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Appendix for manuscript: 

Global projections of potential lives saved from COVID-19 through 
universal mask use 
IHME COVID-19 Forecasting Team 

 

Section 1. Estimating the effectiveness of masks in preventing transmission 
Data Extraction 
In total, 63 rows of data from 40 unique publications were extracted; one article (Pei) had an unclear 
comparison group and is thus missing the ControlGroup variable. Given that it did not have complete data, it 
was removed from analyses, but included in a sensitivity analysis, resulting in 62 rows of data from 39 unique 
publications. All publications were traced and translated, when published not in English.  

The following variables were of particular interest for the data extraction: 

• GeneralPop: Type of population using the mask (General Population (1) versus Healthcare Population 
(0)) 

• SE_Asia: Country of study (SE Asian countries (1) vs non- SE Asian countries (0)) 
• OtherMask: Type of mask (Paper / Cloth or non-descript masks (1) versus medical masks and N95 

masks (0)) 
• NoMaskControl: Type of control group (No use (1) versus infrequent use (0)) 
• Dx: Disease (SARS-CoV 1 or 2 (1) versus H1N1 / Influenza/ other Respiratory pathogens (0)) 
• ClinicalDx: Type of diagnosis (Clinical (1) versus Laboratory (0)) 
• Study_type: Study type (case contro versus  clustered randomized control trial (RCT) and cohort) 

We extracted all relevant data to form 2x2 tables and calculated the Relative Risks and corresponding (log-
transformed) Standard Errors for use in our MR-BRT analysis.  

IHME’s customized meta-regression tool MR-BRT. MR-BRT (“meta-regression—Bayesian, regularized, 
trimmed”) is a trimmed constrained mixed-effects model that provides an easy interface for formulating 
and solving common linear and nonlinear mixed effects models. It is open source, and its core 
computational kernel uses the mixed effects package LimeTr (https://github.com/zhengp0/limetr) and 
the spline package XSpline (https://github.com/zhengp0/xspline). For the statistical models and 
algorithmic features underlying MR-BRT, a published technical report is available here: 
https://arxiv.org/abs/1909.10700 . 

In order to account for between-study heterogeneity, we included a gamma term to reflect this 
heterogeneity in the uncertainty interval. MR-BRT also relaxes the assumption that there is one “true” point 
estimate across all studies and instead allows for variation in the point estimate. 

MR-BRT Analysis 
Following data extraction, we used MR-BRT to do a meta-regression of the data, allowing for between-study 
heterogeneity using the gamma term and random effects. The following models were constructed: 

• Intercept-only model (shown in univariate figure) 

https://arxiv.org/abs/1909.10700
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• All univariate associations 
• Multivariate models 
• Sub-analyses for key variables of interest (population and mask type) 

Sensitivity analyses were also performed to test out other models and methods, including: 

• Model specifications using different continuity corrections (0.5 versus 0.001) 
• Fixed-effects only model 
• Odds ratios versus relative risks  
• Included estimates and confidence intervals from 1 study without full data – intercept only 
• Looking at reported confidence interval versus calculated confidence interval for all studies, and 
• Looking at results omitting any clustered RCTs 

All presented analyses use the continuity correction of 0.001, present RRs rather than ORs, and include 
random-effects with the Gamma term. Sensitivity analyses revealed no major differences in results using a 
continuity correction of 0.001 versus 0.5, nor using RRs versus ORs. 
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SI Figure 1: Relative Risk of respiratory virus infection by publication first author and year of 
publication 

 

This figure demonstrates the relative risk of respiratory virus infection, recalculated for use in this meta-regression based on 
numbers reported in the publication. We present a RR of zero where there were zero counts in the numerator; confidence 
intervals were not presented for these studies in the figure. These studies were included in the analysis with a continuity 
correction, however. 
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SI Table 1: Meta-Regression Publication Characteristics 

Characteristic N (%) of Observations  Studies 

Study Location* 
South-East Asia 27 (67.5%) 16-42  

Outside South-East Asia 13 (32.5%) 43-55 

Disease Studied 
SARS-CoV 1 or 2 34 (54%) 16, 21-24, 26-35, 41-48 

Not SARS-CoV 1 or 2 29 (56%) 17-20, 25, 36-40, 49-55 

Mask Type Studied 

Cloth Masks 2 (3%) 25,35 

Non-Descript Masks 17 (27%) 16, 24-28, 31,33, 41,42,52,54 

Medical, Surgical, or N95 
Masks 44 (70%) 17-23,25,28-30, 32-34, 36-40, 43-51, 

53,55 

Diagnosis 
Laboratory 53 (84%) 16-22, 25, 28-32,34-38, 40-43, 45-55 

Clinical 10 (16%) 23,24,26,27,33,39,44 

Population and Setting 
General  13 (21%) 16,18,19,26,27,42,49,50,52 

Healthcare 50 (79%) 17,20-25, 28-41,43-48, 53-55 

Type of Control Group 

Infrequent Mask Use 14 (22%) 21,25,32,36,41,43,45,47,53,54 

No Mask Use 47 (75%) 16-20,22-31,33,34,37-40,42,44,46,48-
50,52,54,55 

Pre- and Post-Intervention 
Mask Wear 1 (2%) 51 

Missing 1 (2%) 35 

*This row presents the results at the study-level (N=40) rather than the observation level (N=63) as the study 
location did not vary within an individual study 
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SI Table 2:  Individual publication characteristics 

Author 
Mask 
Wearers, 
Infection + 

Mask 
Wearers 

Mask Non-
wearers, 
Infection + 

Mask Non-
wearers 

Study 
Country Disease Diagnosis Mask Type Study Design Healthcare 

Setting 
Intervention 
Group Type 

Control Group 
Type Citation 

Wang 8 46 17 41 China SARS-CoV-2 Laboratory Non-medical 
mask Cohort No Consistent Use No mask use 16 

Wang 24 83 17 41 China SARS-CoV-2 Laboratory Non-medical 
mask Cohort No Any Use No mask use 16 

