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ABSTRACT 
 
Cardiomyopathy (CMP) is a heritable genetic disorder. Protein-coding variants account for 20-30% of 
cases. The contribution of variants in non-coding DNA elements that regulate gene expression has not 
been explored. We performed whole-genome sequencing (WGS) of 228 unrelated CMP families. 
Besides pathogenic protein-coding variants in known CMP genes, 5% cases harbored rare loss-of-
function variants in novel cardiac genes, with NRAP and FHOD3 being strong candidates. WGS also 
revealed a high burden of high-risk variants in promoters and enhancers of CMP genes in an additional 
20% cases (Odds ratio 2.14, 95% CI 1.60-2.86, p=5.26×10-7 vs 1326 controls) with genes involved in α-
dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) specifically 
enriched for regulatory variants (False discovery rate <0.03). These findings were independently 
replicated in the Genomics England CMP cohort (n=1266). The functional effect of non-coding variants 
on transcription was functionally validated in patient myocardium and reporter assays in human 
cardiomyocytes, and that of novel gene variants in zebrafish knockouts. Our results show that 
functionally active variants in novel genes and in regulatory elements of CMP genes contribute strongly 
to the genomic etiology of childhood-onset CMP. 
 
Key words: Cardiomyopathy, whole genome sequencing, regulatory variants, massively parallel reporter 
assay, CRISPR-Cas9 gene editing 
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INTRODUCTION 
 
Cardiomyopathy (CMP) is a genetic disease of heart muscle with a prevalence of 1:500 to 1:2500 in the 
general population (depending on CMP type). Over 20 million people worldwide are estimated to be 
living with the disease1. The actual prevalence is estimated to be even higher given that many patients 
who carry a gene defect have not manifested the disease yet. Several thousand new cases of CMP are 
diagnosed each year in North America alone2. Over a third of the cases are inherited while the remainder 
are sporadic3. Majority are autosomal dominant in nature caused by rare damaging variants in genes that 
impact muscle structure and function4,5. There are five phenotypes – hypertrophic (HCM), dilated 
(DCM), restrictive (RCM), left ventricular non-compaction cardiomyopathy (LVNC) and 
arrhythmogenic ventricular cardiomyopathy (AVC). The disease has a high penetrance in childhood6 
with CMP being the leading cause of heart failure and sudden cardiac death in children7. The greater 
severity of disease in childhood onset CMP is presumed to be related in part to genetic differences that 
have not been systematically evaluated8.  
 
There is considerable genetic overlap between different CMP subtypes. While sarcomeric genes 
including MYH7 and MYBPC3, explain ~50% of all HCM cases, other CMPs are more polygenic, and 
despite the inclusion of upwards of 100 putative CMP disease genes in clinical diagnostic testing panels, 
over 70% of CMPs remain gene-elusive (including familial cases)9–11. This is in part because the 
standard gene panel tests typically only capture small sequence-level variants within the coding regions 
of known CMP genes, and miss hard to sequence regions, most intronic splicing events, structural 
variation, and novel genes not included on the panels. Importantly, these tests do not evaluate the non-
coding genome that harbors DNA regulatory sequences including core and proximal promoters and 
enhancers, as well as distal regulatory elements12. These variants can disrupt the transcriptional 
activation process through multiple mechanisms including alterations in chromatin structure, non-coding 
RNA, transcript stability, and importantly, through the alteration of the DNA sequence of transcription 
factor binding sites (TFBS). 
 
A growing number of whole genome sequencing (WGS) studies are identifying novel genetic variants in 
pediatric and familial disease13–15. In autism spectrum disorder, a complex genetic condition, WGS has 
enabled identification of putative non-coding regions as hotspots for de novo germline variants16,17, new 
candidate risk genes18, and novel mechanisms of mutation only discovered by WGS19,20. More recently, 
WGS identified a higher burden of de novo variants in the enhancers of disease-associated genes in 
congenital heart disease patients compared with controls21. However, only 5 of the 31 enhancers 
identified were associated with altered transcription levels of the target genes. Compared to CHD which 
is a complex disorder that includes not only genetic but also environmental causes, the role of regulatory 
variants has not been explored in CMP, a primarily genetic disorder. 
 
Here, we used WGS to characterize all classes of genetic variation in a unique and exhaustively-
phenotyped cohort ascertained for childhood-onset CMP. WGS identified 11 novel genes important for 
clinical diagnostic testing, and also identified a significantly higher burden of regulatory variants in 
CMP genes in 20% of cases compared to controls, findings that were replicated in an independent CMP 
cohort. The function of the most important variants identified was confirmed through a study of 
endogenous gene expression in patient myocardium, human cell-based assays22,23 and CRISPR gene 
editing of zebrafish embryos, providing a paradigm for WGS interpretation in future genomic studies of 
childhood-onset CMP as well as other genetic disorders. 
 
RESULTS 
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Variant yield on WGS in the discovery cohort 
The discovery cohort consisted of 228 unrelated probands <21 years old at diagnosis with primary CMP, 
and 69 affected and unaffected family members (Supplementary Table 1). The cohort included 49% 
DCM, 33% HCM, 7% LVNC, 6% RCM, and 3% AVC. 29% of cases had a positive family history of 
CMP. WGS was performed on genomic DNA using Illumina HiSeq X platform at a median sequencing 
coverage of 31X (range: 20-50X). We interrogated 133 genes represented in different commercial CMP 
gene panels (Supplementary Table 2) for rare [population minor allele frequency (MAF) <0.01%], 
predicted damaging missense, loss-of-function (LoF) (frameshift, stopgain/stoploss, splicing) and high-
risk regulatory variants. Figure 1a depicts the workflow for filtering pathogenic and likely pathogenic 
protein-coding single nucleotide variants (SNVs), insertion-deletions (indels), copy number variants 
(CNVs), and high-risk regulatory variants in the overall cohort. Protein-coding variants were classified 
as pathogenic (including likely pathogenic) using the American College of Medical Genetics (ACMG) 
criteria17,24–30. Pathogenic protein-coding SNVs and indels in known CMP genes were detected in 
78/228 (34%) cases, and CNVs in 6/228 (2%) cases. Only two cases harbored homozygous variants. An 
additional 20% cases harbored high-risk variants in regulatory elements of CMP genes, and 5% cases 
harbored likely pathogenic LoF variants in novel candidate genes (Figure 1b). Variant distribution by 
CMP subtype, by patient and by gene category is shown in Figures 1c-e.  
 
Protein-coding variants in known CMP genes 
Protein-coding SNVs and CNVs are described in Supplementary Tables 3 & 4. The majority (64%) of 
pathogenic protein-coding variants were in sarcomeric genes which represented a significant enrichment 
compared to other gene categories (binomial p=3.16×10-49). HCM cases had a higher yield of pathogenic 
protein-coding variants compared to other CMP subtypes with odds ratio (OR) 3.14, 95% confidence 
intervals (CI) 1.77-5.57 (p=1.22×10-4). Of note, WGS detected pathogenic protein-coding variants in 
17/228 (7.5%) cases previously missed by panel-based clinical genetic testing since not all CMP genes 
are captured by commercial testing panels, and none of the gene panels explore for CNVs31. 
 
Effect of protein-coding variants on myocardial expression of target genes: A unique feature of our 
biobank is access to myocardial samples from patients undergoing surgery or cardiac transplantation. 
RNA sequencing was performed in LV myocardial samples from 35 sequenced CMP patients to validate 
the effect of LoF SNVs and CNVs on gene expression. Figure 2a-c shows that candidate gene mRNA 
expression was below the 25th percentile in the myocardium of patients harbouring LoF SNVs (DSC2, 
FLNC, MYBPC3) compared to the remaining cohort. Endogenous gene expression levels were also 
reduced in patients with single copy deletion CNVs impacting both the promoter and first exons of the 
genes JPH2 and NEXN, and exon 11 of CTNNA3 (Figure 2d-f). The ability to show the impact of 
coding variants on endogenous gene expression in the target organ is a unique finding that supports the 
use of patient myocardium to validate variant pathogenicity. 
 
Protein-coding LoF variants in novel CMP genes  
WGS provided us an opportunity to explore for novel biologically relevant genes beyond known CMP 
genes as potential sources of pathogenic coding variants. We searched for rare (gnomAD MAF<0.01%) 
predicted deleterious heterozygous and homozygous LoF variants in genes involved in heart function 
with moderate-high heart expression, that were deemed to be constrained for LoF variants32,33. Using 
these criteria, we identified rare LoF variants in 11 novel genes in CMP patients who did not harbor a 
pathogenic protein-coding variant (5% of the cohort) (Supplementary Table 5). Exploration of 1266 
independent CMP probands in the 100,000 Genomes Project replication cohort identified rare 
heterozygous or homozygous LoF variants in five of these novel genes (FHOD3, NRAP, PDE4DIP, 
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PTGDS, and TRPM4). FHOD3 harbored the highest proportion of LoF variants, with variants identified 
in five additional CMP cases from the 100,000 Genomes Project as opposed to only one ICGC control 
sample. 
 
Of these 11 genes, we explored FHOD3 and NRAP further as strong candidates since they are known to 
have high heart-specific expression34,35, are important in the maintenance of sarcomeric and actin 
cytoskeleton in the heart, and have been associated with CMP in mouse studies and in small case 
series36–43. In our cohort, we found a rare frameshift variant in FHOD3 in a DCM patient and a rare 
homozygous frameshift variant in NRAP in a DCM patient born of consanguineous parents. 
Interestingly, the FHOD3 frameshift deletion at chr18:36652786 observed in our cohort was also found 
in a case from the 100,000 Genomes Project (Supplementary Table 6). The distribution of LoF variants 
in NRAP is displayed in Figure 3a and FHOD3 in Figure 3b for the discovery cohort, 100,000 
Genomes Project replication cohort, and gnomAD. Using LV myocardium from the patient with the 
NRAP variant, we confirmed that NRAP mRNA expression (using RNAseq and targeted qRT-PCR) and 
protein expression (on Western blot) were significantly downregulated in the patient harboring the 
variant compared to other CMP patients who did not harbor this variant (Figure 3c). 
 
