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Abstract 
The state of intermediate hyperglycemia is indicative of elevated risk of developing 

type 2 diabetes1. However, the current definition of prediabetes neither reflects 

subphenotypes of pathophysiology of type 2 diabetes nor is it predictive of future 

metabolic trajectories. We used partitioning on variables derived from oral glucose 

tolerance tests, MRI measured body fat distribution, liver fat content, and genetic risk 

in a cohort of extensively phenotyped individuals who are at increased risk for type 2 

diabetes2,3 to identify six distinct clusters of subphenotypes. Three of the identified 

subphenotypes have increased glycemia (clusters 3, 5 and 6), but only individuals in 

clusters 5 and 3 have immanent diabetes risks. By contrast, those in cluster 6 have 

moderate risk of type 2 diabetes, but an increased risk of kidney disease and all-cause 

mortality. Findings were replicated in an independent cohort using simple 

anthropomorphic and glycemic constructs4. This proof-of-concept study demonstrates 

that pathophysiological heterogeneity exists before diagnosis of type 2 diabetes and 

highlights a group of individuals who have an increased risk of complications without 

rapid progression to overt type 2 diabetes.  
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Introduction 
Type 2 diabetes occurs when insulin secretion from pancreatic beta-cells cannot 

sufficiently be increased to compensate for insulin resistance. Causes of beta-cell 

dysfunction and insulin resistance are heterogeneous, as are individual trajectories of 

hyperglycemia and subsequent manifestation of diabetes complications5. The currently 

used binary definition of type 2 diabetes is based solely on blood glucose and cannot 

differentiate between patients with mild or more aggressive disease, the latter of which 

is prone to early development of complications. In addition to blood glucose, new 

proposed diabetes classifications6,7 introduced additional variables, such as insulin 

secretion and insulin sensitivity, to sub-classify the type 2 diabetes spectrum with the 

primary aim of a better prediction of metabolic dysfunction and complications.  

The development of type 2 diabetes is a slow process, and its manifestation is 

preceded by a phase of prediabetes which often remains undiagnosed. Some diabetes 

complications, such as the unexpectedly frequent early diabetic kidney disease in the 

newly identified severe insulin resistant diabetes cluster6, might require preventive 

actions prior to the clinical manifestation of type 2 diabetes. The assessment of insulin 

secretion and insulin sensitivity could be hindered by secondary gluco-lipotoxicity, 

once diabetes has developed and glucose levels are continuously elevated8. 

Determination of prediabetes subphenotypes prior to the manifestation of diabetes 

could improve detection of individuals at risk for diabetes and complications.  

Using accurate measurements of insulin sensitivity and insulin secretion based on oral 

glucose tolerance test (OGTT)-derived variables, as well as variables linked to 

diabetes pathogenesis, we describe a novel subphenotyping approach of metabolic risk 

before diabetes manifestation. Variables include HDL-cholesterol, which has been 

causally linked to type 2 diabetes9, MR-imaging-derived measures of metabolically 

unfavorable and favorable fat compartments10 and liver fat content measured with 1H-

MR-spectroscopy. To assess genetic liability, we also incorporated a type 2 diabetes 

polygenic risk score11 as partitioning variable. The clusters identified by the 

sophisticated phenotypes in the TUEF/TULIP cohort were replicated using simpler 

markers of similar anthropometric and glycemic constructs in a large prospective 

occupational cohort (the Whitehall II study)4. Our results suggest that stratification of 
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populations at increased risk for type 2 diabetes using simple clinical features could 

allow for precise and efficient prevention strategies individuals at increased risk of 

developing type 2 diabetes. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.12.20210062doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.12.20210062
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Results  
Initial clustering and identification of the subphenotypes was done using data from a 

subset of participants (n=899) from the Tuebingen Family study and Tuebingen 

Lifestyle Program (TUEF/TULIP) study. Analysis was performed on data for 

participants who had no missing values for the preselected phenotyping variables: 

glucose challenge; insulin sensitivity; insulin secretion; HDL-cholesterol; liver fat 

content; subcutaneous fat volume; visceral fat volume; and a polygenic risk score for 

type 2 diabetes risk  The clustering was replicated in the Whitehall II cohort (n=6810) 

using conceptually similar variables: glycemia during glucose challenge, insulin 

sensitivity, insulin secretion, fasting insulin, fasting triglycerides, waist circumference, 

hip circumference, BMI and HDL-cholesterol (Extended Data 1; see Methods).  

We identified six clusters with distinctive patterns of the variables in the TUEF/TULIP 

study (Figure 1.A,B), which were replicated in the Whitehall II cohort (Figure 1 C,D). 

Cluster characteristics and comparisons are shown in Table 1, Suppl.Table 1-3 and key 

features of the clusters are reported in Extended Data  2.  

 

There was a cluster-specific enrichment of the diabetes-related genetic 

variant rs10830963 in MTNR1B (ANOVA p=0.02 after Benjamini-Hochberg 

correction for multiple testing, Suppl.Table 4). Participants in cluster 3 had higher 

frequency of the diabetes-associated G allele compared with those in cluster 1 

(uncorrected p=0.00036 for cluster 3 relative to cluster 1). Using the 

pathophysiological classification of diabetes-related genetic variants proposed by 

Udler et al12, we found differences within the beta-cell group (uncorrected p=0.001, 

p=0.007 after Benjamini-Hochberg correction, Figure 2.A). Pairwise comparisons 

showed significant differences between cluster 6 and each of clusters 1, 2 and 3 

(ANOVA with Tukey’s post-hoc test p<0.05), suggesting a lower abundance of beta-

cell function related risk alleles in cluster 6.  

 

In the longitudinal analysis, all participants with available data were followed for the 

development of diabetes, nephropathy, cardiovascular endpoints and all-cause 

mortality (Figure 3). The proportional hazards assessment in Whitehall II is shown in 
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Suppl.Table 5. Diabetes incidence was the highest in cluster 5, followed by cluster 3 in 

both the TUEF/TULIP and Whitehall-II cohorts. Mean follow-up was 4.1 and 16.3 

years, respectively. In TUEF/TULIP, participants in cluster 6 did not demonstrate an 

increased risk for diabetes (Figure 3.A). The diabetes-risk of cluster 6 was only 

moderately elevated in Whitehall II (HR 2.22[CI:1.7-2.89] compared with cluster 1.  

