 11 years of age, 

and one-third of the total studies came from children less than 6 years of age (Table 1). Sixty 

percent of the cohort were males. The majority of FASTs were obtained at the level 1 pediatric 

trauma center and were performed by 30 attending providers. There was no single attending 

provider that performed more than 11% of the FAST studies.  

The 699 FAST studies were divided into the training (70%), validation (20%), and test 

(10%) datasets (Table 1). Age, gender, source, and expert labeling were evenly distributed 

between the different datasets. The test dataset was made up of 70 FAST studies, 459 video 

clips, and 104,220 still frames, which had a slightly higher proportion of studies from children 6-

10 years of age, females, and suprapubic video clips/still frames.  

FAST View Classifier 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.20206607doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20206607
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 11	

After training on 757,583 frames, we applied the model to the test dataset.  The standard 

clock time needed to predict the view in 1000 still frames in this set was approximately 40 

seconds. The overall model classification accuracy was 97.8% (96.0 - 99.0%) for video clips, 

and 93.4% (93.3 – 93.6%) for still frames (Table 2).  The F-scores were 0.98 and 0.94 for video 

clips and frames, respectively. The model had view classification accuracies of video clips of 

98.7%, 99.8%, 98.3%, and 98.9% for the cardiac, thoracic, abdominal upper quadrant, and 

suprapubic views, respectively. The model had view classification accuracies of still frames of 

96.0%, 99.8%, 95.2%, 95.9% for the cardiac, thoracic, abdominal upper quadrant, and 

suprapubic views, respectively. The clustering analyses showed that the model could sort FAST 

still frames into groups according to FAST view (Figure 2). The model performed with similar 

accuracy on the augmented test dataset (Table 3). Based on two independent study experts, Grad-

CAM indicated that the model received prediction contributions from relevant view 

classification sites (Figure 3). 

We also evaluated a model with the view classification accuracy with the additional 

discernment of the abdominal right and left upper quadrant views. Forty-nine (24%) video clips 

of the upper abdominal views received a secondary expert label for right or left upper quadrant. 

151 (76%) were given a definitive label, of which 69 (46%) right upper quadrant and 82 (54%) 

left upper quadrant views. The overall model view classification accuracies were 88.5% (85.0 – 

91.5%) for video clips and 83.5% (83.3 – 83.8%) for still frames (Supplement Table A). The F-

scores were 0.88 and 0.83 for video clips and still frames, respectively. In this five-class model, 

view classification accuracy was lower in the abdominal upper quadrant views than the other 

anatomic views.  

Discordant Results 
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The experts had 5 (1.1%) discordant classifications between one another with an almost 

perfect inter-rater reliability of Fleiss Kappa of 0.98 (0.97-0.99), suggesting near-perfect 

agreement between expert classification. Furthermore, 8 video clips were discordant between the 

expert reference standard and the model predication classification (Supplement Figure A). Four 

of the video clips were concordant between expert reviewers, but discordant between the model’s 

prediction classification. These four discordant results were expert:model interpretation as 

cardiac:abdominal upper quadrant, abdominal upper quadrant:cardiac (2), and abdominal upper 

quadrant:suprapubic, respectively. The remaining four discordant video clips were discordant 

between the two experts. Three of these expert discordant video clips were concordant between 

expert 2 and the model prediction. The remaining video clip was discordant between both 

experts and the model prediction. 

 

DISCUSSION 

We found that a deep learning model can be trained to accurately perform view 

classification from a diverse set of real-world clinician-performed pediatric FAST studies. The 

model’s high accuracy implies the ability to parse out identifying features within an ultrasound 

image. Feature identification is the essential first step toward developing an accurate and 

interpretable deep learning multistage model to automate pediatric FAST. Notably, the model is 

accurate in separating abdominal FAST views, including the suprapubic view, which is the most 

sensitive abdominal view for intraabdominal hemorrhage detection in pediatric patients.(26)  

The inclusion of real-world clinician-performed FAST studies strengthens our model’s 

generalizability by avoiding an idealized dataset. Further, this study's strength is that our 

pediatric FAST dataset is a relatively large expert-labeled set of pediatric FAST video clips and 
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still frames from children with suspicion for abdominal hemorrhage. Similarly, data were curated 

from a large group of clinician-performed FAST studies from 30 providers with varying levels of 

FAST training and expertise. This dataset is also unique given the relatively young patient 

population, with greater than 30% of children less than six years of age.  