Effect of CRISPR-Cas9 knockout of novel genes in zebrafish: To confirm a role for these novel genes 
in cardiac structure and function in vivo, we induced directed knockout of nrap and fhod3 in zebrafish 
embryos through yolk sac injection of sets of 4 CRISPR-Cas9 guide RNA (gRNA) complexes that 
redundantly target a single gene and induce efficient knockout to permit rapid screening for gene 
function44,45 (Figure 3d-g). Sanger sequencing revealed a high burden of variants with a high cutting 
efficiency by 4 gRNAs targeting the exons of nrap, fhod3a, and fhod3b compared to 0% in Cas9 only 
controls (Supplementary Figure 1). qRT-PCR showed a 0.64-fold downregulation of nrap, and a 0.4-
fold downregulation of fhod3a and fhod3b in CRISPR-Cas9 edited embryos compared to controls 
(Figure 3d). Phenotypic analysis revealed significant atrial enlargement in gene-edited embryos 
compared to either wild type or Cas9 only controls (p<0.01 vs controls for all genes) (Figure 3e). 
Ventricular end-diastolic area was significantly reduced in gene-edited embryos compared to wild-type 
or Cas9 controls (Figure 3f-g) but ventricular ejection fraction was preserved (wild type 36±2%, Cas9 
34±4%, nrap mutants 37±3% and fhod3ab mutants 42±2%), suggesting a restrictive CMP phenotype in 
embryos with defects in nrap, and fhod3. Together, these studies provide support for a role for LoF 
variants in novel genes like NRAP and FHOD3 in causing CMP. 
 
Regulatory variants of CMP genes 
We generated an atlas of functionally active regulatory elements of cardiac-expressed genes across the 
genome. This was done by mapping non-coding regions in the human heart that putatively regulate the 
transcription of cardiac-active genes based on experimental data assembled from heart-related 
epigenetic, DNAse, and histone ChIP-seq data deposited in ENCODE and other databases46–49. We 
defined promoter regions of the CMP genes by merging the DNase-seq peaks of open chromatin and 
histone marks specific for promoters and enhancers in cardiac tissues. Where this information was not 
available, we defined promoter regions as 1.5kb upstream and 1kb downstream of the transcription start 
site (TSS). For this study, we focussed on promoters and enhancers of known CMP genes rather than the 
entire genome to avoid false-positive results related to genes with an unclear association with CMP. We 
mapped SNVs to the active regulatory regions and defined them as Tier 1 if they were rare i.e. MAF 
<0.01% in population controls, and were predicted to alter transcription factor (TF) binding by at least 3 
of 4 prediction tools that predict if a sequence alteration affects a likely TFBS or chromatin effects with 
single-nucleotide sensitivity50–53 (see Methods). 
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We further prioritized variants that had at least a 1.3-fold enrichment in cases compared to controls, that 
were in regulatory elements active in the human left ventricle (LV), and that were seen in gene-elusive 
cases (i.e. those without pathogenic coding variants in CMP genes). This provided a final prioritized list 
of 52 high-risk Tier 1 variants in 19% of the cohort (Figure 4a). Two additional patients harbored high-
risk CNVs in regulatory elements of BAG3 and TGFB3 (Supplementary Table 4). For case-control 
burden analysis, we used WGS data from 1326 cancer patients without heart disease from the 
International Cancer Genome Consortium (ICGC)54. This confirmed an enrichment of regulatory 
variants in CMP genes in cases compared to controls (OR 2.14, 95% CI 1.60-2.86, p=5.26×10-7) (Figure 
4b). Supplementary Table 7 provides details of the high-risk regulatory variants. The top 4 genes 
significantly enriched for regulatory variants were in pathways related to (i) α-dystroglycan 
glycosylation important in sarcomere structure i.e. FKTN (OR 53.2, CI 2.9-991), and DTNA (OR 5.6, CI 
2.5-12.5), and (ii) desmosomal signaling i.e. DSC2 (OR 29.3, CI 1.4-611) and DSG2 (OR 9.7, CI 1.2-74) 
(Figure 4c). None of the variants were de novo amongst probands with complete trio data. Additional 
candidate Tier 1 variants in these and other genes important in these two signaling systems  are also 
described in the table even though they did not meet all the high-risk criteria. 
 
We extended our analysis to an independent replication cohort of 1266 CMP probands with WGS data 
from the 100,000 Genomes Project. There was a positive correlation between the discovery and 
replication cohorts for genes enriched for high-risk regulatory variants (Spearman ρ2 0.737, p=1.02×10-

8) with the top genes being similar in both CMP cohorts (FKTN, DTNA, DSC2, DSG2) with ORs ranging 
from 3.14-13.7 (Figure 4d).  
 
Pathway enrichment analysis: A comparison of pathways enriched for protein-coding versus regulatory 
variants was performed using Gene Ontology and Reactome55–57 databases. Pathogenic protein-coding 
variants were enriched in a narrow set of gene categories directly related to muscle contraction, 
including binding of actin, troponin C, calmodulin, and protein kinase (Supplementary Figure 2a). In 
contrast, high-risk regulatory variants were enriched not only in genes involved in processes related to 
muscle contraction, but also in additional diverse pathways related to ERK/Ras signaling, fibroblast 
growth factor receptor signaling, and tyrosine kinase signaling (Supplementary Figure 2b). Unlike 
protein-coding variants, none of the high-risk regulatory variants were in sarcomeric genes. There were 
only six genes (DSC2, DSG2, JPH2, LAMP2, NEXN, PRKAG2) that harbored high-risk variants in both 
coding and regulatory regions. 
 
Of note, a high proportion i.e. 44 (19%) cases harbored multiple coding and/or regulatory variants in 
known CMP genes which included 5% with multiple protein-coding variants, 4% with multiple 
regulatory variants, and 10% with a combination of both variant types (Figure 1d). Multiple variants in 
a third of patients were in genes important in myocardial architecture i.e. sarcomeric, cytoskeletal, 
desmosomal and other structural genes. Multiple variants were more common in HCM cases compared 
with other CMP subtypes (OR=3.4, CI=1.7-6.6, p=5.75×10-4).  
 
Functional assessment of regulatory variants: We prioritized Tier 1 regulatory variants in 6 genes 
(BRAF, DSP, DTNA, FKRP, FKTN, LARGE1, PRKAG2, TGFB3) for functional analyses based on the 
availability of left ventricular (LV) myocardium from variant-positive patients. Figure 5 shows high-
risk regulatory variants identified in these eight genes in our discovery cohort and the 100,000 Genomes 
Project cohort, overlaid on the background of the frequency distribution in the Genome Aggregation 
Database (gnomAD) reference population33. Most of the regulatory loci were depleted of variants in 
gnomAD suggesting highly constrained loci. Supplementary Figure 3 shows the single nucleotide 
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change in the variant of interest in our discovery cohort compared to wild-type sequence and the 
predicted effect on TF binding motifs58. 
 
Association of regulatory variants with myocardial gene expression: The ability to show a change in 
myocardial gene expression provides critical evidence for the effect of regulatory variants on 
endogenous gene transcription. mRNA and protein expression was measured using RNAseq, qRT-PCR 
and Western blot or immunohistochemistry in 35 patients where LV myocardium was available. 
Myocardial expression was compared in the patient harboring the variant to controls without CMP or 
patients with CMP not harboring the variant.  
 
We evaluated promoter variants in BRAF, DSP, FKTN, and LARGE1 proximal to the corresponding TSS 
that were predicted to alter TF binding. When compared to controls and/or variant-negative CMP 
patients, BRAF mRNA showed a 0.76-fold downregulation on qRT-PCR in the patient harboring a 
promoter variant (chr7:140624223_G/A) (Figure 6a). The DSP variant (chr6:7541776_G/A) was 
associated with higher myocardial expression of DSP on both RNA-seq (above the 75th percentile for the 
cohort) and on qRT-PCR (1.6-fold upregulation) (Figure 6b). FKTN promoter variant 
(chr9:108320330_G/A) was associated with lower FKTN expression in a RCM patient on RNAseq, on 
qRT-PCR (0.5-fold downregulation), and on Western blot (0.24-fold downregulation) (Figure 6c). In an 
HCM patient harboring a LARGE1 promoter variant (chr22:34316416_C/T), immunohistochemistry 
showed reduced peri-nuclear LARGE1 protein expression in the patient compared to controls (Figure 
6d). The PRKAG2 enhancer variant (chr7:151392181_A/C) found in a DCM patient was associated with 
a 1.4-fold upregulation on qRT-PCR and a 1.5-fold upregulation on Western blot in patient myocardium 
(Figure 6e). Myocardial TGFB3 expression in a RCM patient with a high-risk enhancer variant 
(chr14:76289218_A/G) predicted to interact with the TGFB3 promoter48 was associated with higher 
mRNA expression on RNA-seq, a 4.2-fold upregulation of mRNA on qRT-PCR, and 1.5-fold 
upregulation of TGFB3 protein on Western blot compared to controls (Figure 6f). These findings that 
are derived directly from the myocardium of patients harboring variants of interest confirmed that SNVs 
within key regulatory elements are associated with an important impact on functional gene products and 
provide important supporting evidence for variant pathogenicity.  
 
Effect of regulatory variants on gene transcription using reporter assays: 
 
Luciferase reporter assay: Gene promoters or enhancer+promoters harboring candidate SNVs and the 
corresponding control region were cloned into Firefly Luciferase reporters and transfected into human 
induced pluripotent stem cell (iPSC)-derived cardiomyocytes to determine the effect of the variants on 
the transcription activity of the luciferase reporter gene (Supplementary Figure 4a). The cloned 
promoter variants of BRAF (chr7:140624223_G/A), DTNA (chr18:32072866_A/G), FKRP 
(chr19:47249754_C/T), FKTN (chr9:108319991_A/C, chr9:108320330_G/A), and LARGE1 
(chr22:34316416_C/T) reduced luciferase activity compared to reference sequences. The promoter 
variant of DSP (chr6:7541776_G/A), a second promoter variant of LARGE1 (chr22:34316687_G/A), 
and an enhancer variant of TGFB3 (chr14:76289218_A/G) significantly increased luciferase activity 
compared to reference sequences (Figure 7a). The altered transcriptional regulation of the luciferase 
reporter by inserting promoter and enhancer variants of several CMP genes suggests a direct regulatory 
effect of these SNPs on target gene transcription. 
 