Cluster 3 and 5 showed hazard ratios of 3.45[CI:2.76-4.31] and 6.62[CI:5.06-8.67], 

respectively, compared with cluster 1, (Figure 3.C, Suppl.Table 5). By contrast, cluster 

2 had a significantly lower risk of developing diabetes in the Whitehall II cohort 

compared with cluster 1 (HR 0.4[CI:0.33-0.47]). Current smoking was a risk factor for 

diabetes in Whitehall II, but did not affect the risk of diabetes for participants in 

clusters 3, 5 and 6 (Suppl.Table 6).  

In Whitehall II, there were 201 participants with incident diabetes and a defined 

Ahqlvist diabetes classification6. Relatively few participants developed diabetes in the 

metabolically healthy clusters (cluster 1: 48 of 817 [5.9%], cluster 2: 62 of 2552 

[2.4%], cluster 4: 14 of 314 [4.5%], out of those eligible for computation of the 

Ahlqvist-classes). Of these participants, most (34 of 48 [70.8%], 59 of 62 [95.2%] and 

12 of 14 [85.7%], respectively) transitioned into mild diabetes classes according to the 

Ahlqvist-classification (mild obesity-related diabetes [MOD] and mild age-related 

diabetes [MARD]). 13 of 23 participants (57%) in cluster 6 (13 of 23 [57%]) 

developed severe insulin resistant diabetes (SIRD, Suppl.Table 7 and Extended Data 

3).  
We used two approaches to compare our multivariable clustering with glucose-based 

stratification alone. We first tested cumulative diabetes risk for the Hulman classes13 

that are computed from the glucose course during an OGTT (Extended Data 4). Next, 

we stratified the baseline AUC glucose of Whitehall II into 5 quintiles, (Extended Data 

5). In head-to-head comparisons, the cumulative diabetes risk of the high risk clusters 

3 and 5 together was higher than that of Hulman-classes 3 and 4 together (p=0.04, 

TUEF/TULIP) and also higher than that of the top 2 AUC glucose quintiles (p<0.0001, 

Whitehall II, both log-rank tests). Thus, our cluster-based approach was superior to 

both of these approaches in delineating groups with high cumulative risk for 

development of diabetes. 
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The overall difference in the Kaplan-Meier curves for microalbuminuria did not reach 

statistical significance in TUEF/TULIP (mean follow-up 4.3 years, number of 

events=71, plog-rank, uncorrected=0.061, Figure 3.B). In the proportional hazard assessment, 

cluster 6 showed a significantly higher risk for microalbuminuria compared with 

cluster 1 (p=0.01).  Results were similar but not significant for the Whitehall II 

participants with available baseline urine measurements (n=316, number of events=58, 

uncorrected p=0.058) when adjusting for baseline urinary albumin-to-creatinine ratio. 

In Whitehall II, participants in cluster 6 had a significantly higher risk for stage 3 

chronic kidney disease or worse than cluster 1 (uncorrected p=0.0003, mean follow-up 

18.2 years, number of events 1387, Figure 3.D, Extended Data 6). Individuals in the 

diabetes susceptible clusters 3 and 5 also demonstrated higher risks for chronic kidney 

disease relative to cluster 1 in Whitehall II (uncorrected p=0.004 and p=0.02, 

respectively, Suppl.Table 5). The fully adjusted model also controlled for smoking, 

cholesterol and triglycerides is shown in Suppl.Table 8. Given that participants in 

cluster 6 had elevated visceral fat, we hypothesized that this could be associated with 

fat in the renal sinuses, which is a risk factor for exercise-induced microalbuminuria14. 

TUEF/TULIP participants in cluster 6 had the most renal sinus fat compared with 

other clusters (p<0.05 for all pairwise comparisons, Tukey’s post-hoc test, Figure 2.B, 

N=199). It was higher than in cluster 5 after adjusting for potential confounders 

(Suppl.Table 9.A-D).  

 

In the TUEF/TULIP cohort, we used carotid intima media thickness (IMT) as a proxy 

for cardiovascular end-points due to a lack of a register-based assessment of clinical 

events. IMT was associated with cluster membership (F=14.55, degrees of freedom=5, 

p<0.001). Each of clusters 3, 5 and 6 had higher IMT values than each of clusters 1, 2 

or 4 (Extended Data 7 and Suppl.Table 1, p<0.002). After adjustment for sex, age, age² 

and BMI, cluster 3 and 5 had higher IMT than cluster 1 (p<0.03). In the Whitehall II 

cohort, we evaluated the incidence of coronary heart disease (CHD, mean follow-up 

17.2 years, 800 events, see Figure 2.E). As a combined vascular endpoint, we also 

investigated the incidence of CHD and stroke (mean follow-up 22.9 years, 1040 

events, Suppl.Table 5). In the proportional hazard assessment, the elevated 

cardiovascular risk in cluster 5 was not independent from sex, age and BMI, but 
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consistently lower in cluster 2 compared with cluster 1, also after adjustments 

(Suppl.Table 5). Compared with cluster 1 in Whitehall II, all-cause mortality was by 

about 40% higher for cluster 6 (Figure 3.F), while cluster 2 had a lower mortality rate, 

even after adjustments for covariates (Suppl.Table 5). The elevated mortality risk in 

cluster 6 (relative to cluster 1) was not affected by adjustment for smoking and lipids 

(full model in Suppl.Table 10). 
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Discussion 
The applied variable-based partitioning of individuals without type 2 diabetes yielded 

groups differing in risk for type 2 diabetes and its complications. We validated these 

findings using simple measures of the same pathophysiological constructs in a large 

occupational cohort. 

Cluster 5 was identified as the subpopulation of the highest risk of type 2 diabetes, 

renal and vascular disease and all-cause mortality. Individuals in this cluster had 

obesity, insulin resistance, high levels of fatty liver and low insulin secretion. Cluster 6 

represented an insulin resistant phenotype, in which participants had high amounts of 

visceral fat, but less liver fat and higher insulin secretion compared with cluster 5. 