Our model’s pediatric FAST view classification accuracy suggests that a deep learning 

model can identify pertinent features to achieve class predication accuracy nearly as well as an 

expert. There is no clear association of the number of FAST studies one needs to perform for 

expertise gained.(27) Furthermore, the FAST was accepted by the trauma community in the 

1990s (28, 29), but barriers to training and implementation still exist, suggesting a need for 

alternative methods to develop its use.(20)  Pediatric FAST is a technically complex study 

because of a child’s compact anatomy. Previous reports of FAST show excellent reliability for 

view classification between expert FAST providers, but only moderate agreement for less 

experienced users.(30) Our model performed with similar accuracy to that of an expert, 

suggesting deep learning may offer a possible solution for variability between providers with 

inconsistent expertise in FAST.   

Deep learning classifiers have been trained and tested in different diagnostic ultrasound 

applications, including echocardiography view classification and lesion detection within the liver 

and breast.(12, 13, 15)  However, FAST represents a complex problem because of the variability 

in the expertise of FAST operators and inconsistency in the quality of images obtained. In 

contrast to other deep learning classifiers, FAST is performed by the treating provider instead of 

a certified ultrasonography technician, and real-time clinical decisions are made from the results. 

Furthermore, these studies are also conducted at a fast pace within a high stakes environment that 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.14.20206607doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20206607
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

is prone to error.(31, 32) The inclusion of a heterogeneous group of FAST operators adds natural 

variation to the dataset and increases the complexity of the task. 

Our findings build on previous work, demonstrating that machine learning models can 

identify pertinent features from FAST. Specifically, Sjogren et al. demonstrated feasibility in 

using basic machine learning techniques, including support-vector machine models, in 

interpreting adult FAST.(33) The model achieved 100% (95% CI, 69 -100%) sensitivity and 

90% (95% CI, 56-100%) specificity for free fluid detection using only the abdominal right upper 

quadrant view from 10 positive and 10 negative adult FAST studies. However, this study utilized 

a labor-intensive annotation method, a basic machine learning approach, a small number of 

FAST studies, and may not be adaptable to pediatric FAST, where post-traumatic abdominal 

pathology displays wide variability. In contrast, our study demonstrates that less labor-intensive 

expert labeling, along with an advanced deep learning technique, can also perform with a high 

degree of accuracy. Our view classification deep learning model also suggests that these 

techniques are well-suited for additional development of a multistage free-fluid classifier to 

interpret the presence or absence of free fluid representing intraabdominal hemorrhage for the 

pediatric FAST (1, 34, 35). 

One of this study's goals was to develop automated processes and methods to reduce the 

need for human input. Human input in dataset curation is laborious, subject to human error, 

resource-intensive, and is a rate limiting step in high-quality, in-depth learning model 

development.(12) Our automated image preprocessing pipeline and view classification model 

can accurately expedite the development of larger and more robust datasets for the future 

multistage FAST models.(36) Our imaging preprocessing pipeline masked extraneous data 

outside the ultrasound viewing area to avoid training from non-clinical relevant features. 
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Additionally, our preprocessing pipeline included data augmentation techniques to simulate 

image variation outside the standard differences in image quality to avoid overfitting the model. 

Similar to our image preprocessing, we developed a system optimized for discordant frame 

evaluation in which experts could quickly review images (Supplement Figure A). This 

discordant image review process allows for a rapid review and understanding of model 

inaccuracy.  