Massively parallel reporter assay (MPRA): To assess the functional effect of additional Tier 1 
regulatory variants on transcriptional activity, we used the higher throughput MPRA in 
cardiomyocytes22,23. Specifically, we tested the regulatory effects of 54 variants by dissecting the 
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transcriptional activities of their reference and alternative alleles (each allele represented by 25 unique 
barcodes, see Methods) in PGP17 iPSC-cardiomyocytes (n=5 independent replicates) (Supplementary 
Figure 4b-e, Supplementary Table 8). Of the 54 variants examined, 29 variants (54%) showed 
significant transcriptional differences between the two alleles [False discovery rate (FDR)<0.05] 
(Figure 7b,c) with log2-fold change ranging from -2.72 to +2.23 (Figure 7d, Supplementary Table 8). 
This represented 26 additional variants with high regulatory activity besides the ones validated in the 
previous myocardial and luciferase reporter assays. Representative examples for MPRA counts show 
high regulatory activity of variants in BRAF, DSP, and DTNA loci (Figure 7e). Overall, the MPRA 
findings confirm that our WGS confidently identified variants that are functionally active in 
cardiomyocytes.  
 
In summary, our findings using WGS revealed a significant contribution of regulatory variants and 
CNVs in CMP genes (in 20% of cases), and a small but notable contribution of LoF protein-coding 
variants in novel genes (in an additional 5% of cases) to childhood onset CMP.  
 
DISCUSSION 
 
WGS yields a large number of germline protein-coding and regulatory variants. An understanding of 
their contribution to human disease has been hampered by lack of stringent bioinformatics and 
functional approaches tailored to the disease under study. Using WGS in CMP, we identified deleterious 
protein-coding variants in 36% of our cohort, including 7.5% who had been missed despite clinical 
testing of candidate genes. Moreover, we found 5% of patients with deleterious variants in novel CMP 
genes and, very importantly, another 20% with high-risk regulatory variants not previously reported in 
CMP. An important subset of these regulatory variants were confirmed to have an effect on exogenous 
and endogenous gene expression in functional assays thereby providing strong evidence for their 
contribution to CMP. The discovery and validation of these novel variants reduced by half the number of 
gene-elusive CMP cases in our cohort. 
 
Of the novel genes harboring deleterious protein-coding variants, two genes, NRAP and FHOD3, 
emerged as strong candidates. Both are important in the maintenance of sarcomeric and actin 
cytoskeleton in the heart and have been associated with CMP in mouse studies and small case series36–

43,59,60. Our proband was homozygous for a LoF variant in NRAP similar to a previously reported family 
with an autosomal recessive DCM phenotype39

. Moreover, a high burden of variants in these genes was 
also found in our replication cohort. The reduced expression of NRAP in patient myocardium combined 
with the findings of reduced nrap and fhod3 expression and a CMP phenotype in zebrafish knockouts 
provides supporting evidence for NRAP and FHOD3 being novel genes that should be considered as 
strong candidate genes for clinical testing in CMP. 
 
A tremendously exciting finding of our study was the enrichment of high-impact regulatory SNVs and 
CNVs in cases compared to controls, with 20% cases harboring these variants in recurrently mutated 
regions active in the human LV. When analyzed by CMP subtype, the yield of high-risk regulatory 
variants was higher in non-HCM CMPs in which protein-coding variants only account for a small 
proportion of the cases. Overall, the regulatory variants were enriched not only in pathways related to 
muscle contraction but also in α-dystroglycan binding, desmosomal signaling and ERK/Ras signaling. 
Although coding variants in these pathways typically cause multi-system involvement, we did not 
observe systemic features in patients harboring non-coding variants in these genes. It is possible that the 
effect of regulatory variants is restricted to the heart unlike coding variants that impact protein function 
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in multiple tissues. Also, sarcomeric genes were less impacted by regulatory variants likely because they 
are more tolerant to haplo-insufficiency. 
 
A notable gene set with dysregulated expression involved DTNA, FKTN, FKRP, LARGE1, and POMT, 
that are essential for α-dystroglycan function through post- translational glycosylation. Dystroglycan is a 
central component of the dystrophin-glycoprotein complex, where it functions as a transmembrane 
linker, anchoring the cytoskeleton to the extracellular matrix and plays a role in myocyte, sarcolemma 
and sarcomere stability61,62. Disruption of glycosylation has been associated with severe cardiac 
dysfunction in FKTN or LARGE1-deficient mice and with DCM (with mild to no skeletal muscle 
involvement) often in the context of homozygous or compound heterozygous variants63–65. We also 
found an enrichment of regulatory variants disrupting the expression of desmosomal genes (DSG2, 
DSC2, JUP, DSP) in which both missense and LoF variants have been reported to cause AVC, DCM 
and RCM, similar to patients in our cohort66. 
 
A strength of our study was the ability to functionally validate the effect of the regulatory variants on 
gene and protein expression. We confirmed that the activity of a luciferase reporter gene was altered 
under the effect of the variant promoter/enhancer sequences compared to wild-type control in human 
cardiomyocytes67,68. We recognize that luciferase reporter assays are not able to assess for regulatory 
variants that affect chromatin structure. However, we defined promoters of CMP genes by merging the 
DNase-seq peaks of open chromatin and histone marks specific for promoters and enhancers obtained 
from cardiac tissue. Moreover, we were able to show that endogenous gene expression was altered in the 
LV myocardium of patients harboring these variants, a truly unique strength of our study. For example, 
upregulated myocardial TGFB3 has been observed in patients with DCM or HCM, but this is the first 
instance of a variant in the regulatory element of this gene being associated with upregulated TGFB3 
expression in patient myocardium69,70. Similarly, to the best of our knowledge, this is the first report of 
reduced target gene expression in the myocardium of patients harboring Tier 1 promoter variants as well 
as those harboring CNVs involving candidate CMP genes71–74. Importantly, using MPRA, we were able 
to demonstrate a significant regulatory effect of a larger subset of high-risk variants associated with 
these genes, reinforcing the strength of our variant selection strategy75–78. Together, these findings not 
only represent an important advance in our understanding of the cardiac regulome, but also provide 
novel insights into the genomic architecture of childhood CMP and add to the discovery of non-coding 
variants in human disease21. 
 
Similar to previous reports, we found multiple coding variants in 5% of cases which have been reported 
to contribute to a more severe phenotype79. In our cohort, we were also able to find co-occurrence of not 
only coding SNVs but also CNVs. Two patients with HCM, one with a pathogenic MYBPC3 SNV and 
MYOM1 CNV died, and another with a LoF splice-site variant in FLNC and a deletion CNV in CTNNA3 
required heart transplantation within the first year of life. A particularly intriguing finding from our 
study was that as many as 14% cases harbored multiple high-risk regulatory variants, sometimes in 
conjunction with a pathogenic coding variant. These variants were all found in genes important in 
myocyte structure. Further studies are needed to examine the association of multiple regulatory variants 
with disease severity.  
 
The role of regulatory variants may have been underestimated in our study since we did not explore 
distal enhancers. Also, TFBS that do not resemble the consensus sequence could have been misclassified 
as not being high-risk. As in silico predictions improve with time, it will enable more widespread 
exploration of the regulome for disease variants. Finally, we were limited in our ability to evaluate 
endogenous gene expression due to the small number of available myocardial samples.  



10 
 

 
Overall, our findings that high confidence variants identified using in silico prediction models have 
functional consequences validates our bioinformatics approach to novel variant discovery and makes a 
strong case for exploring variants in recurrently mutated cis-regulatory elements of CMP genes in order 
to increase the yield of genetic testing80,81. In summary, our work provides a guiding strategy to address 
regulatory variants in cardiac disease and emphasizes the need for further research to validate the 
clinical utility of these findings.  
 
METHODS 
 
Study cohort 
The study cohort comprised unrelated primary CMP index cases less than 21 years old at diagnosis, and 
affected and unaffected family members, recruited between 2007-2018 through the Heart Centre 
Biobank at The Hospital for Sick Children, Toronto80. HCM, DCM, RCM, LVNC and AVC were 
diagnosed based on published clinical criteria82,83. Patients with secondary CMPs resulting from inborn 
errors of metabolism, mitochondrial disorders, syndromic, and neuromuscular etiologies were excluded. 
Clinical data including demographics, diagnosis, family history, clinical genetic testing results, and 
outcomes during follow-up were captured. The median age at diagnosis was 2.8 years (range 0-20), 42% 
were female. Major self-reported ethnicities were 71% White, 17% Asian, 6% Black. 26% of cases were 
genotype-positive on previous clinical panel testing, 47% were genotype-negative, and 27% were 
clinically untested. Ten cases (4.7%) died, and 130 cases (57%) experienced a major adverse cardiac 
event on follow-up (Supplementary Table 1). Collection and use of human DNA and myocardial tissue 
from CMP cases through the Heart Centre Biobank Registry was approved by the Institutional Research 
Ethics Boards (Hospital for Sick Children, Children’s Hospital of Eastern Ontario, Toronto General 
Hospital, London Health Sciences Centre, Kingston General Hospital, and Hamilton Health Sciences 
Centre) and written informed consent was obtained from all patients and/or their parents / legal 
guardians80,81. 
 
Whole genome sequencing (WGS)  
WGS was performed on high quality DNA from blood or saliva to achieve a minimum of 30-fold 
coverage using Illumina HiSeq X platform through Macrogen, South Korea, and The Centre for Applied 
Genomics (TCAG, Hospital for Sick Children, Toronto). High quality paired-end reads (2x150bp) were 
mapped to human genome reference sequence (hg19) using Isaac aligner and variants were called using 
Isaac variant caller84. WGS quality metrics were calculated using mosdepth 
(https://github.com/brentp/mosdepth)85. Samples with average genome-wide coverage less than 10X 
were excluded from further analysis. Variants passing default Isaac variant caller quality metrics were 
annotated using snpEff (v.4.3)86 and annovar (v.2016.02.01)87. Variants used for downstream analysis 
were further required to have a ‘PASS’ flag in the ‘FILTER’ field. SNVs were additionally required to 
have a total filtered read depth (‘DP’) ≥ 10X, while indels were additionally required to have a total 
filtered read depth at the position preceding the indel (‘DPI’) ≥ 10X. The total number of SNVs per 
sample was calculated using bcftools88. 
 
