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ABSTRACT 

Introduction: In Latin America, Peru is the most impacted country due to COVID-19 pandemic. 

Given the authorized nationwide use of hydroxychloroquine, azithromycin, and ivermectin in 

COVID-19 patients, we aimed to evaluate their effectiveness alone or combined to reduce 30-day 

mortality among COVID-19 hospitalized patients without life-threatening illness. 

 

Methods: Design. Retrospective cohort study using electronic health records to emulate a target trial. 

Settings. Nationwide data of mid- and high-level complexity hospitals from the Peruvian Social 

Health Insurance (EsSalud) between April 1 and July 19, 2020. Participants. Patients 18 years old 

and above with confirmed SARS-CoV-2 by PCR, and no diagnosis of severe disease at admission. 

Interventions. Five treatment groups, hydroxychloroquine/chloroquine alone (HCQ), ivermectin 

alone (IVM), azithromycin alone (AZIT), HCQ + AZIT group, and IVM + AZIT within 48 hours of 

admission at doses recommended by the Peruvian Ministry of Health. Comparison. Standard of care 

treatment without receiving any of the mentioned drugs within 48 of admission. Outcomes: Primary 

outcome was all-cause mortality rate, and secondary outcomes were survival without death or ICU 

transfer, and survival without death or oxygen prescription. Analysis. Analysis were adjusted for 

confounding factors using inverse probability of treatment weighting. Propensity scores were 

estimated using machine learning boosting models. Weighted hazard ratios (wHR) were calculated 

using Cox regression 

 

Results: Among 5683 patients, 200 received HCT, 203 IVM, 1600 AZIT, 692 HCQ + AZIT, 358 

IVM + AZIT, and 2630 received standard of care. The AZIT + HCQ group was associated with 84% 

higher all-cause mortality hazard rate compared to standard care (wHR=1.84, 95%CI 1.12-3.02). 

Consistently, AZIT + HCQ treatment was associated with deaths or ICU transfer ICU (wHR=1.49, 

95%CI 1.01-2.19), and deaths or oxygen prescription (wHR=1.70, 95%CI 1.07-2.69). HCQ treatment 

was only associated with death or oxygen prescription (wHR=1.77, 95% CI 1.01-3.11), and IVM was 

only associated with death or ICU transfer (wHR=1.58, 95%CI 1.11-2.25). No effect was found for 

AZIT or AZIT + IVM.  

 

Conclusion: Our study reported no beneficial effects of hydroxychloroquine, ivermectin, 

azithromycin, or their combinations. The AZIT+HCQ treatment reported increased risk of all-cause 

mortality. 
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INTRODUCTION 

 

The coronavirus disease 2019 (COVID-19) imposed a major global challenge given its rapid 

transmission worldwide and high mortality among other health and societal consequences (1, 2). 

None pharmacological treatment have demonstrated effectiveness to control the SARS-CoV-2 

infection or improving clinical outcomes, which worsen the current sanitary emergency especially of 

low-middle income countries  (3). Traditionally, any specific drugs to treat the infection might take 

several years to develop. However, given the rapid spread of the COVID-19 pandemic, and without 

available drugs against the SARS-CoV-2 virus, several existing drugs were repurposed based on in-

vitro studies or low-quality evidence. Consequently, there has been extensive efforts on investigating 

the efficacy and effectiveness of several pharmacological treatments using randomized clinical trials 

as well as observational studies (4). 

 

Currently, only dexamethasone has demonstrated benefit to reduce all-cause mortality and 

requirement of mechanical ventilation; as well remdesivir seems to reduce symptoms duration and 

occurrence of severe adverse events (5). On the other hand, some emergently repurposed treatments 

have consistently demonstrated no benefits on all-cause mortality, including hydroxychloroquine 

with or without azithromycin, lopinavir-ritonavir, and convalescent plasma (5). Ivermectin has only 

demonstrated efficacy in laboratory conditions, but not evidence has yet reported on hospitalized 

patients with COVID-19 (6). Most studies tested the efficacy and effectiveness in hospitalized 

patients to prevent all-cause mortality, serious adverse events, admission to intensive care, need of 

mechanical ventilation, and receipt of renal replacement therapy; however, many of these studies had 

limitations that render the evidence low quality. Despite this, these drugs continue to being used in 

different health systems worldwide, and some of them have even been tested for pre-exposure 

prophylaxis among healthcare professional finding the same unsuccessful results (7).  