Chokephaibulkit 30 239 3 17 Thailand H1N1 Laboratory Medical mask Case Control Yes Non-medical 
mask No mask use 17 

Chokephaibulkit 16 142 3 17 Thailand H1N1 Laboratory Medical mask 
(N95) Case Control Yes Medical mask 

(N95) No mask use 17 

Chokephaibulkit 10 78 3 17 Thailand H1N1 Laboratory Medical mask Case Control Yes Medical mask No mask use 17 

Cowling 4 61 12 205 China (Hong 
Kong) Influenza Laboratory Medical mask cRCT No Facemask No mask use 18 

Cowling 18 258 28 279 China (Hong 
Kong) Influenza Laboratory Medical mask cRCT No Facemask + 

Hygiene No mask use 19 

MacIntyre 3 949 6 481 China Influenza Laboratory Medical mask 
(N95) cRCT Yes Medical mask 

(N95) No mask use 20 

MacIntyre 5 492 6 481 China Influenza Laboratory Medical mask cRCT Yes Medical mask No mask use 20 

MacIntyre 13 949 15 481 China Respiratory 
Virus Laboratory Medical mask 

(N95) cRCT Yes Medical mask 
(N95) No mask use 20 

MacIntyre 13 492 15 481 China Respiratory 
Virus Laboratory Medical mask cRCT Yes Medical mask No mask use 20 

Nishiura 8 43 17 72 Vietnam SARS Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 21 

Nishiura 1 26 3 4 Vietnam SARS Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 21 

Wilder-Smith 3 24 37 68 Singapore SARS Laboratory Medical mask 
(N95) Case Control Yes Any Use No mask use 22 

Wilder-Smith 6 27 34 65 Singapore SARS Laboratory Medical mask 
(N95) Case Control Yes Any Use No mask use 22 

Teleman 3 26 33 60 Singapore SARS Clinical Medical mask 
(N95) Case Control Yes Medical mask 

(N95) No mask use 23 

Yin 68 246 9 11 China SARS Clinical Non-medical 
mask Case Control Yes Any Use No mask use 24 

Zhang 33 152 2 12 China H1N1 Laboratory Non-medical 
mask Case Control Yes Consistent Use Inconsistent 

use 25 

Zhang 44 222 2 12 China H1N1 Laboratory Non-medical 
mask Case Control Yes Any Use Inconsistent 

use 25 

Zhang 3 16 2 12 China H1N1 Laboratory Medical mask 
(N95) Case Control Yes Medical mask 

(N95) No mask use 25 

Zhang 37 183 2 12 China H1N1 Laboratory Medical mask Case Control Yes Medical mask No mask use 25 
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Zhang 9 44 2 12 China H1N1 Laboratory Non-medical 
mask Case Control Yes Non-medical 

mask No mask use 25 

Lau 8 94 17 98 Hong Kong SARS Clinical Non-medical 
mask Case Control No Any Use No mask use 26 

Wu 25 146 44 120 China SARS Clinical Non-medical 
mask Case Control No Consistent Use No mask use 27 

Wu 50 255 44 120 China SARS Clinical Non-medical 
mask Case Control No Any Use No mask use 27 

Liu 8 123 43 354 China SARS Laboratory Medical mask Case Control Yes Any Use No mask use 28 

Liu 15 274 36 203 China SARS Laboratory Medical mask Case Control Yes Any Use No mask use 28 

Liu 2 33 49 444 China SARS Laboratory Medical mask 
(N95) Case Control Yes Any Use No mask use 28 

Liu 11 95 40 382 China SARS Laboratory Non-medical 
mask Case Control Yes Any Use No mask use 28 

Wang 0 278 10 215 China SARS-CoV-2 Laboratory Medical mask 
(N95) Case Control Yes Any Use No mask use 29 

Wang 1 1286 119 4036 China SARS-CoV-2 Laboratory Medical mask Case Control Yes Any Use No mask use 30 

Nishiyama 17 61 14 18 Vietnam SARS Laboratory Non-medical 
mask Cohort Yes Consistent Use No mask use 31 

Reynolds 8 42 14 25 Vietnam SARS Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 32 

Seto 2 13 26 98 China SARS Clinical Non-medical 
mask Case Control Yes Any Use No mask use 33 

Seto 0 11 51 123 China SARS Clinical Medical mask Case Control Yes Any Use No mask use 33 

Seto 0 11 92 164 China SARS Clinical Medical mask 
(N95) Case Control Yes Any Use No mask use 33 

Ho 2 62 2 10 China SARS Laboratory Medical mask 
(N95) Cohort Yes Any Use No mask use 34 

Pei 11 98 61 115 China SARS Laboratory Non-medical 
mask Case Control Yes MISSING MISSING 35 

Kim 1 444 16 308 South Korea MERS Laboratory Medical mask 
(N95) Case Control Yes Consistent Use Inconsistent 

use 36 

Kim 0 7 1 2 South Korea MERS Laboratory Non-medical 
mask Case Control Yes Any Use No mask use 37 

Cheng 0 568 4 268 China (Hong 
Kong) H1N1 Laboratory Medical mask Case Control Yes Any Use No mask use 38 

Park 3 24 2 4 South Korea MERS Clinical Medical mask Case Control Yes Any Use No mask use 39 

Ki 0 218 6 230 South Korea MERS Laboratory Medical mask Case Control Yes Any Use No mask use 40 

Ha 0 61 0 1 Vietnam SARS Laboratory Non-medical 
mask Cohort Yes Consistent Use Inconsistent 

use 41 

Tuan 0 9 7 154 Vietnam SARS Laboratory Non-medical 
mask Cohort No Consistent Use No mask use 42 

Loeb 3 23 5 9 Canada SARS Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 43 
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Loeb 2 16 5 9 Canada SARS Laboratory Medical mask 
(N95) Case Control Yes Consistent Use Inconsistent 

use 43 

Loeb 1 4 5 9 Canada SARS Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 43 

Scales 3 16 4 15 Canada SARS Clinical Medical mask Case Control Yes Any Use No mask use 44 