About half of the participants in cluster 6 had prediabetes on enrollment in the 

TUEF/TULIP study. However, mean glycemia (AUC glucose) was lower than in 

cluster 5, and the risk of type 2 diabetes was considered to be moderate. Nonetheless, 

participants in cluster 6 had high risk for microalbuminuria and chronic kidney 

disease. Cardiovascular risk was not elevated in this cluster; however, overall 

mortality was about 40% higher than in the reference cluster 1 even after adjustment 

for confounders. Thus, clusters 5 and 6 both constitute obese, high-risk subpopulations 

with different glycemic, renal, cardiovascular and all-cause mortality risk profiles. 

Glucose does not seem to be the major driver of clinical events in cluster 6. Previous 

observations of an association of insulin resistance with diabetic nephropathy15–17 

highlight insulin resistance as a probable underlying factor. The discrepancy between 

moderate type 2 diabetes and high nephropathy risk for cluster 6 is not dependent from 

baseline blood pressure. However, individuals in cluster 6 had elevated renal sinus fat, 

which could contribute to manifestation of nephropathy. We previously showed an 

association between renal sinus fat and exercise-induced albuminuria in a cross-

sectional cohort and an association of microalbuminuria with renal sinus fat in 

individuals with non-alcoholic fatty liver disease14,18. In renal sinus fat and renal cell 

co-culture experiments, the combination of renal sinus fat and Fetuin-A induced 

inflammation indicate a combination of an insulin resistant metabolic milieu and 

adverse fat accumulation as a likely cause of organ damage18. This finding is 

consistent with the phenotypes of insulin resistance, moderately high liver fat and high 
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renal sinus fat in cluster 6. Cluster 6, in which participants had moderate or delayed 

risk of diabetes, showed a relatively low genetic risk for type 2 diabetes and a low 

abundance of genetic variants from the beta-cell class in the Udler classification12. 

This result implies an effective compensation of insulin resistance through excellent 

beta-cell function. We speculate that hyperinsulinemia associated with the 

combination of good beta-cell function and insulin resistance contributes to renal 

disease and mortality19–21. Smoking was a risk factor both for diabetes and chronic 

kidney disease22–24, but did not explain the differences among clusters.  

Contrast to the three high-risk clusters 3, 5 and 6, cluster 4 comprises participants with 

obesity but low glycemic deterioration.  Phenotypic traits of individuals in this cluster 

are compatible with the concept of metabolically healthy obesity25. Cluster 4 was also 

associated with lower risk of type 2 diabetes, independently from sex, age, and BMI. 

Individuals in this cluster had body fat predominantly stored in subcutaneous rather 

than visceral depots, a pattern known to be metabolically more favorable26.   

In cluster 3, the partitioning identified a phenotype characterized by elevated genetic 

risk and low insulin secretion, which might explain the high diabetes incidence seen in 

this group. The moderately elevated visceral fat compartment correlates with 

pancreatic fat, which has been associated with disturbed insulin secretion in a 

prediabetic environment18,27,28. Cluster 3 with a disposition index as low as cluster 5, 

but higher insulin sensitivity could correspond to beta-cell dysfunction subphenotypes 

identified in previous studies6,7,29. Cluster 3 had high IMT, independent from sex, age 

and BMI. Increased cardiovascular risk was not replicated for this cluster in Whitehall 

II, but individuals in this cluster had a moderately elevated risk of chronic kidney 

disease.  

 
Our clustering approach is not designed to provide definitive subphenotypes for 

individual patients in a clinical setting; however, the approach can be helpful for 

characterizing the metabolic heterogeneity prior to clinical manifestation of type 2 

diabetes. The identification of such subphenotypes suggests some potential therapeutic 

implications. Individuals in cluster 5 are at imminent risk for diabetes and could 

benefit from high intensity dietary and/or lifestyle interventions aimed at weight loss 

and liver fat reduction. Individuals with the characteristics of cluster 3 might benefit 
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from a standard aerobic exercise and dietary caloric restriction via reduction of 

visceral fat. Although clusters 3 and 5 have elevated genetic risk as non-modifiable 

risk factor, genetic predisposition might be protective against development of type 2 

diabetes for individuals with a cluster 6 phenotype. This group could be easily 

overlooked when risk-stratification focuses on established diabetes-related glycemic 

cut-offs. Insulin resistance with or without prevalent prediabetes associates with renal 

disease and elevated mortality in cluster 6, which should motivate consideration of 

preventive measures even with low glycemic progression.  

Our subphenotyping was performed in persons who did not yet suffer from diabetes, 

but who are at potentially increased risk, as demonstrated by the newly diagnosed 

cases in the follow-up period. The classification emerges partly from variables that 

require an OGTT. OGTT-derived glycemic traits can reasonably assess insulin 

sensitivity and secretion, particularly in the absence of diabetes. An elegant metabolic 

clustering of glycemic courses during OGTT has been proposed by Hulman et al13. We 

have applied an alternative approach with a broad set of variables in addition to 

OGTT. Our data complement other clustering approaches targeting the 

disentanglement of the heterogeneity of adult-onset diabetes6,7,12. We show that cluster 

6 most strongly connects to the SIRD cluster of the Ahlqvist-classification6,30. Cluster 

6 and SIRD bear similarities, such as an elevated risk of nephropathy in the absence of 

marked glucose elevation. Thus, accumulating data indicate that the pathogenesis of 

kidney damage in type 2 diabetes appears to be different from that of type 1 diabetes, 

with only a minor contribution of glycaemia in prediabetes and type 2 diabetes. Of 

note, by contrast with the Ahlqvist-classification, our work analyzed screen-detected 

diabetes cases as outcomes during the follow-up periods. These cases probably have 

milder phenotypes than clinically detected type 2 diabetes cases.  