Protein-coding variants in CMP genes 
By mining data from Online Mendelian Inheritance in Man (OMIM) database, various commercially 
available CMP gene panels, manual curation from literature, we compiled a primary list of 133 
candidate genes with strong association with CMPs (Supplementary Table 2). Mitochondrial genes 
were excluded. We developed computational workflows for interpretation of SNVs (missense, splicing, 
LoF), indels and CNVs in coding and non-coding regions. 
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Protein-coding SNVs and indels: We developed a custom variant classification workflow for the 
identification of pathogenic protein-coding and splice-site SNVs based on the ACMG 2015 guidelines24. 
The automated variant classification pipeline was based on information from different sources including 
ClinVar89 and Human Gene Mutation Database (HGMD)90 to determine previously reported pathogenic 
or likely pathogenic variants. 1000 Genomes91, NHLBI-ESP92, Exome Aggregation Consortium 
(ExAC), and genome aggregation database (gnomAD) were used as reference controls to filter for rare 
variants defined as MAF < 0.01%93. Pathogenicity of missense variants was predicted using prediction 
scores from at least five prediction tools including SIFT94, PolyPhen295, MutationTaster296, Mutation 
Assessor97, CADD27, PROVEAN25, phylogenetic p-value from the PHAST package for multiple 
alignments of 99 vertebrate genomes to the human genome (phyloP100way_vertebrate)98, MetaSVM 
and MetaLR26. Genomic conservation score was obtained from GERP++99, and phastCons12. Putative 
protein-truncating variants predicted to cause loss of function including splice-site, nonsense and 
frameshift variants were assessed and annotated using LOFTEE tool (https://github.com/konradjk/loftee) 
as a plugin via Ensembl’s Variant Effect Predictor (VEP v90) tool100. The pathogenicity of variants 
identified on clinical testing was verified using ClinVar89 and InterVar101 classifications where possible. 
Segregation and de novo analysis was performed on all variants when WGS from family members was 
available. SNVs and indels in CMP genes that met the pathogenicity criteria described above, and that 
further had a MAF<0.01% in the gnomAD v2.1.1 reference population, were considered causal for 
CMP. These likely causal variants were reviewed and confirmed through independent classification by 
the institutional molecular genetic testing laboratory and all reportable SNVs were confirmed using 
Sanger sequencing where possible. 
 
Protein-coding CNVs: For CNV calling, two read-depth-based algorithms, ERDS v1.1 (estimation by 
read depth with SNVs)102 and CNVnator v0.3.2103, were used as previously described29. Identified CNV 
regions were annotated using a custom annotation pipeline developed at TCAG. To increase call 
confidence, only CNV regions >1kb in size with at least 50% reciprocal overlap between ERDS and 
CNVnator calls and and <70% overlap with telomeres, centromeres and segmental duplications were 
included in downstream analyses. Rare CNVs were defined as variants occurring at < 1% frequency in 
over 1500 QC pass parental samples from an autism cohort, MSSNG18. Using human genome CNV 
map30, CNV events overlapping CNV regions that were <30% copy number prone were prioritized for 
downstream analyses. Rare CNVs >1kb in size, impacting coding exons were manually inspected using 
reads from BAM files and were further validated using qPCR with 100% concordance. Patients that did 
not harbor at least one causal variant (i.e. rare, protein-coding pathogenic SNV or CNV in CMP genes) 
were considered gene-elusive, and were further evaluated for protein-coding variants in novel genes and 
in regulatory elements of known CMP genes. 
 
De novo variant analysis: Complete parent-offspring trios were available in 22 cases. To identify de 
novo variants, we built a full Genome Analysis Toolkit (GATK)/v4.1.2.0 best practices104 workflow 
locally for joint calling of short variants (SNVs and indels) within our cohort. Paired-end raw reads were 
first trimmed and cleaned by trimmomatic v.0.32, then mapped to human reference genome GRCh37 per 
sample by using bwa v.0.7.15. The reference genome sequence and training dataset were downloaded 
from the GATK bundle site (ftp.broadinstitute.org/bundle/b37). Mapped reads were realigned and 
calibrated by Base Quality Score Recalibration (BQSR) tools. HaplotypeCaller was used to generate 
genotype VCF (gVCF) files for each sample. Finally, the gVCF files for all the samples were combined 
and joint-called by using CombineGVCFs and GenotypeGVCFs tools. In order to filter out probable 
artifacts in the calls, SNPs and indels were recalibrated separately by Variant Quality Score 
Recalibration (VQSR) tools, and variants that passed VQSR truth sensitivity level 99.5 for SNPs and 
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level 99.0 for indels were retained. We deployed the GATK refinement workflow to identify de novo 
variants that were deemed pathogenic or likely pathogenic per ACMG criteria. To infer possible high 
confidence de novo sites, we first recalculated phred-scaled genotype likelihoods of the samples by 
introducing 1000 Genomes project call set (1000G_phase3_v4_20130502) and pedigrees of the trios. 
These additional data can be used as prior knowledge to recalibrate the confidence of the genotypes, not 
just calculating a sample’s genotype likelihoods only by its reads. The tool CalculateGenotypePosteriors 
was applied in this step. Then, we used VariantFiltration to mark out the low Genotype Quality (GQ) 
sites whose GQ values were lower than 20 and read depths were lower than 10. Lastly, only the sites 
with all trio numbers ≥ GQ 20 were defined as high confidence de novo variants in the final call set. 
 
Protein-coding LoF variants in novel CMP genes 
To identify novel putative CMP genes beyond the 133 established CMP genes, we searched for 
predicted deleterious heterozygous and homozygous LoF variants (i.e. frameshift, nonsense, stopgain, 
stoploss, and splicing variants) in the remainder of the exome among CMP cases that did harbor a 
pathogenic protein-coding or high-risk regulatory variant in a CMP gene. LoF variants were identified 
using LOFTEE (https://github.com/konradjk/loftee)32,33. All LoF variants were required to be predicted 
as high impact by VEP100, observed at an allele frequency <0.01% in the gnomAD reference population, 
observed in <1% of unrelated families in the cohort, and affect genes that are expressed in the human 
heart . Variants were further prioritized if they were in a highly constrained gene (gnomAD pLI>0.9) 
and/or were important in heart function. Gene tissue expression level categories were obtained from the 
Human Protein Atlas (http://www.proteinatlas.org)35. 
 
SNVs and CNVs in regulatory elements of CMP genes 
A map was generated of the regulatory regions of the human genome, primarily promoters and proximal 
and distal enhancers, active in the developing and adult human heart based on experimental evidence 
and data from the Encyclopedia of DNA Elements (ENCODE) project47, FANTOM project46, Roadmap 
epigenomics49 and published data by Dickel et al48. The promoter regions of all CMP genes not included 
by Dickel et al were defined as 1.5kb upstream and 1.25kb downstream of the transcription start site 
(TSS). The TSS for canonical transcripts and when necessary, cardiac transcripts in build 37 of the 
human genome (hg19) were downloaded from the Ensembl Genome Browser (www.ensembl.org - 
accessed October 2017). To identify risk SNVs within defined regulatory regions of CMP genes, an 
automated custom non-coding variant prioritization pipeline was developed and implemented. Briefly, 
variants within defined regulatory regions were annotated using Ensembl’s Variant Effect Predictor 
(VEP v90)100. Variants overlapping known Ensembl’s regulatory features were compared with those 
identified in WGS data in reference populations in gnomAD (n=141,456). Regulatory regions are listed 
in Supplementary Table 9. Functional impact of rare regulatory variants was assessed based on TFBS 
creation or disruption scores. The scores for TFBS disruption (motif loss) and TFBS creation (motif 
gain) were based on combined prediction scores from four different tools - RegulomeDB50, 
motifbreakR51, DeepSEA52, and Fathmm-MKL105. Variants were deemed Tier 1 and were scored as 
damaging by at least 3 of 4 prediction tools (Tier 1). Regulatory variants were further prioritized if they 
occurred within gene elusive CMP cases, were associated with a gene having an OR >1.3 compared to 
the ICGC control cohort, and were in a region that is active in the human LV. Intergenic and intronic 
CNVs as well as indels <1kb overlapping promoter and enhancers active in the developing and adult 
human heart as defined by Dickel et al48 were also prioritized. 
 
Case control regulatory variant burden analysis 
WGS variant calls were obtained from 1326 patients without heart disease enrolled in the International 
Cancer Genome Consortium (ICGC)54. The WGS samples were generated from normal tissue, with 998 
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consisting of blood, 224 solid tissue from a site distal to the primary tumor, 76 adjacent solid tissue, and 
28 other tissues. Patients included 579 females and 747 males; diagnoses included 286 pancreatic 
cancers, 221 brain cancers, 178 prostate cancers, 123 breast cancers, 98 esophageal cancers, 82 liver 
cancers, 74 renal cancers, 70 skin cancers, 68 ovarian cancers, 64 bone cancers, 37 gastric cancers, 13 
oral cancers, and 12 biliary tract cancers. Data were obtained from the ICGC Data Portal Pan-Cancer 
Analysis of Whole Genomes (PCAWG) section. Samples were aligned to hs37d5 (GRCh37), and 
germline variant calls were made using the DKFZ/EMBL variant call pipeline. The “NORMAL” sample 
calls were extracted and filtered in a comparable way to the discovery cohort: only variants with a 
‘PASS’ flag covered by at least 10 reads (DP/DPI ≥10) were used for downstream analysis. Variant calls 
were converted to hg19 using Picard LiftoverVcf (http://broadinstitute.github.io/picard/). 
 