We recognize there are limitations to our study design. First, this study's primary 

outcome was to develop an accurate deep learning model for view classification of pediatric 

FAST instead of pathology identification. However, recognizing relevant features within 

pediatric FAST still frames ensures our preprocessing pipeline is working and that the model 

distinguishes relevant features. Second, in our secondary analysis, the accuracy declined once the 

model was tasked to discriminate between right and left abdominal upper quadrant views.  These 

two views are similar in sonographic appearance, which may be why the model has difficulty in 

classification, but could also represent the difficulty in the expert’s interpretation of right from 

left. Similar to previous studies of FAST view classification, the abdominal upper quadrant view 

includes both right and left because of the similarity of features and location of free fluid 

detection, which may be difficult for clinicians to define.(30) 

Third, our model's generalizability is limited by using a small group of FAST experts as 

the reference, and the majority of images came from a single institution and one ultrasound 

manufacturer. Previous studies have shown a strong agreement between experts for FAST study 

view classification.(30) Our team created a series of augmentations to simulate a more robust set 

of scenarios to account for homogenized institutional and manufacturer data. These simulations 

and reviewable frameworks will be necessary for future models and will allow our team to 
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expand to include more extensive, more diverse populations. These augmentation methods will 

be important for future work as they require less effort without compromising accuracy.(37)  

CONCLUSION 

In conclusion, we demonstrate that a deep learning model can be developed to provide an 

accurate view classification for a heterogeneous set of pediatric FAST video clips and still 

frames. This model suggests that our in-depth learning approach recognizes discerning imaging 

features within the pediatric FAST. Accurate view classification is the important first step to 

support developing a consistent and accurate multi-stage deep learning model for pediatric FAST 

interpretation.  
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TABLE 1.  Comparison of study sample characteristics for development and testing of the 
pediatric FAST deep learning model. 

 
 

Studies  
Video clips  
Still frames  

 Total 
699 

4,925 
1,062,612 

Training 
489 

3,510 
757,583 

Validation 
140 
956 

201,809 

Test 
70 
459 

104,220 
Age yo (studies, %) 

0-1  99 74  (15.1) 19 (13.6) 6 (8.6) 

2-5  133 93 (19.0) 30 (21.4) 10 (14.3) 

6-10  228 159 (32.5) 41 (29.3) 28 (40.0) 

11-15  198 132 (27.1) 43 (30.7) 23 (32.9) 

16-18  41 31 (6.3) 7 (5.0) 3 (4.3) 
Sex (studies, %)   

Female   282 201 (41.1) 57 (40.7) 24 (34.3) 

Male  417 288 (58.9) 83 (59.3) 46 (65.7) 
Source (studies, %) 

Site 1: BCHO 670 466 (95.3) 136 (97.1) 68 (97.1) 

Site 2: BCHSF  29 23 (4.7) 4 (2.9) 2 (2.9) 
  Video clips (%) 

Still frames (%) 
Cardiac  

 
883 (17.9) 

215,358 (20.3) 
646 (18.4)  

 157,848  (20.8) 
157 (16.4) 

 36,274 (18.0) 
80 (17.4) 

 21,236 (20.4) 

Lung  
 

565 (11.5) 
90,080 (8.5) 

407 (11.6) 
 63,974  (8.4) 

104 (10.9) 
 18,609  (9.2) 

54 (11.8) 
 7,497  (7.2) 

Upper Quadrant  
 

2,258 (45.8) 
482,412 (45.4) 

1,614 (46.0) 
 344,844 (45.5) 

444 (46.4) 
 90,206 (44.7) 

200 (43.6) 
  47, 362 (45.4) 

Suprapubic  
 

1,219 (24.8) 
275,762 (26.0) 

843 (24.0) 
190,917 (25.2)   

251 (26.3) 
 56,720 (28.1) 

125 (27.2) 
28,125 (27.0) 
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TABLE 2. Pediatric FAST view classification accuracy by the deep learning model for (a) 
video clips and (b) still frames. 
 