Our results are demonstrated in two independent study groups: a cohort by design 

enriched in diabetes-prone persons and a UK occupational cohort. This most likely 

contributes to the observed differences between the Kaplan-Meier plots in the two 

cohorts, especially for diabetes incidence. Given the lack of ethnic diversity of the 

investigated populations leveraged in our study, our findings might only be applicable 

to white European populations. We also acknowledge the limitations of the 

partitioning approach: there is uncertainty with regard to variable selection, the 
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optimal number of clusters and whether these approaches are inferior to conventional 

predictions from multivariable modeling29. Additional specific limitations of our work 

are the different feature variable set and the moderate reassignment rate (63%) of the 

original clusters to the feature set of Whitehall II. Given the sophisticated nature of the 

variables in TUEF/TULIP cohort, the clinical utility of these features for metabolic 

classification could be limited. Further, in the TUEF/TULIP cohort, only about half of 

the population was available for follow-up visits. This high attrition rate could lead to 

a potential underestimation of the risk for diabetes and nephropathy in the 

TUEF/TULIP cohort. A final limitation is that the nephropathy models in Whitehall II 

are not adjusted for baseline eGFR due to a lack of baseline measurements and the 

absolute risks being low. 

In summary, we show the feasibility of multi-variable subphenotyping in individuals 

without diabetes to disentangle metabolic heterogeneity prior to diagnosis of type 2 

diabetes. The metabolic clusters identified here associate with future complications 

related to prediabetes, insulin resistance, future risk of type 2 diabetes and mortality. 

These subphenotypes likely reflect key pathologic features potentially underlying 

different fates of metabolic complications but are not aimed at classifying single 

patients in clinical practice; however, with further development and validation, such 

approaches could guide prevention and treatment strategies for cardiovascular and 

renal disease as well as type 2 diabetes.  
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Figure legends 
Figure 1. Distribution of the cluster feature variables 

Partitioning of participants into 6 clusters along 8 variables in the TUEF/TULIP 

(N=899, Panel a, b) and 9 variables in the Whitehall-II cohort (N=6810, Panel c, d). 

Panel a and c show the number of participants in each cluster with colors indicating 

glycemic categories (NGT = normal glucose tolerance, IFG = impaired fasting 

glycaemia, IGT = impaired glucose tolerance, IFG+IGT concomitant impaired fasting 

glycaemia and impaired glucose tolerance). Panel b and d show the medoids (the 

representative subject, TUEF/TULIP) or the medians (Whitehall-II) of each cluster 

with the corresponding standardized level (Z-scores) of the feature variables. Clusters 

in the Whitehall-II cohort were identified using Euclidean distances from the median 

values of the proxy variables in TUEF/TULIP that have also been assessed in 

Whitehall-II. For the radar-charts (b, d), the Z-scores of insulin sensitivity, insulin 

secretion and HDL were directionally flipped (-1*Z-score) to yield polygon areas 

related to adverse variable effects. 
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Figure 2. Characteristics potentially contributing to cluster pathomechanism 

a, Mean pathway-specific genetic scores according to Udler et al across the 6 clusters 

of this work. Genetic scores (n=899 risk scores of individuals in TUEF/TULIP for 

each of the 5 specific pathways) were transformed to Z-scores to eliminate differences 

in absolute levels due to the differing number of genetic variants in each genetic 

pathway. Boxes (hinges) denote the 25th and 75th percentiles with an additional 

horizontal line indicating the median. Whiskers show the highest and lowest data 

points excluding outliers (defined as at least 1.5×interquartile range below the lower or 

above the upper hinge). Outliers are shown as individual data points. Differences were 

tested with one-way ANOVA. 

b, Distribution of renal sinus fat (ratio of sinus fat to kidney area, mean of left and 

right) for n=520 individuals with MRI-assessed renal sinus fat in TUEF/TULIP) across 

clusters (p=1.25×10-26 with one-way ANOVA). Pairwise tests for cluster 6 with 

Tukey’s test yielded the following p-values: p5-6 =0.02, p3-6=0.049, p6-others <1×10-14.  
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Figure 3. Cluster-specific outcomes 

Kaplan-Meier curves showing cluster-specific probability of not developing diabetes 

(a, c), nephropathy (c, d) in the TUEF/TULIP and Whitehall-II cohorts, respectively. 

Cumulative probability of coronary heart disease (CHD, e) and overall mortality (f) 

are shown for the Whitehall II cohort. For diabetes incidence: n=421, mean follow-up 

4.1 years, number of diabetes events = 40 in TUEF/TULIP and n=6643, mean follow-

up 16.3 years, number of diabetes events = 828 in Whitehall II. For microalbuminuria 

incidence: n=388, mean follow-up 4.3 years, number of microalbuminuria events = 71 

in TUEF/TULIP. In Whitehall II n=5182 mean follow-up 18.2 years with 1387 Stage 3 

chronic kidney disease or worse (estimated glomerular filtration rate < 60 

ml/min/1.73m2) incidences. For CHD, n=6537, mean follow-up 17.2 years, 800 

events. For all-cause-mortality, n=6803, mean follow-up 21.1 years, 825 deaths. All p-

values were computed with two-sided log-rank tests. 
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Table 1 

Cluster characteristics of the TUEF/TULIP cohort after stratification for the 6 clusters. P-values were computed with one-way ANOVA 

for continuous variables and two-sided chi-squared tests for categorical variables. 
 

 
 

1 2 3 4 5 6 
 

p-value 

 Low risk Very low 

risk 

Beta-cell 

failure 

Low risk 

obese 

High risk 

insulin 

resistant 

fatty liver 

High risk 

visceral fat 

nephropathy 

 

 

n 173 154 146 153 91 182 
 

 

sex = male (%) 64 (37.0)  59 (38.3)  65 (44.5)  56 (36.6)  35 ( 38.5)  67 (36.8)  
 

0.72 

age (mean (SD)) 39.05 

(12.55) 

41.75 

(13.29) 

52.26 

(12.11) 

40.14 

(11.85) 

49.74 

(11.81) 

47.38 (12.64) 
 

8.7×10-27 

BMI (kg/m2) (mean (SD)) 26.82 

(3.16) 

23.45 

(3.32) 

29.15 

(4.01) 

31.54 

(3.67) 

34.45 

(5.11) 

34.94 (4.90) 
 

1.6×10-135 

waist circumference (cm) (mean 

(SD)) 

88.44 

(9.63) 

80.58 

(9.80) 

97.11 

(11.21) 

99.14 

(10.59) 

108.17 

(12.88) 

107.86 (12.34) 
 

1×10-111 

hip circumference (cm) (mean 

(SD)) 

101.62 

(7.71) 

95.66 

(8.01) 

105.80 

(13.25) 

112.61 

(9.01) 

115.17 

(11.02) 