To compare variant burden between cases and controls for Tier 1 variants in regulatory elements of 
CMP genes, variant calls were required to have an allele frequency ≤0.01% in gnomAD. Variants 
observed in ≥1% of samples in the study cohort were excluded from burden testing to reduce false-
positive variant calls. For each comparison (gene, pathway, or the entire regulome), ORs were calculated 
as the frequency of cases versus controls harboring at least one variant. P-values were calculated using a 
two-sided Fisher’s exact test. A false discovery rate (FDR) threshold of 0.2 was applied after removing 
tests where no variants were observed in the combined case and control samples. To reduce bias in these 
calculations and avoid “zero cells” in the contingency tables, 0.5 was added to each observed frequency 
(Haldane-Anscombe correction). All statistical analyses were done using R statistical software version 
3.5.1. 
 
Replication cohort analysis 
Regulatory variant burden analysis was extended to an independent cohort of 1266 CMP cases, using 
samples from the 100,000 Genomes Project available to us through the Genomics England Clinical 
Interpretation Partnership from version 8 of the main programme106. All cases were required to be 
probands with WGS data available and have at least one normalized specific disease term matching 
"cardiomyopathy". Individuals with additional syndromic Human Phenotype Ontology (HPO) terms 
were excluded. The cohort included 745 HCM, 355 DCM, 43 LVNC, and 119 AVC subtypes; 22% were 
less than 21 years old at the time of diagnosis; 62% were male, 82% were of European ancestry. Where 
possible, short variant calls (SNVs and indels) were obtained after alignment to the reference genome 
hg38, otherwise GRCh37 variant calls were used. Variants were filtered to require a 'PASS' flag and to 
have a minimum total read depth (DP/DPI) of 10. hg38 and GRCh37 variant calls were converted to 
hg19 using Picard LiftoverVcf (http://broadinstitute.github.io/picard/). Variant burden analysis in the 
cases from the 100,000 Genome Project was performed as previously described by comparing with the 
ICGC control cohort. 
 
Pathway enrichment analysis 
Pathway enrichment analysis was performed using g:Profiler with default parameters 
(https://biit.cs.ut.ee/gprofiler)107. The protein-coding gene set was ranked according to the total number 
of pathogenic SNVs, indels, and CNVs observed in our cohort. The regulatory gene set was ranked 
according to the total number of prioritized regulatory variants observed among gene-elusive cases. 
Adjusted p-values were calculated using a Bonferroni correction, and only pathways with an adjusted p-
value <0.05 were considered significant.  
 
Subgroup analyses 
To compare variant burden in protein-coding CMP genes or pathways between CMP subtypes, a series 
of 2×2 contingency tables were constructed whereby each subtype was tested against all others for each 
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gene or pathway. A case was considered positive if it harbored at least one pathogenic variant (SNV, 
indel, and/or CNV), otherwise it was considered negative. Similarly, tests for associations with clinical 
outcome utilized 2×2 contingency tables and a case was considered positive if it harbored at least one 
variant of interest. Equivalently, burden tests for multiple variants of any type labeled ‘positive’ cases as 
those that harbor two or more of any variants for the gene or pathway being tested. P-values were 
calculated using a two-sided Fisher’s exact test. To reduce bias in the OR calculations and avoid “zero 
cells” in the contingency tables, 0.5 was added to each observed frequency (Haldane-Anscombe 
correction). A false discovery rate (FDR) was applied after removing tests where no variants were 
observed in any samples for each test set (genes or pathways). To identify enrichment for 
sarcomeric/cytoskeletal genes among all prioritized regulatory variants, a two-sided binomial test was 
used. Each variant was considered a ‘success’ if the variant was associated with a sarcomeric gene and 
was considered a ‘failure’ if the variant was associated with a different gene category. The prior 
probability of ‘success’ was set at 8/133 i.e. equal to the fraction of sarcomeric genes among the total set 
of known CMP genes. All statistical analyses were done using R statistical software version 3.5.1. 
 
Myocardial gene and protein expression 
LV myocardium was obtained from CMP patients who had consented to biobanking from leftover tissue 
at the time of cardiac surgery or cardiac transplantation and was immediately snap frozen in the 
operating room and stored in liquid nitrogen. 
 
RNA sequencing (RNAseq): To measure myocardial gene expression, RNAseq was performed using 
Illumina HiSeq 2500 platform at TCAG in 35 LV samples. Total RNA was extracted from LV 
myocardial samples using the RNeasy Mini kit (QIAGEN, Canada). The generated raw sequence data 
was filtered according to the procedures described previously108. The filtered sequence reads were 
aligned to the human genome browser UCSC hg19, using Tophat v.2.0.11, and processed to extract raw 
read counts for genes using htseq-count v.0.6.1p2. Sequencing data was mapped to the human 
transcriptome using HISAT2 spliced aligner109, and gene expression level was quantified using 
StringTie110. Reads per kilobase of transcript per million generated were normalized for the size of each 
library, and normalized for the length of the transcripts. Normalized RNAseq data for the genes analyzed 
in this study are available in Supplementary Table 10. Expression analysis was performed to determine 
fold-difference in mRNA expression in the variant-positive patient compared to the average values in 
the remaining cohort (i.e. patients without the candidate SNV or CNV on WGS)111. 
 
qRT-PCR: For additional confirmation of a difference in the mRNA expression level of the gene 
harboring the variant compared to the wild type sequences, we determined the relative mRNA 
expression using qRT-PCR112. Total RNA was extracted from patient LV myocardium using mirVana™ 
PARIS™ RNA and native protein purification Kit (Invitrogen, Carlsbad, California, USA) following the 
manufacturer’s protocol. The concentration and purity of the RNA was assessed using a Nanodrop 
2000c (Thermo Fisher, Waltham, Massachusetts, USA). RNA with an A260/280 ratio of 2.0±0.05 was 
further evaluated for its integrity using a TapeStation 4200 (Agilent, Santa Clara, California, USA). 
RNA samples with RNA Integrity number above 5 and rRNA ratio of 1.7-2.0 were used to synthesize 
complementary DNA (cDNA) using SuperScript IV Reverse Transcriptase (Invitrogen, Carlsbad, 
California, USA). Specific oligonucleotide primers for each variant (Supplementary Table 11) were 
designed by primer3-NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), and synthesised by 
Integrated DNA technologies (Coralville, Iowa, USA). Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, human) was used as a housekeeping gene for normalization. The qRT-PCR was performed in 
a ViiA7 qPCR system (Applied Biosystems, Foster City, California, USA) using PowerUp SYBRTM 
Green Master Mix (Applied Biosystems, Foster City, California, USA). The total volume of the PCR 
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reaction was 10 μl and PCR conditions consisted of a hold stage of 50°C for 2 min, then 95°C for 2 min 
followed by 40 cycles of 15 sec at 95°C and 15 sec at 55-60°C (Primer Tm dependent) and 72°C for 1 
min. The relative quantification of mRNA was performed using the 2−ΔΔCt method113. mRNA expression 
of target genes in the LV myocardium of the patient harboring the variant was compared to wild-type 
tissues derived from other individuals, including an autopsy sample from an individual without cardiac 
disease as well as CMP patients that did not harbour any known pathogenic coding or regulatory 
variants. Experiments were performed three independent times and each experiment included 3 technical 
replicates. Differences between patients with and patients without the variant were analyzed using the 
Student’s unpaired t test and considered significant at p<0.05. 
 
Western blot: To determine if change in mRNA expression was associated with a change in protein 
expression, Western blots were performed to assess myocardial protein expression114,115. Frozen tissues 
were homogenized in liquid nitrogen and lysed in radio-immunoprecipitation assay (RIPA) buffer and 
a protease inhibitor cocktail (Sigma, St. Louis, MO, USA). Samples were mixed with loading buffer, 
heated at 90°C for 5 min, separated using SDS-blot 4-12% Bis-Tris plus (Invitrogen, Carlsbad, 
California, USA) and transferred to nitrocellulose membrane. After blocking the membrane with 5% 
non-fat dry milk in phosphate buffer saline (PBS; pH:7.4), the membrane was incubated with either 
FKTN rabbit monoclonal antibody (ab131280; abcam, Cambridge, UK), rabbit polyclonal TGFβ3 
antibody (ab15537, abcam, Cambridge, UK), rabbit PRKAG2 Polyclonal antibody (MBS9134285, 
MyBiosource, San Diego, California, USA) or NRAP polyclonal antibody (PAS-88772; Invitrogen, 
Carlsbad, California, USA) in blocking buffer for 2 hour (h) at room temperature (Supplementary 
Table 12). The reference gene GAPDH (ab8245, abcam, Cambridge, UK) was used as a loading control. 
After extensive washing of the membrane with PBS/Tween-20, the goat anti-rabbit IgG-HRP and goat 
anti-mouse IgG-HRP (Invitrogen, Carlsbad, California,) were used as secondary antibodies at a dilution 
1:2000 for 1 h at room temperature. Reactive bands were visualized by ChemiDoc MP imaging system 
(Bio-Rad, Hercules, California, USA). Protein expression in the LV myocardium of the patient 
harboring the variant was compared to control samples of other CMP patients who did not harbor this 
variant. The results were quantified using ImageJ software (http://rsb.info.nih.gov/ij/) and relative 
protein abundance of the immunoblot signal from each target protein was normalized to average 
abundance of the immunoblot signal of control samples. Statistical analyses were performed using the 
Student’s unpaired t test on data from 2 independent experiments. Differences were considered 
statistically significant at p<0.05. 
 