(a) Class-specific accuracy for video clips 

Expert Labels Deep Learning Model Predicted Class 

Model Overall 
Accuracy 

97.8 (96.0 - 99.0) 
 

F-Score 
0.978 

 
Brier’s Score 

0.378 
 

 
Cardiac Thoracic Upper Quadrant Suprapubic 

Cardiac 80 0 0 0 

Thoracic 0 53 0 1 

Upper Quadrant 5 0 194 1 

Suprapubic 1 0 2 122 

Sensitivity 

Specificity 

Accuracy 

100 (94.3 -100) 

98.4 (96.4 - 99.4) 

98.7 (97.0 - 99.5) 

98.1 (88.8 - 99.9) 

100 (98.8 - 100) 

99.8 (98.4 - 100) 

97.0 (93.3 - 98.8) 

99.2 (96.9 - 99.9) 

98.3 (96.5 - 99.2) 

97.6 (92.6 - 99.4) 

99.4 (97.6 - 99.9) 

98.9 (97.3 - 99.6) 

 
(b) Class-specific accuracy for still frames 
 

Expert Labels Deep Learning Model Predicted Class 

Model Overall 
Accuracy 

93.4 (93.3 - 93.6) 
  

F- Score 
0.935 

 
Brier’s Score 

0.394 

 
Cardiac Thoracic Upper Quadrant Suprapubic 

Cardiac 
19,970 12 462 792 

Thoracic 
28 7,377 8 84 

Upper Quadrant 
1,989 79 43,524 1770 

Suprapubic 882 13 732 26,498 

Sensitivity 

Specificity 

Accuracy 

94.0 (93.7 - 94.4) 

96.5 (96.4 - 93.6) 

96.0 (95.9 - 96.1) 

98.4 (98.1 - 98.7) 

99.9 (99.9 - 99.9) 

99.8 (99.8 - 99.8) 

91.9 (91.7 - 92.1) 

97.9 (97.8 - 98.0) 

95.2 (95.0 - 95.3) 

94.2 (93.9 - 94.5) 

96.5 (96.4 - 96.7) 

95.9 (95.8 - 96.0) 
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TABLE 3. Pediatric FAST view classification accuracy (95% confidence interval) by the 
deep learning model for still frames after augmentation techniques.  
 

Expert Label Rotation Cutout Crop-Resize Brightness-Contrast 

Cardiac 93.3 (92.8-93.7) 93.4 (93.0-93.9) 94.5 (94.1-94.9) 94.6 (94.2-95.0) 

Thoracic 95.6 (95.1-96.1) 95.2 (94.6-95.7) 93.7 (93.1-94.3) 95.9 (95.4-96.4) 

Upper Quadrant 95.5 (95.3-95.8) 96.0 (95.8-96.2) 95.5 (95.2-95.7) 95.3 (95.0-95.5) 

Suprapubic 95.6 (95.3-95.9) 95.8 (95.5-96.1) 95.7 (95.4-96.0) 95.5 (95.2-95.8) 

Overall 95.2 (95.0-95.3) 95.4 (95.3-95.6) 95.2 (95.0-95.4) 95.3 (95.1-95.4) 
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FIGURE 1. A FAST study is made up of a sequence of (a) FAST Views. Each FAST View is 
archived as a (b) FAST Video Clip(s). Each FAST Video Clip is made up of multiple (c) 
FAST Still frames. 
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FIGURE 2. T-distributed stochastic neighbor embedding (t-SNE) plot. Clustering analysis 
of pediatric FAST views: Cardiac views (red), Thoracic views (peach), Abdominal upper 
quadrant views (light blue), suprapubic views (dark blue). 
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FIGURE 3. Gradient Class Activation Mapping (Grad-CAM). A. Thoracic view with 
highest contribution from costal-pleural interface. B. Cardiac view with highest 
contribution from left atrium. C. Upper Quadrant view with highest contribution from 
spleen-renal-diaphragm interface. D. Suprapubic view with highest contribution from 
posterior bladder wall. 
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