117.06 (10.58) 
 

3.1×10-89 

total adipose tissue MRI (liter) 

(mean (SD)) 

27.71 

(6.42) 

20.75 

(7.63) 

33.27 

(9.98) 

42.34 

(9.31) 

46.20 

(12.07) 

48.28 (12.00) 
 

4.4×10-142 

sq adipose tissue MRI (liter) 

(mean (SD)) 

8.78 (3.13) 5.96 (3.50) 10.95 

(4.33) 

15.02 

(4.79) 

16.72 

(5.75) 

18.13 (6.19) 
 

1.6×10-111 

visceral adipose tissue MRI (liter) 

(mean (SD)) 

2.40 (1.48) 1.77 (1.21) 4.16 

(1.92) 

3.75 (1.97) 5.73 

(2.34) 

5.64 (2.44) 
 

1.9×10-87 

sq to visceral adipose ratio (mean 

(SD)) 

5.16 (3.13) 4.63 (2.84) 3.38 

(2.18) 

5.38 (3.18) 3.33 

(1.56) 

3.78 (1.95) 
 

5×10-15 

visceral adipose % of total (mean 

(SD)) 

0.09 (0.06) 0.09 (0.06) 0.13 

(0.06) 

0.09 (0.06) 0.13 

(0.05) 

0.12 (0.06) 
 

5.9×10-17 

liver fat content (mean (SD)) 3.34 (3.25) 2.16 (2.90) 5.10 

(3.72) 

3.61 (3.51) 20.79 

(5.73) 

9.88 (5.49) 
 

5.2×10-193 

fatty-liver disease (%) = yes (%) 28 (16.2)  8 ( 5.2)  51 (34.9)  26 (17.0)  91 

(100.0)  

137 (75.3)  
 

3.1×10-82 
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renal sinus fat (mean of r&l, %) 

(mean (SD)) 

5.20 (3.80) 5.77 (4.23) 9.42 

(4.75) 

7.15 (4.52) 10.02 

(4.87) 

12.07 (6.08) 
 

1.3×10-26 

systolic blood pressure (mmHg) 

(mean (SD)) 

126.26 

(14.15) 

123.36 

(15.81) 

135.73 

(18.59) 

126.32 

(15.43) 

143.66 

(19.34) 

137.86 (17.06) 
 

6.3×10-29 

diastolic blood pressure (mmHg) 

(mean (SD)) 

80.25 

(10.64) 

78.52 

(11.09) 

84.93 

(12.07) 

81.16 

(10.14) 

92.57 

(13.62) 

87.47 (12.07) 
 

2.5×10-24 

heart rate (mean (SD)) 69.35 

(10.00) 

67.47 

(10.85) 

69.29 

(9.91) 

68.13 

(10.76) 

75.39 

(12.26) 

72.26 (9.64) 
 

1.9×10-08 

fasting glucose (mmol/l) (mean 

(SD)) 

5.12 (0.44) 5.04 (0.50) 5.64 

(0.55) 

5.14 (0.41) 5.93 

(0.58) 

5.48 (0.50) 
 

1.6×10-56 

post-challenge glucose (mmol/l) 

(mean (SD)) 

6.12 (1.09) 5.99 (1.26) 7.87 

(1.38) 

5.72 (0.86) 8.31 

(1.54) 

7.10 (1.38) 
 

1.2×10-80 

glycaemic category (%) 
       

2.3×10-68 

NGT 139 (80.3)  126 (81.8)  36 (24.7)  131 (85.6)  12 ( 13.2)  85 (46.7)  
 

 

IFG 24 (13.9)  17 (11.0)  41 (28.1)  20 (13.1)  20 (22.0)  46 (25.3)  
 

 

IGT 8 (4.6)  10 (6.5)  36 (24.7)  1 (0.7)  14 (15.4)  29 (15.9)  
 

 

IFG+IGT 2 (1.2)  1 (0.6)  33 (22.6)  1 (0.7)  45 (49.5)  22 (12.1)  
 

 

GAD antibody = TRUE (%) 5 (3.2)  4 (2.8)  3 (2.5)  5 (3.7)  2 (2.6)  9 (5.7)  
 

0.7 

glycated haemoglobin (mmol/mol) 

(mean (SD)) 

35.67 

(4.47) 

36.77 

(4.03) 

38.95 

(6.37) 

35.80 

(3.95) 

40.06 

(3.60) 

38.23 (3.86) 
 

3.1×10-19 

triglycerides (mmol/l) (mean (SD)) 1.26 (0.57) 0.87 (0.35) 1.59 

(1.17) 

1.16 (0.63) 2.04 

(1.13) 

1.57 (0.79) 
 

2.3×10-30 

insulin sensitivity (Matsuda) 

(mean (SD)) 

14.54 

(6.07) 

24.33 

(9.08) 

11.52 

(5.39) 

17.63 

(7.16) 

5.99 

(3.01) 

7.46 (3.78) 
 

5.3×10-128 

fasting insulin (pmol/l) (mean 

(SD)) 

51.97 

(22.02) 

32.34 

(14.35) 

54.89 

(25.73) 

48.55 

(22.18) 

113.98 

(64.09) 

99.81 (48.55) 
 

5.5×10-93 

insulinogenic index (mean (SD)) 184.24 

(274.80) 

100.61 

(139.56) 

69.84 

(37.14) 

153.66 

(136.01) 

125.06 

(69.77) 

191.29 

(136.68) 

 

1.9×10-13 

disposition index (mean (SD)) 2804.28 

(6133.07) 

2485.30 

(5193.75) 

701.59 

(293.53) 

2475.65 

(2227.36) 

653.97 

(357.25) 

1270.95 

(979.49) 

 

1.5×10-09 

C-reactive protein (mg/dl) (mean 

(SD)) 

0.20 (0.34) 0.12 (0.25) 0.21 

(0.34) 

0.29 (0.32) 0.49 

(0.47) 

0.39 (0.42) 
 

2×10-18 

cholesterol (mmol/l) (mean (SD)) 4.91 (0.95) 4.88 (0.87) 5.27 

(1.02) 

4.82 (0.98) 5.34 

(0.93) 

5.14 (0.93) 
 