Immunohistochemistry (IHC): Formalin-Fixed Paraffin-Embedded (FFPE) LV tissue from a CMP 
patient with a LARGE1 promoter variant and controls without LARGE1 variants were used for IHC 
analysis using standard techniques116. FFPE tissue blocks were sectioned at 4 μm, dewaxed in xylene, 
dehydrated with a serial dilution of ethanol solution and washed with PBS. Antigen retrieval 
was performed in target retrieval solution (Dako, Burlington, ON, Canada) for 45 min followed by 
blocking of tissues in 3% hydrogen peroxidase (H2O2) for 10 minutes. After washing with PBS, tissue 
sections were incubated for 30 min at room temperature with primary antibody for anti-LARGE1 (PA5-
78393, Thermo Fisher, Waltham, Massachusetts, USA) followed by incubation of sections with 
biotinylated secondary antibody for another 30 min (Supplementary Table 12). Immunolabeling was 
detected using EnVision+ System-HRP DAB kits (Dako, Burlington, ON, Canada). Sections were 
examined and imaged with a light microscope. Cell nuclei were counterstained with Myer’s 
Hematoxylin Histological Staining Reagent (Dako, Burlington, ON, Canada). The photographs were 
analyzed with automated image analysis software (Image J, National Institutes of Health, Bethesda, 
Maryland). The number of LARGE1 positive cells was averaged in 10 fields per section and repeated in 
3 replicates. Staining was compared between the individual harboring the LARGE1 variant and the 
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controls. Student’s unpaired t-test was used to determine differences between groups. A p-value of <0.05 
was considered significant.  
 
Reporter assays in human iPSC-derived cardiomyocytes 
 
Generation of human iPSC-cardiomyocytes: Induced pluripotent stem cells (iPSC) derived from 
peripheral blood lymphocytes of a healthy adult donor (PGP17), were differentiated into cardiomyocytes 
(CMs) using a STEMdiff Cardiomyocyte Differentiation Kit. The PGP17_11 iPSC line is devoid of any 
known cardiac disease variants and the protocol for differentiation into cardiomyocytes has been 
previously described114. The beating of differentiated iPSC-derived cardiomyocytes was observed at day 
8 post differentiation. Cells were re-seeded at day 16 into 12-well plates for transient transfection. 
Cardiomyocytes were co-transfected with luciferase constructs at day 21. Transfected cells were 
harvested 48 h after transfection and firefly and renilla luciferase activity was measured using the Dual-
Luciferase® Reporter Assay System.  
 
Luciferase reporter assay: For functional validation of variant effect on gene transcription, Dual-
Luciferase® Reporter Assay System (Promega, Madison, Wisconsin, USA) was used to test and 
compare the transcription activity of a luciferase reporter gene under the effect of the variant promoter 
or enhancer+promoter sequence from the patient, or genome reference sequence of each regulatory 
region as a wild-type control67,68. In order to generate the luciferase plasmids harboring the sequence of 
regulatory element of the predicted variants and wild-type as a control, the nucleotide sequences of 1.5-
Kb of promoter region of BRAF, DSP, DTNA, FKRP, FKTN and LARGE1, and 2-Kb of-
enhancer/promoter region of TGFB3, containing the strongest transcriptional activation region, were 
commercially synthesized (Supplementary Table 13) (Synbio Technologies, Monmouth Junction, NJ, 
USA). The commercial plasmids encoding the respective wild-type, enhancer or promoter variant 
sequences were digested with appropriate restriction enzymes and cloned separately into multiple 
cloning sites of Firefly Luciferase basic vectors (pGL4.10-luc2; Promega, Madison, Wisconsin, USA). 
Human iPSC-derived cardiomyocytes were seeded in 12-well plates, and co-transfected with 2 µg firefly 
luciferase vectors (pGL4.10-luc2; Promega, Madison, Wisconsin, USA) harboring regulatory sequences 
of wild type, BRAF, DSP, DTNA, FKRP, FKTN and LARGE1 or TGFB3 variants and 40 ng of Renilla 
Luciferase control reporter vectors (pRL-TK Vector; Promega, Madison, Wisconsin, USA) for 
normalization of transfection conditions. At 48 h post-transfection, luminescence was detected with 
Dual-Luciferase® Reporter (DLR™) assay system. The experiment was performed in three independent 
replicates and each sample was also tested in triplicate in each experiment. Firefly luciferase was 
measured, and followed by Renilla luciferase, in the same well. The normalizing activity of the 
experimental reporter was calculated by dividing the firefly luciferase signal by the internal renilla 
luciferase signal. Promoter-driven control firefly luciferase vector (pGL4.13-luc2/SV40; Promega, 
Madison, WI, USA) was used as a reference. An unpaired two-tailed Student’s t-test was used to 
compare if the difference between luciferase activity of the luciferase reporter gene under the effect of 
the regulatory variant sequence and reference sequence of each regulatory region as a wild-type control. 
The significance threshold was set at p<0.05. 
 
Massively parallel reporter assay (MPRA): Oligonucleotides of 135 bp with 11-bp barcodes were 
designed and synthesized by TwistBioscience (USA). Variants were centered within the 135 bp oligo. 
The full list of variants tested can be found in Supplementary Table 6. To control for technical 
variation and to assess biological relevance, each tested allele was represented a minimum of 25 times, 
each with a unique barcode. The oligonucleotide library contained 2700 oligos for our genomic variants, 
100 oligonucleotides for positive controls, and 1500 oligonucleotides for negative controls i.e. 
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scrambled sequences. These oligonucleotides were part of an oligonucleotide library that included an 
additional 234,500 sequences as part of a larger study. The cloning strategy of the oligonucleotide 
library and selection of positive negative controls (300 random sequences, each with 5 barcodes) was 
performed according to Mattioli et. al23. The oligonucleotide library was transfected into five biological 
replicates of PGP17 iPSC-derived cardiomyocytes with over 80% transfection efficiency across all 
replicates, using Lipofectamine Stem Transfection Reagent (STEM00015 Thermo Fisher, Waltham, 
Massachusetts, USA) (Supplementary Figure 3b). 48 hours post transfection, total RNA was harvested 
and DNA contamination was removed using DNase I (18047019, Thermo Fisher, Waltham, 
Massachusetts, USA). RNA samples with RNA Integrity number >7 were used to synthesize cDNA 
using SuperScript IV Reverse Transcriptase (Invitrogen, Carlsbad, California, USA). cDNA was used 
for library synthesis if it lacked plasmid contamination as determined by qRT-PCR performed on a 
ViiA7 qPCR system (Applied Biosystems, Foster City, California, USA) using PowerUp SYBRTM 
Green Master Mix (Applied Biosystems, Foster City, California, USA) (Supplementary Figure 3c). 
Tag-seq libraries were prepared as previously described23, and sequenced with single-end 50 bp reads on 
the HiSeq2500 platform (TCAG, Hospital for Sick Children, Toronto). Data were analyzed using 
MPRAAnalyze software 23,117 using random oligonucleotide sequences as null distribution. P values 
were calculated using a likelihood ratio test with MPRAAnalyze and a FDR<0.05 was considered 
significant.  
 
CRISPR-Cas9 editing to evaluate novel gene function in zebrafish embryos 
All zebrafish embryo studies were performed at the SickKids Genetics and Disease Models Core 
(Zebrafish Core), Toronto, and approved by the SickKids Animal Care Committee (Protocol #401951).  
 
Guide RNA (gRNA) design, synthesis and microinjection: All gRNA sequences were adapted from45, 
and are described in Supplementary Table 14. The primer sequences (Supplementary Table 15) were 
synthesized by Integrated DNA technologies (IDT, Coralville, Iowa, USA) and used for sgRNA in vitro 
synthesis, according to the earlier described protocol45. Microinjections were performed as described 
previously45 with minor modifications. Briefly, for nrap gRNA1, 250 pg of each gRNA with 800 pg 
Cas9 protein (Alt-R® S.p. Cas9 Nuclease V3, cat #1081058, IDT, Coralville, Iowa, USA) were co-
injected into wild-type embryos at one cell stage. For the co-injection of 8 gRNAs of fhod3a+b, 
gRNA1-gRNA4, 125 pg of each gRNA was injected while the amount of Cas9 protein remained 
unchanged. The injected embryos were kept in 0.003% Phenylthiourea (PTU) solution and incubated in 
a dark incubator at 28.5 °C for 3 days. All phenotypic analysis, imaging, DNA extraction and 
sequencing were performed at 3-days post fertilization (dpf). 
 
DNA extraction, PCR and sequence analysis: Crude DNA was extracted from whole zebrafish larvae 
using 1X-PCR buffer (10 mM KCl, 10 mM Tris, PH 8.0; 1.5 mM MgCl2) containing 1 mg/ml 
proteinase K (Thermo Scientific, Waltham, Massachusetts, USA ). The mixture was incubated at 55 °C 
for 50 min and then 98 °C for 10 min to deactivate proteinase K. To sequence each gRNA region, PCR 
was performed using Taq DNA polymerase (Bio basic, Markham, ON, Canada). The 25 μl reaction 
mixture contained 1X-PCR reaction buffer, 2 mM MgCl2, 0.2 mM dNTP, 0.2 mM of each forward and 
reverse primers, 0.75 U of Taq polymerase, and 1.5 μl of crude DNA (~200 ng). The primer pairs and 
their corresponding annealing temperatures are summarized in Supplementary Table 15. The PCR 
reactions were set up as follows: 95 °C for 5 min, followed by 35 cycles of 95 °C for 20s, anneal 
temperature for 1 min, 72°C for 1 min and the final elongation is 72 °C for 5 min. The PCR product was 
purified using ExoSAP-IT (Applied Biosystems, Foster City, California, USA) following the 
manufacturer’s instructions and 100 ng of each PCR product was sent for sequencing to TCAG 
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(Toronto, ON, Canada) with sequencing primers described in Supplementary Table 15. The 
sequencing results were analyzed using ICE Analysis (https://ice.synthego.com/#/) or Geneious 9.1.4. 
 
qRT-PCR: At 3 dpf, pooled RNA samples were collected either from zebrafish larvae injected with 
gRNAs of target genes or Cas9 only as a control using TRIzol™ Reagent (Invitrogen, Carlsbad, 
California, USA). First-strand cDNA was synthesized using high capacity cDNA reverse transcription 
kit (Applied Biosystems, Foster City, California, USA) following the manufacturer’s instructions. The 
primers listed in Supplementary Table 16 were used to amplify two reference genes of β–actin and 
GAPDH to normalize data. qRT-PCR assay was performed in a Roche LightCycler 96 machine using 
PowerUp SYBR Green Master Mix (Applied Biosystems, Foster City, California, USA). The relative 
expression level was calculated based on two technical repeats using 2- ΔΔCT method113. 
 