Heinzerling 0 3 3 34 USA SARS-CoV-2 Laboratory Medical mask Case Control Yes Consistent Use Inconsistent 
use 45 

Park 0 57 0 45 USA SARS Laboratory Medical mask Cohort Yes Any Use No mask use 46 

Peck 0 13 0 28 USA SARS Laboratory Medical mask 
(N95) Cohort Yes Consistent Use Inconsistent 

use 47 

Burke 0 63 0 13 USA SARS-CoV-2 Laboratory Medical mask Cohort Yes Any Use No mask use 48 

Barasheed 4 36 2 53 KSA Respiratory 
Virus Laboratory Medical mask cRCT No Medical mask No mask use 49 

Suess 6 69 19 82 Germany Influenza Laboratory Medical mask cRCT No Facemask No mask use 50 

Suess 10 67 19 82 Germany Influenza Laboratory Medical mask cRCT No Facemask + 
Hygiene No mask use 50 

Sung 40 911 95 920 USA Respiratory 
Virus Laboratory Medical mask Prospective 

Trial Yes 
Post-
intervention 
mask period 

Pre-
intervention 
control period 

51 

Zhang 1 16 8 28 Airline Flight H1N1 Laboratory Non-medical 
mask Case Control No Any Use No mask use 52 

Zhang 0 15 9 26 Airline Flight H1N1 Laboratory Non-medical 
mask Case Control No Any Use No mask use 52 

Alraddadi 11 151 7 66 KSA MERS Laboratory Medical mask Cohort Yes Consistent Use Inconsistent 
use 53 

Jaeger 0 20 9 43 USA H1N1 Laboratory Non-medical 
mask Cohort Yes Any Use No mask use 54 

Jaeger 0 12 9 51 USA H1N1 Laboratory Non-medical 
mask Cohort Yes Consistent Use Inconsistent 

use 54 

Hall 0 42 0 6 KSA MERS Laboratory Medical mask Case Control Yes Any Use No mask use 55 
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SI Figure 2: Univariate MR-BRT model results 

 

This figure depicts the relative risk (and corresponding 95% UI) for each variable of interest, separately, using 
meta-regression techniques; the first row presents the results of an intercept-only model. The size of the box is 
proportional to the precision of the estimate, based on number of observations, with more precise studies having 
larger boxes. 
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SI Figure 3: Sub analyses: (A) the estimates for non-medical mask usage among healthcare populations and 
general populations; (B) the estimates for general population non-medical and medical mask usage 

SI Figure 4: Sensitivity analysis using a continuity correction of 0.5 versus 0.01 

 

 

 

 

  

A B 



10 
 

SI Figure 5: Sensitivity model using a fixed-effects model versus random-effects model  

 

SI Figure 6: Sensitivity analysis using calculated OR versus RR 
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SI Figure 7: Sensitivity analysis looking at intercept-only model with all 63 observations versus those with full 
data 

  

 

SI Figure 8: Sensitivity analysis using reported confidence interval, where available, versus calculated SE for all 
63 observations 
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SI Figure 9: Sensitivity analysis omitting cRCTs (n=53 observations) 
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Section 2. Trends in the proportion of the population that report using a mask by select 
demographic characteristics of respondents and by country. 
 

SI Figure 10: Mask use by gender globally and by GBD super region. 
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SI Figure 11: Mask use by adult age group globally and by GBD super region. 
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SI Figure 12: Mask use by urbanicity globally and by GBD super region.  
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SI Figure 13: Mask use by self-reported number of contacts in the previous 24 hours globally and by GBD super 
region. 
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SI Figure 14: Estimates of mask use at the national level by GBD region between January 1st 2020 and January 1st  
2021. 
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Section 3. IHME’s COVID-19 Projections Modeling Framework. 
The details of IHME’s COVID-19 Projections Modeling Framework are described in detail elsewhere and 
can be found here: https://doi.org/10.1101/2020.07.12.20151191  

In this section we provide more information on the components of the model that are most related to 
the analysis presented in this manuscript. 

Modeling past deaths using random knot combination splines (RKCS) 
In order to derive infections from deaths and the infection fatality rate (see below) for use in the 
transmission model, we first develop a series of spline regressions using IHME’s customized meta-
regression tool MR-BRT. MR-BRT (“meta-regression—Bayesian, regularized, trimmed”) is a trimmed 
constrained mixed-effects model that provides an easy interface for formulating and solving common 
linear and nonlinear mixed effects models. It is open source, and its core computational kernel uses the 
mixed effects package LimeTr (https://github.com/zhengp0/limetr) and the spline package XSpline 
(https://github.com/zhengp0/xspline). For the statistical models and algorithmic features underlying 
MR-BRT, a published technical report is available1. 

The spline regressions obtained from MR-BRT smooth the trend in reported deaths and leverage 
patterns in reported case and hospital admissions data where available to make short term (8-day) 
forecasts of deaths. We use MR-BRT functionality that allows the user to specify a number of potential 
knot combinations to be randomly generated and runs separate models for each combination, which are 
then evaluated for performance and combined using those scores to create a weighted composite of the 
sub-models. We use 50 combinations in each of the subsequently described model stages, which are run 
separately by location. 

Data and model overview 
Deaths and cases by day were available for every location; hospital admissions data were also available 
for 27 states. Before merging with deaths for modelling we account for the lag between onset of 
symptoms and death based on the Global Line List (https://github.com/beoutbreakprepared/nCoV2019) 
by shifting dates for these measures to be 8 days later than reporting date. 

Deaths from reported cases and hospitalizations 
In the first stage we model the log cumulative death rate with either the log cumulative case rate or the 
log cumulative hospital admission rate as independent variables. Where data for both of the 
independent variables are available, separate models are run for each measure. We use a cubic spline 
with six knots, but with the left- and right-most intervals forced to be linear rather than cubic. We 
constrain the curve such that deaths monotonically increase along with cases/hospitalizations. Because 
of the shift window, we have 8 days of case and hospitalization data that extend past the last day of 
death data used to fit the model – by linearly extrapolating the tail of the fitted curve, we produce 8-day 
projections of deaths in addition to our in-sample fit. These estimates capture the trend in cases or 
hospitalizations while effectively accounting for changing case- and hospitalization-fatality ratios due to 
variation in exogenous factors such as age pattern of cases and testing rates. 