2.2×10-06 

LDL (mmol/l) (mean (SD)) 3.04 (0.89) 2.73 (0.78) 3.22 

(0.85) 

2.97 (0.82) 3.41 

(0.84) 

3.15 (0.80) 
 

2.1×10-09 
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HDL (mmol/l) (mean (SD)) 1.34 (0.28) 1.69 (0.36) 1.32 

(0.29) 

1.27 (0.29) 1.18 

(0.27) 

1.28 (0.30) 
 

2.8×10-45 

aspartate-aminotransferase (U/l) 

(mean (SD)) 

22.38 

(6.98) 

22.79 

(7.91) 

22.52 

(7.03) 

22.14 

(6.97) 

32.73 

(14.50) 

25.18 (9.94) 
 

3.8×10-21 

alanine-aminotransferase (U/l) 

(mean (SD)) 

24.95 

(13.39) 

22.41 

(10.12) 

25.42 

(10.48) 

26.34 

(15.06) 

48.47 

(34.70) 

34.24 (18.43) 
 

3×10-32 

gamma-glutamyl transferase (U/l) 

(mean (SD)) 

22.82 

(19.52) 

18.24 

(15.11) 

28.49 

(26.08) 

21.48 

(14.03) 

39.82 

(34.49) 

33.90 (26.46) 
 

8×10-16 

serum creatinine (mg/dl) (mean 

(SD)) 

0.83 (0.18) 0.81 (0.17) 0.82 

(0.18) 

0.82 (0.15) 0.78 

(0.15) 

0.79 (0.17) 
 

0.18 

urinary albumin-creatinine ratio 

(mean (SD)) 

17.31 

(35.16) 

18.46 

(28.62) 

16.05 

(14.97) 

17.58 

(30.75) 

24.11 

(45.77) 

16.51 (16.75) 
 

0.53 

carotid intima media thickness 

(mm) (mean (SD)) 

0.52 (0.12) 0.53 (0.10) 0.63 

(0.13) 

0.54 (0.12) 0.64 

(0.12) 

0.60 (0.12) 
 

2.8×10-13 

polygenic risk score (mean (SD)) -0.09 

(0.97) 

0.15 (0.91) 0.24 

(0.92) 

-0.17 

(0.91) 

0.11 

(0.81) 

-0.07 (1.01) 
 

0.00057 

family history of diabetes (%) 
       

0.0084 

a_no family history 64 (38.1)  58 (39.5)  42 (29.6)  64 (42.7)  27 (31.0)  72 (41.1)  
 

 

b_second degree relative 37 (22.0)  35 (23.8)  22 (15.5)  38 (25.3)  15 (17.2)  29 (16.6)  
 

 

c_first degree relative 67 (39.9)  54 (36.7)  78 (54.9)  48 (32.0)  45 (51.7)  74 (42.3)  
 

 

ever smoked = yes (%) 86 (49.7)  65 (42.2)  82 (56.2)  81 (52.9)  45 (49.5)  113 (62.1)  
 

0.011 
 

current smoking = yes (%) 16 (9.9)  8 (5.7)  15 (11.0)  12 (8.5)  2 (2.4)  18 (10.7)  
 

0.16 
 

cholesterol lowering medication = 

yes (%) 
6 ( 3.5)  0 ( 0.0)  8 ( 5.5)  2 ( 1.3)  1 ( 1.1)  6 ( 3.3) 

 
0.038 
 

antihypertensive medication = yes 

(%) 

10 (5.8)  3 (1.9)  21 (14.4)  2 (1.3)  25 (27.5)  44 (24.2)  
 

3.6×10-17 
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Methods  

 

TUEF/TULIP cohort 

Prediabetes subphenotyping was initially performed on a complete cases subset of 

participants of the Tuebingen Family study and Tuebingen Lifestyle Program 

(TUEF/TULIP)2,3, who had no missing values for the preselected phenotyping 

variables (N=899, baseline characteristics for this and the whole cohort are shown in 

the Suppl.Table 11). Participants were recruited from 2003 through 2018. Recruitment 

was mostly performed via newspaper announcements and e-mail bulletins. The studies 

have been designed to phenotype individuals at increased risk of diabetes. Eligibility 

criteria for inclusion comprised either a history of prediabetes, a family history of 

diabetes, a BMI greater than 27 kg/m2 or a history of gestational diabetes2. Participants 

underwent a frequently sampled OGTT and received MR-tomography-based 

measurement of body fat distribution and 1H-MR-spectroscopy-based measurements 

of hepatic fat content. Follow-up data was available for individuals who responded to 

invitations to follow-up appointments or participated in follow-up studies. The follow-

up measurements were comparable to the initial assessments. Glycemic traits (fasting 

glucose, OGTT or HbA1c) were available for 421 participants, whereas urine sample 

during follow-up, for the determination of microalbuminuria, was available for 388 

participants. The study protocol was approved by the Ethics Committee of the 

University of Tübingen (422/2002). All participants gave written informed consent.  

 

Whitehall II cohort 

Data from the occupational Whitehall II cohort were accessed by a data sharing 

agreement. Details of the study have been described elsewhere4. In brief, the study was 

established to explore the relationship between socio-economic status, stress and 

cardiovascular disease. All London-based civil servants aged 33-55 years were invited 

in 1985-1988 and 10.308 (73%) participated. Since then, 5 further clinical 

examinations have taken place that are available for data sharing at approximately 5-

year intervals (phases 3,5, 7, 9 and 11). The study was approved by the Joint 

UCL/UCLH Committees on the Ethics of Human Research (Committee Alpha). For 

the current analysis, the baseline was defined as the first available fasting OGTT (>=8 
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hours of fasting for morning and >=5 hours of fasting after a light fat-free breakfast 

eaten before 8 am for afternoon OGTTs).  Participants with prevalent or incident 

diabetes at baseline and those with non-white ethnicities were excluded. From the 

6916 available baseline OGTTs, 6810 were complete cases in regards of the used 

clustering variables und underwent cluster assignments. The cohort characteristics are 

reported in Suppl.Table 12. 