Sequencing: DNA samples were extracted from whole zebrafish larvae at 3 dpf and submitted for Sanger 
sequencing to TCAG (Toronto, ON, Canada) to confirm cutting efficiency in the exons targeted by nrap, 
fhod3a, and fhod3b gRNA compared to Cas9 only as a control. ICE CRISPR analysis tool (Synthego, 
Menlo Park, CA) was used for analysis of CRISPR edits in fhod3b. 
 
Zebrafish cardiac phenotyping: Cardiac phenotyping of zebrafish embryos was performed at 3 dpf to 
assess cardiac chamber morphology, size and function. For wild field microscope in vivo imaging, 3 dpf 
zebrafish larvae were anesthetized with 0.02% tricaine and mounted in 3% methylcellulose in 50 mm 
glass-bottomed dishes. Video imaging was done with the Zeiss AXIO Zoom V16 Microscope using a 
PlanNeoFluar Z 1X/0.25 FWD 56mm objective lens under 112x magnification. The Movie Recorder 
function under Zen pro program was used and approximately 100 frames were captured for each video. 
All videos were exported at 17 frames per second for further analysis. Images were captured with a 
Nikon Eclipse Ti microscope under the Nikon A1 plus confocal imaging system using NIS-Elements 
program. Atrial area was measured at end-systole, and ventricular area was measured at end-systole and 
end-diastole with ventricular ejection fraction defined as (end-diastolic area – ventricular systolic area) / 
ventricular end-systolic area x 100 using ImageJ (https://imagej.nih.gov/ij/). Atrial and ventricular sizes 
and ventricular ejection fraction were compared using a two-tailed Student’s unpaired t-test to measure 
significant differences between mutants (nrap and fhod3) and controls (Cas9 and wild-type). Differences 
were considered statistically significant at P<0.05. 
 
Data availability: Sequencing data are currently being deposited in the EGA European Genome-
Phenome Archive and will be available for download upon approval by the Data Access Committee. 
Additional data generated or analyzed during this study are included in the supplementary information 
files, and additional raw data used for figures and results are available from the corresponding author on 
reasonable request. All computational tools used in this study are available as commercial or open-
source software.  
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FIGURE LEGENDS 
 
Figure 1: Yield of protein-coding and regulatory variants in 228 unrelated childhood CMP cases. 
(a) Flow-chart showing the selection process and yield of protein-coding and regulatory variants in the 
overall cohort and in the gene-elusive subset. 36% of all cases harbored at least one pathogenic protein-
coding variant in a CMP gene; among the remaining 146 gene elusive cases, 20% harbored at least one 
high risk regulatory variant in a CMP gene; and an additional 5% harbored a LoF variant in a novel 
gene. (b) Pie diagram showing the distribution of protein-coding and regulatory variants in CMP genes 
and LoF variants in novel genes across the cohort (n=228). WGS identified putatively causal protein-
coding SNVs/indels/CNVs in CMP genes in 36% of cases, high risk variants in regulatory elements of 
CMP genes in an additional 20% of cases, and loss of function (LoF) variants in novel genes in an 
additional 5% of cases. (c) Variant distribution by CMP subtypes: HCM cases had a higher yield of 
pathogenic protein-coding variants compared to other CMP subtypes (OR 3.14, CI 1.77-5.57, 
p=1.22×10-4). (d) Variant burden by patient in the cohort: 11 cases (5%) had multiple protein-coding 
variants in known CMP genes, 10 cases (4%) had multiple regulatory variants, and 23 cases (10%) had 
both protein-coding and regulatory variants in CMP genes. (e) Variant distribution by functional gene 
categories: Of all the pathogenic protein-coding variants, 64% were in sarcomeric genes which 
represented a significant enrichment compared to other gene categories (binomial p=3.16×10-49). 
Conversely, none of the high-risk regulatory variants were in sarcomeric genes. 
CMP, cardiomyopathy; SNV, single nucleotide variant; CNV, copy number variant; gnomAD, Genome 
Aggregation Database; ACMG, American College of Medical Genetics; TFBS, transcription factor 
binding site; P/LP, pathogenic or likely pathogenic; LoF, loss of function; HCM, hypertrophic 
cardiomyopathy; DCM, dilated cardiomyopathy; 
 
Figure 2: Effect of loss of function and copy number deletions in CMP genes on myocardial gene 
expression. The figure shows LV myocardial gene expression using RNA sequencing in the patient 
harboring a loss of function or copy number deletion (red dot) compared to other cases without the 
variant (grey dots) (n=35 cases). (a-c) Left panels show the amino acid position of three pathogenic loss 
of function variants in DSC2 (stopgain), FLNC (splice acceptor), MYBPC3 (frameshift deletion) 
predicted to result in nonsense-mediated decay of mRNA. The right panels show scaled RPKM 
expression of target mRNA to below the 25th percentile compared to the remaining cohort; (d-f) The left 
panels show the genomic location of three single CNV deletions in CTNNA3, JPH2, NEXN genes. The 
right panels show scaled RPKM expression of target mRNA to below the 25th percentile compared to the 
remaining cohort. 
RPKM, Reads Per Kilobase of transcript, per Million mapped reads 
 
Figure 3: Loss of function variants in novel CMP genes: Location of loss of function variants in (a) 
NRAP (ENST00000359988), and (b) FHOD3 (ENST00000590592) in 228 CMP cases in the discovery 
cohort (orange dots), and in 1326 CMP cases in the the 100,000 Genomes Project replication cohort 
(blue dots). gnomAD background density map of variants is shown in grey. (c) Myocardial NRAP 
expression: RNA-seq analysis demonstrated low NRAP mRNA expression (<75th percentile) in the LV 
myocardium of a DCM patient harboring a homozygous frameshift variant 
(chr10:115401188_T/TAGCG) (red dot) compared to 34 CMP patients without the variant (black dots). 
The boxplot shows median expression for the cohort, 25th and 75th percentiles, and lower and upper limit 
values. qRT-PCR confirmed reduction of NRAP mRNA expression in patients with the variant 
compared to 2 CMP patients without the variant i.e. WT (*p<0.05 vs WT). Western blot confirmed 
downregulation of NRAP protein expression in the patient with the variant compared to 3 CMP patients 
without the variant on representative Western blot images (*p<0.05 vs WT). (d-g) Zebrafish embryos 
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Zebrafish embryos at 1-cell stage were injected with 4 CRISPR-Cas9 guide RNA complexes to induce 
knockout of 2 genes, nrap and fhod3ab. (d) qRT-PCR showed a 35-49% downregulation of target 
mRNA expression in pooled samples of nrap and fhod3ab mutants compared to WT controls and Cas9 
only controls (n=3 independent replicates per gene) (**p<0.01 versus controls). (e) 22% nrap mutants 
and 26% fhod3ab mutants showed an abnormal cardiac phenotype compared to 0% in Cas9 only 
controls (**p<0.01 vs controls). (f) Atrial end-systolic area was higher and ventricular end-diastolic area 
was lower in nrap and fhod3ab mutants compared to WT and Cas9 only controls (**p<0.01 versus 
controls). (g) Representative phase contrast images of transgenic myl7:GFP embryos showing 
cardiomegaly, atrial dilation and ventricular restriction in mutant embryos compared to wild type or 
Cas9 only controls. (**p<0.01 versus controls). Scale bar = 50 µm. Data are shown as mean ± standard 
deviations of three independent experiments per sample, with each experiment including 3 technical 
replicates. 
gnomAD, Genome Aggregation Database; WT, wild-type; mut, mutant 
 
Figure 4: Regulatory variant burden in cases (n=228) and controls (n=1326). (a) Burden of Tier 1 
regulatory variants in CMP genes in cases (orange) and controls (blue). There was a significant 
enrichment of Tier 1 regulatory variants in the cases compared to controls (OR 2.14, 95% CI 1.60-2.86, 
p=5.26×10-7). (b) Burden of Tier 1 regulatory variants by genes in cases in the discovery cohort versus 
controls. Top 4 genes enriched for regulatory variants compared to controls included FKTN (OR=53.2, 
CI=2.9-991), DTNA (OR=5.6, CI=2.5-12.5), DSC2 (OR 29.3, CI 1.4-611) and DSG2 (OR 9.7, CI 1.2-
74). (c) Replication cohort (n=1266): Scatter plot showed positive correlation between genes enriched 
for high-risk regulatory variants in the CMP discovery cohort vs the 100,000 Genomes Project 
replication cohort (Spearman ρ2 0.737, p=1.02×10-8) with the top genes being similar in both CMP 
cohorts (FKTN, DTNA, DSC2, DSG2) 
OR, Odds ratio 
 
Figure 5: Genomic location of variants in regulatory elements of genes prioritized for functional 
studies. The figures show the genomic coordinates of SNVs in the discovery cohort (n=228, orange 
dots) and the 100,000 Genomes Project replication cohort (n=1266, blue dots) mapped relative to the 
first (P1) promoter region and transcription start site for the following genes (a) BRAF, (b) DSP, (c) 
DTNA, (d) FKRP, (e) FKTN, (f) LARGE1, and to the enhancer regions for (g) PRKAG2 (E15), and (h) 
TGFB3 (E1). SNVs observed in gnomAD reference samples are plotted as grey density curves across 
the region. All regulatory variants were observed with an allele frequency <0.01% in gnomAD dataset, 
and tended to cluster in regions that were depleted for variants in gnomAD. Coordinates are based on 
hg19 reference genome. 
gnomAD, Genome Aggregation Database 
 