 

Peru has been greatly impacted by the pandemic, by October 5, 2020, it is the sixth country with 

highest number of reported cases worldwide and mortality rate (828,169 cases and 101.94 deaths per 

100,000 inhabitants, respectively) (8, 9). The urgent need to address this national crisis, drove the 

Peruvian Ministry of Health to authorize the use of hydroxychloroquine with or without azithromycin, 

oral ivermectin alone or in combination with the other drugs (10, 11). Given the permitted clinical 

prescriptions in hospitalized patients with COVID-19, and the electronic health records nationwide 

available in the Peruvian Social Health Insurance (EsSalud), we intended to efficiently use this real-

world data to make a robust causal analysis emulating a randomized controlled clinical trial (12, 13). 
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In this way, the biases traditionally associated with observational studies might be minimized letting 

obtain more realistic estimates of effectiveness (14). Moreover, we intended to use novel techniques 

of machine-learning algorithms to improve our propensity score estimation. Thus, our study aimed to 

evaluate the effectiveness of hydroxychloroquine, azithromycin, and ivermectin alone or combined, 

to prevent all-cause mortality in hospitalized patients with COVID-19 but without life-threatening 

illness. Secondarily, we evaluated two composite outcomes, survival without intense care unit (ICU) 

transfer, and survival without oxygen prescription. 

 

METHODS 

 

Study design and population 

We conducted a retrospective cohort study to analyze data obtained from routine care patients 

hospitalized with COVID-19 which were registered in electronic health records (EHR) in mid- and 

high-level complexity hospitals from the Peruvian Social Security Health System (EsSalud). We 

emulated a target trial to obtain robust estimates of clinical effectiveness for 

hydroxychloroquine/chloroquine, azithromycin, ivermectin, alone or combined, on relevant clinical 

outcomes (12, 15). We retrieved anonymized data of COVID-19 patients, as defined by the Pan-

American Health Organization (16), using the International Classification of Disease Tenth Revision 

(ICD-10) codes (17).  

 

We included patients admitted between April 1 and July 19, 2020 with the following criteria: 18 years 

old or above; confirmed SARS-CoV-2 infection by RT-qPCR; clinical manifestations compatible 

with non-severe disease at admission (no need of oxygen, no diagnosis of acute respiratory failure, 

systemic inflammatory response syndrome, sepsis or septic shock, acute respiratory distress 

syndrome [ARDS], acute pulmonary edema, neither disseminated intravascular coagulation [DIC]). 

We excluded patients with any of these criteria: self-report of pregnancy at admission; discharge, ICU 

admission or death within 24 hours of admission; received other experimental drugs (tocilizumab, 

lopinavir-ritonavir or remdesivir) within 48 hours of admission; self-reported treatment of 

hydroxychloroquine for rheumatological diseases. 

 

Treatment strategies 

We compared five treatment groups to the standard of care treatment regimen, as a control group. 

The treatment groups were defined as follows: hydroxychloroquine/chloroquine alone (HCQ group), 

ivermectin alone (IVM group), azithromycin alone (AZIT group), hydroxychloroquine/chloroquine 
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plus azithromycin (HCQ + AZIT group), and ivermectin plus azithromycin (IVM + AZIT group) at 

doses recommended by the Peruvian Ministry of Health (10, 11). The standard of care was defined 

as a treatment regimen of antipyretics, hydration, monitorization and basic supportive care. The 

decision to administer one of these treatment groups depended on clinician’s own criteria guided by 

the Ministry of Health recommendations, which was changing over time according to updated 

evidence-based reviews (10, 11). Thus, there was an expected heterogeneity of administered 

treatment to patients across different hospitals, services, and even month of hospitalization.  

 

We allowed a grace period of 48 hours to initiate therapy in order to assess a more realistic clinical 

question: what is the effectiveness of initiating therapy within 48 hours of hospitalization compared 

to only receiving standard care within 48 hours of hospitalization? Hence, patients who received any 

of the treatment regimens after 48 hours of hospitalization were assigned to the control group. 

Although this approach is similar to an intention-to-treat analysis, the 48 hours period of grace allow 

us to estimate a per protocol effect as a causal contrast of interest. As mentioned before, patients who 

developed any of the outcomes within 24 hours of admission were excluded. However, we still 

included the patients who developed the outcome after 24 hours but before being assigned to a group 

during the grace period (48 hours). Given that these patients could have potentially been assigned to 

any group, they were randomly distributed between the control and treatment groups to avoid time-

dependent bias due to inappropriate exclusion or treatment assignment (12). 