Fitting final deaths curve with uncertainty 
Using deaths estimated through cases and hospitalizations from the model described above, in addition 
to observed deaths, we then fit a second stage model using all three sources with time (in days) as the 

https://doi.org/10.1101/2020.07.12.20151191
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independent variable. For this model, we run with two alternative dependent variable transformations – 
log cumulative deaths and log daily deaths, with an offset of 0.01 deaths per capita. While the latter is 
most effective at closely following the daily time trend, it can perform poorly in settings where there are 
few deaths due to overdispersion. As such, we use an algorithm that creates a linear combination of the 
two predictions where the weight given to the daily model result is equal to the total number of deaths 
in a location divided by 50 (capped at 1), and the cumulative model result receives the remaining 
weight. This prevents an abrupt transition in modeling strategy that would occur were we to use a 
singular threshold. In the cumulative model, we use the same settings as the previous stage – cubic 
spline with 6 knots, linear tails, and constrained to be monotonically increasing with the independent 
variable (time, in this case). The daily model is identical but without the monotonicity constraint. 

With the resultant curve, we calculate the robust standard error using residuals in log daily space and 
create 1000 independent samples around the mean of that curve for each day, making 1000 
uncorrelated time series representative of the observed noise in the data. We refit the log daily deaths 
model to each of these time series, giving us smooth estimates of death with uncertainty for the full 
range of dates with observed deaths and extending out to an 8-day forecasts. 

 

Estimating infections from deaths 
Conditioning on the death draws and the Infection Fatality Rate (IFR) and age-specific mortality rate 
(MR) (see below), daily infections are inferred by stratifying all-age deaths into age-specific deaths, using 
the age-specific IFR to determine the number of infections that would have led to this quantity of age-
deaths, and then backshifting the infections in time to account for the lag between infection and deaths. 

For each of the 𝑗𝑗 ∈ 1, …, 1000 cumulative death draws time-series, 𝐶𝐶𝐶𝐶𝑗𝑗 , one infection-to-death lag, 𝑙𝑙𝑗𝑗 is 
randomly sampled from a discrete uniform distribution on 17 to 21 days. 

For each lowest-level location, 𝑙𝑙𝑙𝑙𝑙𝑙: 

1. Daily deaths time-series, 𝐷𝐷𝐷𝐷𝑗𝑗(𝑙𝑙𝑙𝑙𝑙𝑙), are generated by differencing the cumulative deaths time-
series, 𝐶𝐶𝐷𝐷𝑗𝑗(𝑙𝑙𝑙𝑙𝑙𝑙). 

2. The mortality probabilities, 𝑀𝑀𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙), for an individual in this location belonging to each 
5-year age bins, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖, is calculated: 

𝑀𝑀𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙) =  
𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵𝐵𝐵𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙) × 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)

Σ𝑖𝑖(𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙) × 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙) , 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙), is the total population for that 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖 at 𝑙𝑙𝑙𝑙𝑙𝑙. If this is not available, 
we resort to using the parent location’s population. 

3. The expected age-specific daily deaths time-series, 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖
𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙), is calculated by stratifying 

the all-age deaths using the age-specific mortality probabilities, 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙): 

𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖
𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙) =  𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙) × 𝐷𝐷𝐷𝐷𝑗𝑗(𝑙𝑙𝑙𝑙𝑙𝑙). 

4. The expected age-specific daily infections time-series, 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖
𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙), are calculated from the 

age-specific IFR and daily deaths: 

𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖
𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙) =  𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖

𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙)/𝐼𝐼𝐼𝐼𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑜𝑜𝑐𝑐) 
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5. The date of the infection time-series is taken to be the date of the death time series shifted back 
by 𝑙𝑙𝑗𝑗 days. 

6. The all-age daily infection time-series is prepared for the SEIR model by summing the infections 
across all age groups: 

𝐷𝐷𝐼𝐼𝑗𝑗(𝑙𝑙𝑙𝑙𝑙𝑙) =  Σ𝑖𝑖𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖
𝑗𝑗 (𝑙𝑙𝑙𝑙𝑙𝑙). 

This process yields 1000 draws of daily new infections across all modeled locations. 

𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)/Σ𝑖𝑖𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)𝐴𝐴𝐷𝐷𝐻𝐻:𝐷𝐷𝐴𝐴𝐷𝐷 
 

Intermediate quantity modeling 
Mortality rate by age estimation 

To determine the age-pattern of mortality, we assembled available data from multiple global locations. 
A continuous model relating age and mortality from which the average mortality for any discrete age 
bins can be aggregated. We assume a Poisson model for death counts and fit a monotonically increasing 
(shape-constrained) generalized additive model (SCAM) for mortality as a function of age, using the 
medians of each of the 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 age bins, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙): 

log�𝐸𝐸[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)(𝑙𝑙𝑜𝑜𝑜𝑜)]�

= log (𝑃𝑃𝑃𝑃𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)(𝑙𝑙𝑙𝑙𝑙𝑙) + 𝑓𝑓1 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙)� + ⋯+  𝑓𝑓𝑘𝑘 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙)�, 

where 𝑓𝑓⋅() are monotonically increasing P-splines, and 𝑘𝑘, the number of bases functions, is between 6 
and 8 and tuned for different locations. This yields continuous mortality rates by age: 𝑀𝑀𝑅𝑅𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙).  

Similarly, assuming a Poisson model, we fit a generalized additive model (GAM) to population as a 
function of age, using the age groups specified in the mortality data for each location: 

log�𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑖𝑖(𝑙𝑙𝑙𝑙𝑙𝑙)(𝑙𝑙𝑙𝑙𝑙𝑙)]� = 𝑔𝑔1 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙)� +⋯+  𝑔𝑔𝑘𝑘 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑀𝑀(𝑙𝑙𝑙𝑙𝑙𝑙)�, 

where 𝑔𝑔.() are penalized thin-plate regression splines, and 𝑘𝑘, the number of bases functions, is between 
6 and 8 and tuned for different locations. This yields continuous population by age: 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙).  