Figure 6: Target gene and protein expression in the LV myocardium of patients harboring 
regulatory variants. RNA Seq, qRT-PCR, Western blot, and immunohistochemistry were performed in 
available LV myocardium from CMP patients (n=35) to detect mRNA and protein expression of target 
genes in patients harbouring regulatory variants in BRAF, DSP, FKTN, LARGE1, PRKAG2 or TGFB3. 
For RNA sequencing data, the target scaled RPKM gene expression was compared between the patient 
harboring the variant (red dot) and the remainder of the cohort (black dots) using boxplots showing 
median expression for the cohort, 25th and 75th percentiles, and maximum and minimum values (n=35). 
For qRT-PCR, Western blot, and immunohistochemistry, target gene or protein expression in the LV 
myocardium of the patient harboring the variant was compared to wild-type controls including an 
autopsy sample from an individual without cardiac disease as well as one or more CMP patients that did 
not harbour any known pathogenic coding or regulatory variants. Three independent experiments were 
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performed per sample with each experiment including three technical replicates per sample. Protein 
expression level of GAPDH as a house keeping gene was used as a loading control for Western blots. 
Error bars indicate standard deviation between the averages of each independent experiment. (a) BRAF: 
Promoter variant chr7:140624223_G/A was associated with normal BRAF mRNA expression on 
RNAseq, but reduced BRAF mRNA expression on qRT-PCR. Promoter variant chr7:140624286_C/T 
was associated with increased mRNA expression on RNAseq (>75th percentile). (b) DSP: Promoter 
variant (chr6:7541776_G/A) was associated with increased DSP mRNA expression on RNAseq (>75th 
percentile), and on qRT-PCR (*p<0.05 vs controls). (c) FKTN: Promoter variant 1 
(chr9:108320330_G/A) was associated with reduced FKTN mRNA expression on RNAseq (<75th 
percentile), reduced mRNA expression on qRT-PCR (p<0.05 vs controls), reduced protein expression on 
Western blot representative images, and reduced relative protein abundance on quantification (*p<0.05 
vs controls). (d) LARGE1: Promoter variant chr22:34316416_C/T was associated with lower perinuclear 
staining for LARGE1 (brown) (nuclear staining, blue) on representative immunohistochemistry images, 
and lower % of LARGE1 positive cells in patient myocardium (*p<0.05 vs controls). Thymic tissue was 
used as negative control. Scale bar = 20 µm. (e) PRKAG2: Enhancer variant chr7:151392181_A/C was 
associated with normal PRKAG2 mRNA expression on RNAseq, but higher mRNA expression on qRT-
PCR (*p<0.05 vs controls), higher protein expression on Western blot representative images, and higher 
relative protein expression on quantification (*p<0.05 vs controls). (f) TGFB3: Enhancer variant 
(chr14:76289218_A/G) was associated with higher TGFB3 mRNA expression on RNAseq, higher 
mRNA expression on qRT-PCR (*p<0.05 vs controls), higher protein expression on Western blot 
representative images, and higher relative protein abundance on quantification (*p<0.05 vs controls). 
RNA Seq, RNA sequencing; WT, Wild-type 
 
Figure 7: Reporter assays in human iPSC-cardiomyocytes. (a) Luciferase reporter assay showing the 
effect of regulatory variants on transcription. The cloned promoter variants of BRAF 
(chr7:140624223_G/A), DTNA (chr18:32072866_A/G), FKRP (chr19:47249754_C/T), FKTN 
(chr9:108319991_A/C, chr9:108320330_G/A), and LARGE1 (chr22:34316416_C/T) reduced luciferase 
activity compared to reference sequences. The promoter variant of DSP (chr6:7541776_G/A), a second 
promoter variant of LARGE1 (chr22:34316687_G/A), and an enhancer variant of TGFB3 
(chr14:76289218_A/G) significantly increased luciferase activity compared to reference sequences. 
*p<0.05 versus reference sequence. All luciferase reporter assays were performed with 3 biological 
replicates, each with 3 technical replicates. (b) Volcano plot representing the effect of 54 regulatory 
variants on gene expression using MPRA. 29 variants had significant differences in transcriptional 
activity between reference and alternative allele (FDR<0.05, represented by horizontal black line). Grey 
= CMP variant activity less than reference allele; black = CMP variant activity more than reference 
allele. (c) 66% of significant variants were associated with higher transcription activity of the reference 
allele. (d) Log2-fold transcriptional activity changes between alternative and reference allele sequences. 
(e) Representative graphs of MPRA counts of alternative allele (green) versus reference allele sequences 
(grey) of BRAF (chr7:140624223_G/A), DSP (chr6:7541468_T/C), and DTNA (chr18:32073296_C/G). 
All MPRA assays were performed in 5 independent biological replicates. 
MPRA, massively parallel reporter assay; ref seq, reference allele sequence; FDR, False discovery rate; 
CMP, cardiomyopathy 
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SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1: Sequencing results of gene editing in zebrafish. Sanger sequencing of 
gene-edited zebrafish (n=7) revealed a high burden of mutations in the exons targeted by 4 gRNAs for 
(a) nrap, and (b) fhod3ab compared to Cas9 only controls. Panels show the reference sequence, location 
of the gRNA, the targeted exon, effect of Cas9 only, versus CRISPR/Cas9 gRNA in zebrafish embryos. 
SNVs, indels and large deletions are seen in brown and blue. nrap, fhod3a and fhod3b gRNAs caused 
CRISPR edits in all injected embryos and were analyzed using Synthego ICE software as needed. 
Ref-seq, reference sequence: gRNA, guide RNA; ICE, inference of CRISPR edits 
 
Supplementary Figure 2: Pathways enriched for protein-coding and regulatory variants in the 
overall cohort (n=228). (a) Gene Ontology (molecular function category) and Reactome pathways 
enriched for pathogenic protein-coding and splicing variants. (b) Pathways enriched for high-risk Tier 1 
regulatory variants including muscle-related categories, dystroglycan binding, fibroblast growth factor 
receptors, and Ras pathways. 
 
Supplementary Figure 3: Prediction effect of regulatory variants on transcription factor binding 
motif. SeqLogo was used to predict motif disruption caused by variants in the regulatory elements of (a, 
b) BRAF, (c) DSP, (d) DTNA, (e) FKRP, (f, g) FKTN, (h, i) LARGE1, (j) PRKAG2, and (k) TGFB3. The 
nucleotide base pair outlined in the red box indicates the position of the variant in the motif. Regulatory 
sequence analysis of variants shows a single nucleotide change in each variant compared to reference 
sequence resulting in a disruption in transcription factor motifs that is predicted to be associated with 
transcriptional up- or down-regulation of the target gene.  
Major, reference sequence; Risk, variant sequence. 
 
Supplementary Figure 4: Luciferase assays in hiPSC-derived CMs. (a) Luciferase reporter gene 
vectors harboring various promoter sequences were used. The promoter-driven control Firefly luciferase 
vector (pGL4-13_luc2_SV40) and Promoterless Firefly Luciferase Basic Vector (pGL4-10-luc2) were 
used as a positive and a negative control, respectively. Renilla Luciferase control reporter vectors 
(pRL_TK Vector) was used for normalization of transfection conditions. Sequence of regulatory 
elements of the predicted variants and wild-type were commercially synthesized and cloned separately 
into multiple cloning sites of Firefly Luciferase basic vectors, pGL4.10_luc2. hiPSC derived CMs were 
co-transfected with firefly luciferase vector harboring regulatory sequences separately and Renilla 
Luciferase control reporter vector. Luminescence was detected with Dual-Luciferase® Reporter 
(DLR™) assay system. (b) Successful differentiation (cardiac troponin T staining in red) and 
transfection of plasmid pX601_GFP (green) into day 21 PGP17 iPSC-derived cardiomyocytes using 
Lipofectamine Stem Transfection Reagent. Magnification: ×20. (c) qRT-PCR was performed to detect 
DNA contamination from plasmidpool transfection of 5 biological replicates of PGP17 cardiomyocytes. 
(d) Unimodal distribution of barcodes that represent the oligonucleotides used in this project. DNA input 
represents plasmid pool of oligonucleotides, whilst replicates 1-5 (each replicate split on two lanes of 
HiSeq2500) flowcell are tag-seq libraries derived from the transfections in cardiomyocytes. (e) Pearson 
correlation of 5 MPRA replicates.  
hiPSC, human induced pluripotent stem cell; CM, cardiomyocytes; GFP, green fluorescent protein; P, 
plasmid; Pr, promoter; En, Enhancer; Luc, Luciferase; RES, Regulatory element sequence, WT, wild-
type; V, Variant; rep, replicate  
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SUPPLEMENTARY TABLES 
 
Supplementary Table 1: Clinical characteristics of pediatric cardiomyopathy probands in the discovery 
cohort (n=228). 
 
Supplementary Table 2: Cardiomyopathy gene list. 
 
Supplementary Table 3: Cardiomyopathy genes harboring pathogenic or likely pathogenic coding 
SNVs and indels (n=228 unrelated cases). 
 
Supplementary Table 4: Copy number variants affecting cardiomyopathy genes (n=228 unrelated 
cases). 
 
Supplementary Table 5: Loss of function variants in novel cardiomyopathy genes (n=228 unrelated 
cases). 
 
Supplementary Table 6: Loss of function variants in NRAP and FHOD3 in cardiomyopathy discovery 
(n=228) and replication (n=1266) cohorts. 
 
Supplementary Table 7: High-risk (and candidate) Tier 1 SNVs in regulatory elements of 
cardiomyopathy genes (n=228 cases) 
 
Supplementary Table 8: Tier 1 SNVs in regulatory elements of cardiomyopathy genes evaluated by 
MPRA (n=228 cases) 
 
Supplementary Table 9: Regulatory regions of cardiomyopathy genes for mapping non-coding 
variants. 
 
Supplementary Table 10: Normalized RNAseq data for genes with high-risk CNVs, LoF and 
regulatory variants 
 
Supplementary Table 11: Primer pairs for qRT-PCR in LV myocardium of candidate genes harboring 
regulatory variants. 
 
Supplementary Table 12: Antibodies used for Western blot and immunohistochemistry 
 
Supplementary Table 13: Synthesis of gene promoter and enhancer sequences for luciferase assays. 
 
Supplementary Table 14: Design of single guide RNAs to target novel genes in zebrafish embryos. 
 
Supplementary Table 15: Primer pairs for CRISPR-Cas9 editing of novel genes in zebrafish embryos. 
 
Supplementary Table 16: Primer pairs for qRT-PCR for novel genes targeted by CRISPR-Cas9 gene 
editing in zebrafish embryos. 
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