 

Start, end of follow-up and outcomes 

The onset of follow-up or time zero for each patient was the date of hospitalization. The end of the 

follow-up was the date of occurrence of any outcome (death, death and/or transfer to ICU, death 

and/or oxygen prescription), discharge, or end of follow-up by July 19, 2020. The primary outcome 

was all-cause mortality rate, and the secondary outcomes were survival without ICU rate, and survival 

without oxygen prescription rate.  

 

Strategy for emulating random assignment 

In order to emulate the random assignment of a target trial, we used a propensity score weighting for 

multivalued treatments employing a machine-learning approach letting us calculate balanced 

differences on the baseline covariates for each control and treatment groups (18, 19). The propensity 

score estimates the probability of receiving a certain treatment given their baseline or pre-treatment 

characteristics (20). Under the assumption of positivity and none unmeasured confounding, the 

propensity score can be used to create weights that allows robust estimations of causal effects in 
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observational studies (20). Moreover, we used machine-learning algorithm named generalized 

boosting models (GBM) to estimate propensity scores for treatment assignment  (15, 21), and 

determine the inclusion of baseline covariates and their interactions in the model. GBM fits 

classification trees using large and non-parsimonious number of pre-treatment covariates. This non-

parametric approach improves traditional logistic regression for propensity score estimation (22) 

because it minimizes bias from model misspecification commonly obtained by incorrect parametric 

model assumptions (23), and works well with missing data (22). We trained 5000 classification trees 

setting the following parameters for training: bag fraction of 1, shrinkage factor of 0.01, testing all 

interactions of all two- and three-covariates (24), and using the minimization of the standardized mean 

as the stop method of the GBM to select the method with the optimal balance. Moreover, we generated 

propensity score weights (PSW) using the standardized treatment assignment ratio weighting to 

estimate the average treatment effect on treated subjects (ATET) (25, 26). This method sets the PSW 

to 1 for control group (standard of care) and calculates the PSW for treatment groups using the odds 

in the reference groups (PSW = propensity score/(1-propensity score)) (26).  

 

All the variables included in the propensity score model were selected before the analysis based on 

expert knowledge about COVID-19. In addition, we selected pre-treatment covariates which could 

be confounders or prognostically relevant of the outcome (18). We did not include baseline variables 

theoretically associated with treatment assignment, but not with outcome, to avoid power reduction 

and/or bias amplification (18, 27). The baseline covariates included were: age; sex; month of 

admission; location of the health center (Capital, North, South, Center, Rainforest); Charlson’s index 

at hospital admission; comorbidities known in the first 48 hours (myocardial infarct/chronic heart 

failure/peripheral vascular disease; chronic lung disease; mild/severe liver disease; 

uncomplicated/complicated diabetes mellitus; cancer, stroke/dementia/paralysis; chronic kidney 

disease; metabolic disease; peptic ulcer disease; HIV; and uncomplicated/complicated hypertension); 

emergency care before hospital admission; antibiotics (other than azithromycin) used within 48 hours 

of admission;  previous use of angiotensin-converting enzyme inhibitors/angiotensin-II receptor 

antagonists; and pneumonia diagnosed within 48 hours of admission. We assessed the overlap of 

propensity score distributions between the control group and each treatment group to verify the 

common support assumption. The balance was assessed using standardized mean differences for 

numerical covariates, and row differences for categorical variables. In all cases, we considered a 

threshold of 10% as indicative of meaningful imbalance (18). During balance optimization, we 

remained blinded to the outcome results of the study. Propensity score estimation was performed 
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using the function mnps from the Twang package (24), and covariate balance was assessed using 

cobalt (28), both in R version 4.0.2 (29) for MS Windows Pro 10x64 bits.  

 

Statistical analysis 

We reported baseline characteristics of the control and treatment groups and 30-days cumulative 

incidence estimated with the Kaplan-Meier method. Comparisons of time-to-event outcomes between 

treatment groups was done using weighted Kaplan-Meier survival curves. We estimated unweighted 

(uHR) and propensity score weighted hazard ratios (wHR) using simple Cox proportional hazards 

regression to assess effectiveness. To additionally control for residual confounding, we estimated 

weighted HR with doubly robust adjustment (drwHR) by performing a multivariable and weighted 

Cox model that conditions for all the baseline covariates used to create the propensity score. Finally, 

we performed a Bonferroni adjustment of the p-values and the 95% confidence intervals (CI) to 

compare the treatment groups versus the control group, keeping the type 1 error rate below 5%. All 

survival analyses were weighted by PSWs in Stata SE version 16.1 for Windows Pro 10 x64 bits (30). 