The estimated continuous mortality rate curves are then aggregated using population weights to the 
pre-determined 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶𝐶𝐶)s: 

𝑀𝑀𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶)(𝑙𝑙𝑙𝑙𝑙𝑙) =
∑ 𝑀𝑀𝑅𝑅𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙)𝑎𝑎∈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶)

∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙)𝑎𝑎∈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖(𝐶𝐶𝐶𝐶𝐶𝐶)
. 

 

Infection fatality ratio 
We estimated the ratio of deaths to infections using random effects meta-analysis, with 
random intercepts by location and a spline to estimate the non-linear effect of age. The spline 



41 
 

method allows for the estimation of a continuous age effect from observations recorded as age 
groups. In addition to data on the quantity of interest – deaths divided by infections – the 
model incorporated data on deaths divided by population to better estimate the age trend. The 
final estimate comes from the location with the lowest estimated IFR, New Zealand. We chose 
this approach because asymptomatic infections are often not detected, so we expect that 
reported IFRs are systematically higher than the true IFR. The Diamond Princess cruise ship was 
included among the locations used for this analysis. 
 

Infection to death duration 

To estimate the time from infection to death, we brought together two distinct sources of information: 
published studies of time from infection to symptoms and individual patient data on time from 
symptom onset to death. Due to a paucity of data on the time from infection to symptom onset, we 
used the median time reported from a single source (5.1 days) for the first part of this duration and 
added it to a distribution for the second derived by pooling data from the Global Line List 
(https://github.com/beoutbreakprepared/nCoV2019); Ohio, USA 
(https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards); Rio de Janeiro State, Brazil 
(http://painel.saude.rj.gov.br/monitoramento/covid19.html); Ceara State, Brazil 
(https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-
ceara); and Mexico. This pooled dataset included data on 5,125 individuals, with a median time from 
onset of symptoms to death of 11 days. Informed by this, we use a uniform distribution over 17 to 21 
days of lag between infection and death. 

 

Hospitalizations to death ratio 

To determine hospitalization, we use cumulative hospital to cumulative deaths ratios estimated directly 
from hospitalization and mortality data in the US and Europe through April 2020. We assembled data on 
COVID-19 hospitalizations from a number of countries and US states. We analyzed hospitalization to 
death ratios using random effects meta-analysis. We used the location-specific random effect in the 
estimate for locations with data. In the absence of data we used the corresponding pooled effect for 
other countries.  

As the hospitalization to death ratios are for all-ages only, to estimate the age-pattern of the 
hospitalization to death ratio, we used the age distribution of hospitalization to death (𝐻𝐻:𝐷𝐷) in the US to 
estimate the age-distribution for other countries and states: 

𝐻𝐻:𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(loc) =  
𝐻𝐻:𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑈𝑈𝑈𝑈)  ∗ 𝐻𝐻:𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙) 

(𝐻𝐻:𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑈𝑈𝑈𝑈) ∗ 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙))/𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙𝑙𝑙𝑙𝑙)
 

 

https://github.com/beoutbreakprepared/nCoV2019
https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards
http://painel.saude.rj.gov.br/monitoramento/covid19.html
https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-ceara
https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-ceara
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COVID-19 SEIR model construction for each location 
Overview 
The primary model for estimating future infections and deaths is a mechanistic compartmental model. 
Specifically, the fraction of each location’s population that is susceptible (𝑆𝑆), infected but not infectious 
(exposed, 𝐸𝐸), infectious (𝐼𝐼1, 𝐼𝐼2), and recovered (𝑅𝑅), forming an SEIR model. Temporal variations in past 
transmission intensity is captured through the time-varying parameter 𝛽𝛽(𝑡𝑡). The association between 
the time-varying transmission intensity and a number of covariates is assessed in a multivariate mixed 
effects regression across all locations simultaneously. Each of the covariates is then forecast into the 
future, with certain covariates forecast multiple times corresponding to unique future scenarios. The 
forecast covariate values and the fitted regression model are then used to estimate future transmission 
intensity; the future transmission intensity is then used in the SEIR framework to estimate future 
infections. Finally, reversing the process that estimated past infections from past deaths, future deaths 
are estimated from future infections. 

SEIR-fit 
Model formulation 
To project the full time-series of deaths and infections to the future, we use a transmission model with 
the following compartments: susceptible, exposed, infected, and removed (SEIR). In particular, each 
location’s population is tracked through the following system of differential equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽(𝑡𝑡)
𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼

𝑁𝑁
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽(𝑡𝑡)
𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼

𝑁𝑁
− 𝜎𝜎𝜎𝜎 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝜎𝜎 −  𝛾𝛾1𝐼𝐼1 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= 𝛾𝛾1𝐼𝐼1 − 𝛾𝛾2𝐼𝐼2 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾2𝐼𝐼2 

where 𝛼𝛼 represents a mixing coefficient to account for imperfect mixing within each location, 𝜎𝜎 is the 
rate at which infected individuals become infectious, 𝛾𝛾1 is the rate at which infectious people transition 
out of the pre-symptomatic phase, and 𝛾𝛾2 is the rate at which individuals recover. This model does not 
distinguish between symptomatic and asymptomatic infections but has two infectious compartments (𝐼𝐼1 
and 𝐼𝐼2) to allow for interventions that would avoid focus on those who could not be symptomatic. 𝐼𝐼1 is 
thus the pre-symptomatic compartment. 