 

Variable selection and de novo clustering in TUEF/TULIP  

We aimed to identify subphenotypes that reflect differences in pathophysiological 

processes in the natural history of type 2 diabetes. The main paradigm of type 2 

diabetes pathogenesis is an insufficient compensatory increase of insulin secretion in 

response to insulin resistance31. Therefore, insulin sensitivity and insulin secretion are 

key variables6,7. We used OGTT-based indices of insulin sensitivity (Matsuda-index)32 

and insulin secretion (AUC0-30 C-peptide/AUC0-30 glucose) that correlate well with 

gold-standard measures and are preferable to static measurements obtained in the 

fasting state33,34. Glycaemia was quantified in the partitioning procedure as AUC0-120 

glucose. Furthermore, we aimed to capture diverse etiologies of insulin resistance by 

accounting for visceral and subcutaneous adipose tissue volume (VAT and SCAT), 

that have distinct metabolic characteristics35. We especially focused on elevated liver 

fat content, as it is strongly associated with insulin resistance36. HDL-cholesterol 

levels have been long known as explanatory variables of the metabolic syndrome and 

insulin resistance37. Moreover, causal inference from large genomic datasets provides 

evidence not only for a genetic correlation of HDL-cholesterol levels with type 2 

diabetes, but also for a causal link between HDL-cholesterol levels and type 2 

diabetes9. We also added a genome-wide polygenic risk score (PRS) to the analysis to 

better differentiate between genetically determined beta-cell dysfunction and 

environmentally determined beta-cell dysfunction. The correlation of the clustering 

variables is reported in Suppl.Table 13.  

For computation of the PRS, we used the LDpred algorithm of Vilhjalmson et al.38 on 

a combination of BMI-adjusted effect sizes and p-values from a meta-analysis in 

~900.000 European individuals and genotypes11. After quality control, exclusion of 

multi-allelic and low-frequency variants, we combined 484.788 variants from the two 
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datasets, yielding an estimated genome-wide SNP-heritability of 0.069. Of the top 94 

diabetes-related genetic variants shown in the latest large-scale genome-wide 

association study11, 63 were genotyped in TUEF/TULIP. The association of cluster-

assignment with the genotype was tested separately for each variant using ANOVA to 

analyze the enrichment of certain genotypes in clusters. A further genetic-

pathophysiologic classification of clusters was performed according to data from 

Udler et al12. Here, we computed the genetic risk score for every individual and every 

genetic class (beta-cell, proinsulin, obesity, lipodystrophy and liver/lipid) taking only 

weights >= 0.75 into account, as described in the original publication. The 

classification of glucose response curves according to Hulman et al (Hulman-classes) 

was performed with the corresponding web-calculator from 5-point OGTT glucose 

values in the TUEF/TULIP study13. 

Cluster assignment in the Whitehall II cohort  

For assigning participants in the Whitehall II cohort to clusters established in 

TUEF/TULIP, we used proxy variables. Since liver fat, visceral adipose tissue and 

subcutaneous adipose tissue were not available in the Whitehall II cohort, and only 

two-point OGTTs were performed, other anthropometric variables and analytes were 

employed instead of these variables. Variables were selected based on statistical 

consideration (correlation) and pathophysiologic (theoretical) connection to the 

original trait (e.g. liver fat – fasting triglycerides, fasting insulin and waist 

circumference). Transaminase activity was not available during the early phases of the 

Whitehall II study. The final variable set was selected upon the highest agreement in 

re-identification of the original cluster assignments using the new proxy variables in 

TUEF.  The variables used in Whitehall II comprised glycemia during glucose 

challenge, insulin sensitivity32, Stumvoll’s first phase insulin secretion index using 

insulin and glucose levels at fasting and at 120 min during OGTT39, fasting insulin, 

fasting triglycerides, waist circumference, hip circumference, BMI and HDL-

cholesterol. The median values of these variables in TUEF/TULIP were used to assign 

participants to clusters in Whitehall II (Extended data 1) by taking the nearest 

neighbors of the 6 cluster-centers based upon Euclidean distances. Since Whitehall-II 

used a restricted CVD-focused genotyping platform with only 48000 markers and the 

release of full-scale genotyping data was not readily available, we decided to omit the 
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genetic risk score from the re-assignment procedure. Despite these limitations, 

successful re-assignment of the clusters was achieved in 63% of the original TUEF 

cohort. 

OGTT and laboratory analysis 

All participants of TUEF/TULIP received a 75-g glucose solution (Accu-Check 

Dextro, Roche) at 8 a.m. following an overnight fast. Venous blood was obtained 

through an indwelling venous catheter before and 30, 60, 90 and 120 minutes after 

glucose ingestion. In the Whitehall II cohort, the OGTT procedure has been described 

earlier. In short, venous blood samples were collected after an overnight fast in the 

morning (≥8 hours of fasting) or in the afternoon after no more than a light fat-free 

breakfast eaten before 08.00 h (≥5 hours of fasting) followed by a standard 75g OGTT 

with a venous blood sample taken 2 hours after ingestion of the glucose solution.  

Glucose was analyzed in the Whitehall II study using an YSI glucose analyser (Yellow 

Springs Instruments). Glucose values were measured in TUEF/TULIP directly using a 

bedside glucose analyzer (YSI, Yellow Springs, CO or Biosen C-line, EKF-diagnostic, 

Barleben). In TUEF/TULIP, all other obtained blood samples were put on ice, the 

serum was centrifuged within 2 hours. Plasma insulin and C-peptide were determined 

by an immunoassay with the ADVIA Centaur XP Immunoassay System and HDL was 

measured using the ADVIA XPT clinical chemical analyser (all from Siemens 

Healthineers, Eschborn, Germany), while triglycerides were measured with standard 

colorimetric methods using a Bayer analyzer. In Whitehall II, insulin was measured 

with an in-house human insulin RIA and later with a DAKO ELISA kit (DAKO 

Cytomatin Ltd, Ely, UK). Serum creatinine was measured using a kinetic colorimetric 

(Jaffe) method on a Roche “P” Modular system (phase 9) and on a COBAS 8000 

system (phase 11). Lipid measurements were described previously40 . HbA1c 

measurements were performed using Tosoh glycohemoglobin analyzers in both studies 

(Tosoh Bioscience Tokyo Japan). 