 

Ethics 

This study was classified as minimal risk for participants. To maintain the privacy of the patients, 

EsSalud’s informatics office anonymized all datasets before transfer to researchers. This target trial 

protocol was approved by EsSalud’s Institutional Review Board of COVID studies (91-SGRyGIS-

DIS-IETSI-ESSALUD-2020) and was also registered in the Peruvian Health Research Projects 

repository (PRISA, by its acronym in Spanish) with ID EI-1243 (31). 

 

RESULTS 

 

We included 5683 patients from 72 healthcare centers distributed in 28 health networks at national 

level. Of whom 200 received hydroxychloroquine or chloroquine within 48 hours of hospital 

admission, 203 received ivermectin, 1600 received azithromycin, 692 received hydroxychloroquine 

or chloroquine plus azithromycin, 358 received ivermectin plus azithromycin and 2630 received 

standard of care (none of the antimicrobials mentioned) (Figure 1). The age ranged from 18 to 104 

years old with a mean of 59.4 years old (SD = 16.3 years old) and 36.8% (n = 2091) of participants 

were women. The Table 1 describes the baseline characteristics of the study population. 
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Propensity score model development 

Propensity scores showed well overlapping in the region of common support between treatment 

groups versus control group (>95%) (SM Figure 1). Before we estimated the inverse probability of 

treatment weighting, we observed that twelve of 30 baseline covariates had high misbalance (>10% 

standardized mean difference) across different groups. After we estimated the inverse probability of 

treatment weighting, only one of the 30 baseline covariates (age) remained imbalanced (>10% 

standardized mean difference) (Figure 2).  

 

Follow-up and outcomes 

The median follow-up for overall survival was 7 days (9 days for HCQ, 8 days for IVM, 8 days for 

AZIT, 9 days for AZIT + HCQ, 8 days for AZIT + IVM). At the end of follow-up, 1072 out of 5683 

(18.9%) patients had died (49 [15.3%] in HCQ, 47 [24.5%] in IVM, 325 [23.2%] in AZIT, 165 

[23.5%] in AZIT + HCQ, and 85 [23.5%] in AZIT + IVM. Figure 3 shows weighted KM survival 

curves for the primary outcome, as well SM Figure 2 and SM Figure 3 show weighted KM survival 

curves for secondary outcomes. 

 

In the non-weighted crude analyses, IVM treatment was associated with higher all-cause mortality 

and/or ICU transfer hazard rate compared to standard of care (uHR = 1.57; 95%CI 1.16-2.14). AZIT 

+ IVM treatment was associated with 40% higher all-cause mortality hazard rate compared to 

standard care (uHR = 1.40; 95%CI 1.03-1.90) and also associated with 39% higher all-cause mortality 

and/or oxygen prescription hazard rate compared with standard care (uHR = 1.39; 95%CI 1.04-1.85). 

After adjusting by probability of having received of the treatment arms using the inverse probability 

weighting approach, we observed that AZIT + HCQ was associated with 84% higher all-cause 

mortality hazard rate compared to standard care (wHR = 1.84; 95%CI 1.12-3.02). Consistently, AZIT 

+ HCQ was associated with higher all-cause mortality and/or ICU transfer hazard rate (wHR = 1.49, 

95% CI: 1.01-2.19) and higher all-cause mortality and/or oxygen prescription hazard rate (wHR = 

1.70, 95% CI: 1.07-2.69) (see Table 2). Except for survival without transfer to ICU, these results 

were consistent even after doing double-robust adjustment to reduce residual confounding in the 

sensibility analysis (see SM Table 1).  

 

Although we found inconsistent results regarding the estimated effect of HCQ on primary and 

secondary outcomes, overall, we found results compatible with no effect. The weighted analysis 

showed that HCQ was associated with 77% higher all-cause mortality and/or oxygen prescription 

hazard rate compared to standard treatment (wHR = 1.77, 95% CI: 1.01-3.11). The double-robust 
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adjustment sensitivity analysis showed that HCQ treatment was associated with twice all-mortality 

hazard rates (drwHR = 2.08, 95% CI: 1.12-3.86) and all-mortality and/or oxygen prescription hazard 

rates (drwHR = 2.13, 95% CI: 1.20-3.77) compared to standard care. In this sensitivity analysis, we 

also observed that HCQ group was also associated to higher all-cause mortality and/or ICU transfer 

hazard rate compared to the control group (drwHR = 1.69, 95% CI: 1.04-2.76). 