 

𝑅𝑅𝑐𝑐 and the effective reproductive number 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) 
 

In this section, we derive the time-varying basic reproductive number under control, 𝑅𝑅𝑐𝑐(𝑡𝑡), and the 
time-varying effective reproductive number, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡). For a compartmental model with static 
coefficients, we can calculate the basic reproductive number as the largest singular value of the next 
generation operator 
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𝑅𝑅𝑐𝑐 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝑉𝑉−1) 

where 𝐹𝐹 is the Jacobian of the vector of appearance rates for compartments that actively possess the 
virus (𝐸𝐸, 𝐼𝐼1, and 𝐼𝐼2 in our case), and 𝑉𝑉 = 𝑉𝑉− + 𝑉𝑉+ is the Jacobian of the vector of transport rates of the 
individuals between these compartments. Both Jacobians are evaluated at the state of disease-free 
equilibrium (i.e., when 𝑆𝑆 = 𝑁𝑁). The appearance and transport rate vectors for our SEIR model 
formulation are: 

𝑓𝑓 = �
𝛽𝛽
𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼

𝑁𝑁
0
0

� ,           𝑣𝑣 = �
𝜎𝜎𝜎𝜎

𝛾𝛾1𝐼𝐼1 − 𝜎𝜎𝜎𝜎
𝛾𝛾2𝐼𝐼2 − 𝛾𝛾1𝐼𝐼2

�. 

We can then directly calculate the Jacobians at disease-free equilibrium: 

 

𝐹𝐹 = �
0 𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1 𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1
0 0 0
0 0 0

� 

 

𝑉𝑉 = �
𝜎𝜎 0 0
−𝜎𝜎 𝛾𝛾1 0
0 −𝛾𝛾1 𝛾𝛾2

� ⇒ 𝑉𝑉−1 =

⎝

⎜⎜
⎜
⎛

1
𝜎𝜎

0 0
1
𝛾𝛾1

1
𝛾𝛾1

0

1
𝛾𝛾2

1
𝛾𝛾2

1
𝛾𝛾2⎠

⎟⎟
⎟
⎞

 

Thus, the next generation operator is 

𝐹𝐹𝑉𝑉−1 = �
𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1 � 1

𝛾𝛾1
+ 1

𝛾𝛾2
� 𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1 � 1

𝛾𝛾1
+ 1

𝛾𝛾2
� 𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1 ⋅ 1

𝛾𝛾2
 

0 0 0
0 0 0

� 

which yields 

𝑅𝑅𝑐𝑐 =  𝛼𝛼𝛼𝛼(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼−1 �
1
𝛾𝛾1

+
1
𝛾𝛾2
� 

 

Fitting 𝛽𝛽(𝑡𝑡) 
 

We denote the new daily infections output from the previous step as: 

𝑓𝑓(𝑡𝑡) ≈ 𝛽𝛽(𝑡𝑡)𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼 

For each draw we take as constant the parameters governing the transmission dynamics other than 
𝛽𝛽(𝑡𝑡) (i.e., 𝛼𝛼, 𝜎𝜎, 𝛾𝛾1, and 𝛾𝛾2). These parameter values are drawn from distributions based on existing 
literature. 
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With a known 𝑓𝑓(𝑡𝑡), we can solve a single simple linear ODE to get 𝐸𝐸(𝑡𝑡): 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑓𝑓(𝑡𝑡) − 𝜎𝜎𝜎𝜎 

This ODE can be solved in closed form using integrating factors, or numerically. In practice we use the 4th 
order Runge-Kutta method (RK-4). However, it is useful to solve it in ‘closed form’ using the integration 
factor approach. Defining 

𝑣𝑣(𝑡𝑡) = �𝜎𝜎𝜎𝜎𝜎𝜎 = 𝜎𝜎𝜎𝜎, 

we have the closed form solution 

𝐸𝐸(𝑡𝑡) = exp(−𝜎𝜎𝜎𝜎)� −𝑓𝑓(𝜏𝜏) exp(𝜎𝜎𝜎𝜎)
𝑡𝑡

0
𝑑𝑑𝑑𝑑 + 𝐶𝐶 exp(−𝜎𝜎𝜎𝜎) ,    𝐶𝐶 = 𝐸𝐸(0) 

Having obtained 𝐸𝐸(𝑡𝑡), we repeat the process, solving for 𝐼𝐼1(𝑡𝑡) and 𝐼𝐼2(𝑡𝑡): 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

+ 𝛾𝛾1𝐼𝐼1 = 𝜎𝜎𝜎𝜎(𝑡𝑡) 

𝐼𝐼1(𝑡𝑡) = exp(−𝛾𝛾1𝑡𝑡)�� −𝑓𝑓(𝜏𝜏) exp(𝜎𝜎𝜎𝜎)
𝑡𝑡

0
𝑑𝑑𝑑𝑑� + 𝐼𝐼10 exp(−𝛾𝛾1𝑡𝑡) 

= 𝐹𝐹1(𝑡𝑡) + 𝐼𝐼10 exp(−𝛾𝛾1𝑡𝑡) 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

+ 𝛾𝛾2𝐼𝐼2 = 𝛾𝛾1𝐼𝐼1(𝑡𝑡) 

𝐼𝐼2(𝑡𝑡) = exp(−𝛾𝛾2𝑡𝑡)�� 𝛾𝛾1𝐼𝐼1(𝜏𝜏) exp(𝛾𝛾2𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝑑𝑑� 

= exp(−𝛾𝛾2𝑡𝑡)�� 𝛾𝛾1(𝐹𝐹1(𝜏𝜏) + 𝐼𝐼10 exp(−𝛾𝛾1𝜏𝜏)) exp(𝛾𝛾2𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝑑𝑑� 

= exp(−𝛾𝛾2𝑡𝑡)�� 𝛾𝛾1 𝐹𝐹1(𝜏𝜏)
𝑡𝑡

0
exp(𝛾𝛾2𝜏𝜏)𝑑𝑑𝑑𝑑� +

𝐼𝐼10

𝛾𝛾2 − 𝛾𝛾1
(exp(−𝛾𝛾1𝑡𝑡) − exp(−𝛾𝛾2𝑡𝑡)) 