Body fat distribution, liver fat content and renal sinus fat 

Body fat distribution variables, i.e., VAT and SCAT, were determined by whole-body 

T1-weighted MRI as described earlier41. Liver fat content was measured by volume 

selective 1H-MR spectroscopy42. Renal sinus fat was measured with manual 

segmentation from MR image slices specifically in cluster 5 and 6 using a method 
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described previously14. The operator performing the segmentation (JM) was not aware 

of the cluster assignments. The procedure could not be completed in 6 participants 

(2% missing) due to breathing artefacts in the images. Renal sinus fat data for clusters 

1 to 4 were partly available from segmentations for previous projects (mean data 

availability 40% over cluster 1 to 4).  

Outcomes 

For detection of incident diabetes, either of the following was used: clinically 

ascertained diabetes (from patient history, or by the use of a diabetes-medication), an 

elevated fasting glucose (>=7 mmol/l), post-challenge glucose (>=11.1. mmol/l, or 

HbA1c (48 mmol/mol or 6.5%) in both cohorts. To assess the Ahlqvist-classification6 

for the subtypes of diabetes in Whitehall II, we used insulin-based HOMA2-indices, 

because C-peptide was not measured. GAD measurements were not available. HbA1c 

assessment had been introduced beginning with Phase 7. Cluster assignment was 

performed using the lowest Euclidean distances from the published cluster centers in 

the All New Diabetes in Scania (ANDIS) cohort after scaling the variables for the 

means and SDs of the ANDIS cohort. Microalbuminuria was assessed in 

TUEF/TULIP upon the first occurrence from morning spot urine using the albumin-to-

creatinine ratio (ACR). Measurements with excessive leukocyturia (175 measurements 

out of 3218) were excluded from this analysis. Microalbuminuria was established with 

an ACR>=30 mg/g creatinine. Carotid intima-media thickness (IMT), which is 

associated with future cardiovascular and cerebrovascular events43, was determined by 

a high-resolution ultrasound of the left and right common carotid artery. A trained 

physician who was unaware of the clinical and laboratory variables of the participants 

performed B-mode ultrasound imaging using a linear ultrasound transducer (10-13 

MHz; AU5 Harmonic, ESAOTE BIOMEDICA, Hallbergmoos, Germany). IMT was 

specified according to the European Mannheim carotid intima-media thickness 

consensus criteria44. To ascertain renal disease, we used estimated glomerular filtration 

rate calculated using the CKD-EPI creatinine equation45. Serum creatinine was 

available from phase 9. Only participants with at least one eGFR value went into these 

analyses. Stages of chronic kidney disease were ascertained with the Kidney Disease: 

Improving Global Outcomes (KDIGO) classification46. Ascertainment of coronary 

heart disease and mortality in Whitehall-II has been described earlier47. In brief, 
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incident CHD was defined as CHD death, nonfatal CHD and typical angina 

ascertained from clinical records, without self-reported cases from the Rose angina 

questionnaire. The cases were ascertained from participants' general practitioners, 

information extracted from hospital medical records by study nurses, or data from the 

NHS Hospital Episode Statistics (HES) and death register databases obtained after 

linking the participants' unique NHS identification numbers to this national database. 

Mortality data until June 2015 was drawn from the British National Mortality Register 

(National Health Service [NHS] Central Register) using each participants’ NHS 

identification number. 

Statistical analysis 

Statistical analyses were performed using R version 3.4.348. In the clustering analysis, 

distances were computed as Gower-distances using standardized variables (scaled to a 

mean of 0 and SD of 1). Participants with outlier variables (absolute standardized 

levels >= 5) were excluded from the clustering procedure. To find the optimal cluster 

count, we evaluated the dendogram and silhouette-widths. The clustering procedure 

was performed with the partitioning around medoids (pam) method in the R-package 

“cluster”, which is a more robust version of k-means clustering49. Using repeated 

subsetting with the clusterboot function from the fpc package, the mean Jaccard-

similarity measure was 0.74 across all clusters.50 To further validate the stability of 

clusters, we iterated the clustering procedure for each of the 429 participants who had 

repeated measurements comprising all clustering variables (mean number of 

measurements 2.6±0.9, follow-up duration 4.2±3.6 years, also see Extended Data 8). 

We assessed the per-participant agreement of the generated 1112 cluster assignments 

using interrater reliabilities. The ICC2k value for cluster agreement was 0.72 (CI 0.68 

– 0.76). Detailed reports on means and SDs of the clustering variables in both cohorts 

and the cluster medians are provided in Suppl.Tables 14-15. 

Cluster means were compared using ANOVA. Specific outcomes were compared 

using ANCOVA adjusting for covariates such as sex, age and BMI. Post-hoc 

comparisons were performed using Tukey’s honest significant differences procedure. 

Endpoints related to diabetes complications were analyzed in the follow-up data of 

both cohorts using survival analysis and proportional hazard models. Differences in 

cumulative risks for reaching endpoints were tested with log-rank tests. When not 
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indicated otherwise, the uncorrected p-value of a specific cluster’s risk relative to 

cluster 1 is provided in the proportional hazard analysis. Given the relatively low 

number of outcomes in TUEF/TULIP (40 for diabetes and 71 for microalbuminuria), 

assessment of proportional hazards adjusted for potential confounders was performed 

in the Whitehall II cohort only. Proportional hazards assumptions were tested by 

visualization of the Schoenfeld-residuals. The performed statistical tests were two-

sided. 
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Data availability 
For TUEF/TULIP, all requests for data and materials will be promptly reviewed by the 

Data Access Steering Committee of the Institute of Diabetes and Metabolic Research, 

Tübingen to verify if the request is subject to any intellectual property or 

confidentiality obligations. Individual level data may be subject to confidentiality. Any 

data and materials that can be shared will be released via a Material Transfer 

Agreement. Data access to individual-level data of the Whitehall II study is subject to 

a separate data sharing agreement according to the data sharing policy of Whitehall II. 

This policy conforms to the MRC Policy on Research Data Sharing. More details can 

be found on the Whitehall II webpage: https://www.ucl.ac.uk/epidemiology-health-

care/research/epidemiology-and-public-health/research/whitehall-ii/data-sharing. 

Code availability 
The R code used to generate all results of this manuscript is available upon request.  

Requests will be reviewed by the Data Access Steering Committee of the Institute of 

Diabetes and Metabolic Research, Tübingen. 
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