 

We observed that IVM treatment was associated with all-cause mortality and/or ICU transfer hazard 

rate in the weighted analysis (wHR = 1.58, 95% CI:1.11-2.25) but not with the other two outcomes. 

Surprisingly, this finding persisted in the sensibility analysis (drwHR = 1.60, 95% CI: 1.12-2.27). On 

the other hand, we did not find effect on all-cause mortality reduction or the composite end-points for 

neither AZIT group nor AZIT + IVM group in all weighted (Table 2) and double-adjusted weighted 

analyses (SM Table 1). 

 

DISCUSSION 

 

This is the first study in Latin America, a region widely impacted by the pandemic, emulating a 

clinical trial based on observational data comparing different drug treatments for COVID-19. Using 

a database based on thousands of electronic clinical records, it was possible to replicate conditions of 

a clinical trial for several drugs prescribed during the pandemic. The electronic clinical records were 

fully implemented by the Peruvian Social Health Insurance in response to the COVID-19 emergency, 

yielding a unique opportunity to analyze big data under real-world conditions. This study also 

employed novel statistical tools to emulate adequate randomization of the patients. Not only a 

propensity score weighting was used to balance the control and intervention groups according to the 

probability of having been prescribed a certain drug, but the regression itself employed generalized 

boosted models based on repeated decision trees. The resulting models for our main outcome, all-

cause mortality, and two secondary outcomes, survival without ICU and survival without oxygen 

requirement, showed no benefit from any of the treatment arms compared with standard care. There 

was even a consistent increase of risk developing the outcome with the hydroxychloroquine and 

azithromycin combination. 

 

Azithromycin 

Our study showed no effect of azithromycin alone over mortality, survival without ICU, and survival 

without oxygen requirement. Few published studies have compared azithromycin alone versus 

standard of care free of hydroxychloroquine or ivermectin. Albani et al in Italy followed a cohort of 
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1403 patients either receiving azithromycin alone, HCQ alone, the combination of both, or none of 

them. Using propensity score weighting, they found that azithromycin alone was associated with 

lower mortality (OR 0.60, 95%CI 0.42-0.85) compared to no treatment. Guerin et al in France (32) 

compared 34 patients on azithromycin alone with no treatment, finding reduction in days to achieve 

clinical recovery (12.9 vs 25.8, p=0.015). On the other hand, Geleris et al (33) analyzed a large single-

center cohort in NYC using propensity score matching to evaluate HCQ, but also assessed 

azithromycin alone vs standard of care, finding no benefit for the end point of death and/or ICU 

transfer (HR 1.03, 95%CI 0.81-1.31). Arshad et al (34) also evaluated azithromycin alone as a 

secondary aim in their multicenter, retrospective, propensity score matched observational study in 

USA, finding no effect (HR 1.05, 95%CI 0.68-1.62). Rodiguez-Molinero et al in Spain followed a 

cohort of 239 patients treated with azithromycin alone (35). They were able to match 29 patients on 

azithromycin alone with an equal number of controls using multiple clinical and prognosis factors. 

They found no difference in oxygen saturation/fraction of oxygen at 48h, and a longer time to 

discharge in the azithromycin group. When using the unmatched whole cohort, they found no 

difference in any of these outcomes. In summary, the available evidence is still contradictory and 

mainly based on observational designs.   

 

Hydroxychloroquine alone 

We found a slight increase of risk for death and/or oxygen requirement, but not for our primary 

outcome (death), or for death and/or ICU transfer. This is consistent with the systematic review 

published by Fiolet et al (36) including 29 articles: three RCTs, one non- randomized trial, and 25 

observational studies. They included 11932 patients on the HCQ alone group, 8081 on the 

HCQ/azithromycin group, and 12930 on the control group. They found no association of HCQ alone 

with mortality with a pooled relative risk (RR) of 0.83 (95%CI 0.65-1.06) for all 17 studies and RR 

of 1.09 (95%CI 0.97-1.24) for the three randomized controlled trials. Among these studies, the New 

England Journal paper by Geleris et al (33),  after using propensity score matching, found no 

significant association between hydroxychloroquine use and intubation or death (HR 1.04, 95%CI 

0.82-1.32). Results were similar in multiple sensitivity analyses 

 