= 𝐹𝐹2(𝑡𝑡) +
𝐼𝐼10

𝛾𝛾2 − 𝛾𝛾1
(exp(−𝛾𝛾1𝑡𝑡) − exp(−𝛾𝛾2𝑡𝑡)) 

where 𝐸𝐸(𝑡𝑡) is known when solving 𝐼𝐼1, and then 𝐼𝐼1(𝑡𝑡) is known when solving for 𝐼𝐼2. While useful for 
formulation to think of the exact solutions, the integrals must still be solved numerically. We therefore 
solve all the differential equations using Runge-Kutta order 4. With 𝑓𝑓(𝑡𝑡) in hand, we also obtain 𝑆𝑆(𝑡𝑡) by 
simple integration and subtraction. Having solved for 𝑆𝑆(𝑡𝑡), 𝐼𝐼1(𝑡𝑡), and 𝐼𝐼2(𝑡𝑡), we then have: 

𝛽𝛽(𝑡𝑡) =
𝑁𝑁𝑁𝑁(𝑡𝑡)

𝑆𝑆(𝑡𝑡)�𝐼𝐼1(𝑡𝑡) + 𝐼𝐼2(𝑡𝑡)�𝛼𝛼
 

𝛽𝛽 regression 
With 𝛽𝛽𝑓𝑓(𝑡𝑡) fit to the data, we next perform a linear regression using the open source mixed effects 
solver SLIME (https://github.com/zhengp0/SLIME) to determine the strength of the relationship 
between 𝛽𝛽𝑓𝑓(𝑡𝑡) and the various covariates. All covariates are assumed to have fixed effects while the 
intercept is allowed to vary by location. For location 𝑙𝑙, the regression is calculated as: 

https://github.com/zhengp0/SLIME
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ln�𝛽𝛽𝑝𝑝,𝑙𝑙� = 𝛼𝛼0,𝑙𝑙 + 𝑿𝑿𝑙𝑙𝜶𝜶 

such that the mean squared error between 𝛽𝛽𝑝𝑝,𝑙𝑙  and 𝛽𝛽𝑓𝑓,𝑙𝑙 (our fit from the previous stage) is minimized by 
location 𝑙𝑙. 𝛼𝛼0,𝑙𝑙 is the random intercept for location 𝑙𝑙, 𝑿𝑿𝑙𝑙 is a matrix with a column for each covariate in 
the regression and a row for each day, and 𝜶𝜶 is the coefficient indicating the strength of the relationship 
between log𝛽𝛽 and the covariate. Several coefficients in the model are bounded as described in their 
corresponding sections, while others are only constrained by directional bounds. As noted in (previous 
sections), not all covariates are time varying. These non-time varying covariates are used to explain 
some of the location specific variance otherwise absorbed into the random intercept. Using the fitted 𝛼𝛼 
and the forecasted covariates, we produce, by draw, estimates of future transmission intensity 𝛽𝛽𝑝𝑝(𝑡𝑡). 

𝛽𝛽 adjustments 
To ensure continuity from our fitted 𝛽𝛽𝑓𝑓 from SEIR-fit to the predicted 𝛽𝛽𝐹𝐹 into the future, we shift the 
predicted 𝛽𝛽𝑝𝑝. Generally speaking, we shift 𝛽𝛽𝑝𝑝 towards 𝛽𝛽𝑓𝑓 by first ensuring that on the day of transition, 
say 𝑇𝑇, 𝛽𝛽𝐹𝐹(𝑇𝑇) = 𝛽𝛽𝑓𝑓(𝑇𝑇). Then, over a window of time we slowly transition from the hard adjustment 
based on the residual at time 𝑇𝑇, we shift by the average residual between 𝛽𝛽𝑓𝑓 and 𝛽𝛽𝑝𝑝 over a window of 
time in the past. More specifically, define 𝑟𝑟(𝑡𝑡) as 

𝑟𝑟(𝑡𝑡) = log�
𝛽𝛽𝑓𝑓(𝑡𝑡)
𝛽𝛽𝑝𝑝(𝑡𝑡)�

,      𝑡𝑡 ≤ 𝑇𝑇 

and 𝛽𝛽𝐹𝐹1(𝑡𝑡) and 𝛽𝛽𝐹𝐹2(𝑡𝑡) as: 

𝛽𝛽𝐹𝐹1(𝑡𝑡) = exp�𝑟𝑟(𝑇𝑇)� 𝛽𝛽𝑝𝑝(𝑡𝑡),       𝑡𝑡 ≥ 𝑇𝑇 

𝛽𝛽𝐹𝐹2(𝑡𝑡) = exp�
1
𝑛𝑛
�𝑟𝑟(𝑇𝑇 − 𝑖𝑖 + 1)
𝑛𝑛

𝑖𝑖=1

�𝛽𝛽𝑝𝑝(𝑡𝑡),     𝑡𝑡 ≥ 𝑇𝑇 

and transition weights 𝑤𝑤(𝑡𝑡) as 

𝑤𝑤(𝑡𝑡) = �
𝑀𝑀 − (𝑡𝑡 − 𝑇𝑇)

𝑀𝑀
,       𝑇𝑇 ≤ 𝑡𝑡 ≤ 𝑇𝑇 + 𝑀𝑀

0,                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
  

Then, for a given 𝑛𝑛 and 𝑀𝑀, we define 𝛽𝛽𝐹𝐹(𝑡𝑡) as 

𝛽𝛽𝐹𝐹(𝑡𝑡) = 𝑤𝑤(𝑡𝑡)𝛽𝛽𝐹𝐹1(𝑡𝑡) + �1 −𝑤𝑤(𝑡𝑡)�𝛽𝛽𝐹𝐹2(𝑡𝑡) 

Based on out-of-sample tests similar to those described in the sensitivity analyses for optimal values of 
𝑀𝑀 and 𝑛𝑛, we found that the optimal 𝑛𝑛 was 42 and the optimal 𝑀𝑀 was for 𝑀𝑀 to be, by draw, drawn from 
a uniform distribution of windows from 7 to 28 days. 

 

SEIR-predict 
The general format of our predictions is relatively simple: we take the final predicted 𝛽𝛽𝐹𝐹 and run our 
system of ODEs forward in time using our fitted compartment values at time 𝑇𝑇 as the initial conditions 
of the second SEIR model. 



46 
 

There are however a number of simplifications made within our modeling formulation. First, we ignore 
the potential for importation which may be more likely in larger, more dense locations. Second, we 
assume a well-mixed population which may be more egregious in smaller, less dense locations. As two 
intermediate solutions for this, we introduce two correction factors. In each location we only use one or 
the other correction factor, and the use and magnitude of the correction is based on OOS predictive 
validity dropping 8 weeks of data and comparing the predicted outbreak to the observed one. The first 
correction factor allows for the addition of a small number of additional infections above and beyond 
those from the interaction between 𝐼𝐼1 and 𝐼𝐼2 and 𝑆𝑆. These can be envisaged as individuals traveling 
outside the location, becoming infected, and returning as exposed individuals. The second correction 
factor removes a small fraction of exposed individuals from the 𝐸𝐸 compartment and moves them 
directly to the recovered compartment. Our model acts on the fraction of individuals who are infectious, 
exposed, etc, and the results of allowing for fractional infectious individuals (and no possibility for truly 
‘zero’ infections) can alter the dynamics for small locations. These corrections can be mathematically 
described using 𝜃𝜃+ and 𝜃𝜃− for the importation correction and the small location correction, 
respectively. Again, each location receives only one of these and they alter the SEIR model formulation 
for prediction as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽(𝑡𝑡)
𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼

𝑁𝑁
− 𝜃𝜃+𝑆𝑆 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽(𝑡𝑡)
𝑆𝑆(𝐼𝐼1 + 𝐼𝐼2)𝛼𝛼

𝑁𝑁
− 𝜎𝜎𝜎𝜎 + 𝜃𝜃+𝑆𝑆 − 𝜃𝜃−𝐸𝐸 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝜎𝜎 −  𝛾𝛾1𝐼𝐼1 
𝑑𝑑𝐼𝐼2
𝑑𝑑𝑑𝑑

= 𝛾𝛾1𝐼𝐼1 − 𝛾𝛾2𝐼𝐼2 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾2𝐼𝐼2 + 𝜃𝜃−𝐸𝐸 

With these correction factors identified, we can then run our ODEs forward (again using the Runge-Kutta 
4 algorithm), to have a complete time-series of infections through the end of the year. 

 

Final data combination and summarization 
The transmission model produces 1,000 full time series (including projections) of infections and deaths. 
We summarize draws into means and 95% UIs for reporting. To control for extreme values, the top 2.5% 
and bottom 2.5% of draws are dropped and replaced through random resampling of the remaining 950 
draws.  

Scenarios 
We estimate the trajectory of the epidemic by state under a “mandates easing” scenario that 

models what would happen in each state if the current pattern of lifting social distancing mandates 
continues and new mandates are not imposed. 

As a more plausible scenario, we use observations from the first phase of the pandemic to 
predict the likely response of state and local governments during the second phase. This plausible 
reference scenario assumes that in each location the trend of easing SDM will continue at its current 
trajectory until the daily death rate reaches a threshold of 8 deaths per million. If the daily death rate in 
a location exceeds that threshold, we assume that SDM will be reintroduced for a six-week period. The 
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choice of threshold (of a rate of daily deaths of 8 per million) represents the 90th percentile of the 
distribution of daily death rate at which locations implemented their mandates during the first months 
of the COVID-19 pandemic. We selected the 90th percentile rather than the 50th percentile to capture an 
anticipated increased reluctance from governments to re-impose mandates because of the economic 
effects of the first set of mandates. In locations that do not exceed the threshold of a daily death rate of 
8 per million, the projection is based on the covariates in model and the forecasts for these to December 
31. In locations were the daily death rate exceeded 8 per million at the time of our final model run for 
this manuscript, we are assuming that mandates will be introduced within 7 days.  
 The scenario of universal mask wearing models what would happen if 95% of the population in 
each location always wore a mask when they were in public. This value was chosen to represent the 
highest observed rate of mask use observed globally during the COVID-19 pandemic through July 2020. 
In this scenario, we also assume that if the daily death rate in a state exceeds 8 deaths per million, SDMs 
will be reintroduced for a six-week period.  

 

Alternate mask use scenario 
 The universal mask wearing scenario assumes 95% population coverage of mask use when 
outside the home. This level of mask use is based on the highest observed proportion during the study 
period, occurring in Singapore. However, most countries remain far from that level of mask use. We also 
explored a scenario of 85% population coverage. That level also corresponds to roughly the 85th 
percentile of the mask use coverage across all countries on July 21, the last day of mask use data in the 
model (86th percentile). SI Table 2 gives cumulative deaths in the two main scenarios and this third 
scenario for January 1, 2021 globally and by GBD super regions. SI Figure 8 shows the results of this 
alternative mask use scenario globally and by GBD super regions.  

SI Table 3. Results from the two main scenarios presented in the main text and a third alternative 
scenario where mask use achieved 85% coverage within 7 days of the model projection. Results are 
presented as cumulative deaths on January 1, 2021.  

Region Reference (95% UI) Universal mask use (95% UI) Alternative mask use (95% UI) 

Global 3226003 (2183429-5221802) 2085710 (1529000-3183895) 2359967 (1697510-3673747) 
Southeast Asia, East Asia, and 
Oceania 125200 (46949-292524) 87591 (30757-238976) 102870 (38844-264347) 
Central Europe, Eastern 
Europe, and Central Asia 232097 (131801-436407) 69468 (50952-92898) 90172 (64013-133718) 

High-income 738007 (565234-1130053) 519447 (461394-634322) 536495 (473086-668933) 

Latin America and Caribbean 516094 (434664-614954) 446680 (383343-518128) 488043 (419130-571336) 

North Africa and Middle East 326138 (203558-552056) 137336 (88545-235416) 167892 (112826-286478) 

South Asia 1108806 (519804-2256104) 751373 (345092-1638252) 875027 (403383-1847628) 

Sub-Saharan Africa 179661 (75559-352596) 73816 (33761-157277) 99469 (42963-213231) 
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SI Figure 15. Cumulative deaths from January 1 2020 to January 1 2021 in the reference, universal 
mask use scenario (95% coverage), and an alternative 85% mask use coverage scenario.
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