Hydroxychloroquine / azithromycin combination 

Noticeably, we found a consistent increase on the risk for the three outcomes among the patients who 

received the HCQ/azithromycin combination compared with standard of care. Similarly, the 

previously mentioned systematic review by Fiolet et al (36) found that HCQ/azithromycin was 

associated with an increased mortality (RR = 1.27; 95% CI 1.04-1.54) for six observational studies 
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plus a RCT. Two other observational studies not included in the previous systematic review, found 

no benefit in mortality. A Brazilian randomized clinical trial, 447 patients, showed no improvement 

of clinical outcomes with the use of azithromycin in addition to standard of care that included 

hydroxychloroquine (OR 1.36, 95%CI 0.94-1.97) in patients with severe COVID-19 (37). Another 

Brazilian multicenter open-label randomized trial enrolled 504 patients (38). Using a seven-point 

ordinal scale, they found no difference at 15 days when using either HCQ alone, or in combination 

with azithromycin. More important, they found more episodes of QT prolongation and liver-enzyme 

elevation among patients receiving hydroxychloroquine, alone or with azithromycin. An open-label 

controlled trial in Iran compared 55 patients on HCQ plus lopinavir with 56 patients who received 

azithromycin on top of that regimen, finding no difference in mortality (39). However, there are at 

least two big observational studies, which found a beneficial effect of the combination on mortality. 

Arshad et al in the Henry Ford Health system followed observationally 2561 patients. They found a 

66% HR reduction with HCQW and 71% with the HCQ/azithromycin combination (34). Lauriola et 

al in Italy reported an observational study with 377 consecutive patients and measured in-hospital 

death. They found a reduce in-hospital mortality with the HCQ/azithromycin combination (HR 0.265, 

95%CI 0.17-0.41) (40). Therefore, it is still not clear which is the real effect of the combination based 

on the published data; however, there is a physio-pathological plausibility that the combination 

increased cardiac adverse events, affecting survival negatively (41). 

 

Ivermectin 

Until the date of this manuscript, there are no published clinical trials or large observational studies 

analyzing the effect of ivermectin on patients hospitalized with COVID-19. We found no association 

of ivermectin with all-cause mortality or with death and/or oxygen requirement; however, a 

deleterious effect was found on death and/or ICU admission. The reason of this association is not 

immediately clear for us, given the no-effect on the other two outcomes. One possibility is the 

presence of residual confounding despite the propensity score matching and further model 

adjustments. We only found pre-printed observational studies evaluating the effectiveness of this 

drug. The largest series is the ICON study done in Florida, USA (42). They compared 173 patients 

on ivermectin versus 107 under usual care without employing any matching or weighting. They found 

less mortality in the ivermectin group (OR 0.52, 95%CI 0.29-0.96) and even greater effect on the 

subgroup with severe pulmonary disease (OR 0.15, 95%CI 0.05-0.47). A pilot study in Iraq compared 

71 patients receiving HCQ/azithromycin with 16 patients receiving a single oral dose of ivermectin 

on top (43). They found no difference on mortality (2/71 vs 0/16), but less hospitalization time in 

days (13.2±0.9 vs 7.6±2.8, p<0.001). Finally, there is a descriptive study in Argentina with 167 
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patients and no control group. They evaluated a treatment protocol that includes ivermectin, and 

reported an overall mortality of 0.59%, lower than their country average (44). Therefore, our study is 

the largest series assessing the effect of ivermectin among hospitalized patients and employing an 

adequate comparison between groups. 

 

Limitations and Strengths  

Despite being a trial emulation, this study still is an observational retrospective cohort. Without a 

random assignment, residual confounding by not inclusion of unmeasured confounders is a 

possibility. To control this, we used a robust approach based on incident users, defining a significant 

time zero to prevent immortal time-bias, allowing a grace period inclusion and the use of modern data 

science techniques to emulate random assignment. Especially, the machine learning approach 

(generalized boosted model) allow us to include many more potential confounders (~30 covariates) 

in the weighting model, than a conventional logistic regression would allow, without affecting the 

stability of the propensity scores. This is reflected in the appropriate balance and overlapping 

achieved between treatment and control groups once the weighting scores were applied. Moreover, a 

sensitivity analysis was performed using doubly robust adjustment in the weighted Cox regression 

models, obtaining consistently estimates of causal effects. Despite all these robust strategies, we 

cannot guarantee that there is some degree of residual confusion in our study. Specifically, our finding 

that IVM could be associated with an increased risk of one of the secondary outcomes, but not with 

the rest, could be due to residual confusion not properly controlled even after using the described 

robust causal inference methods. 

 

Other possible limitation is the occurrence of non-registered variations of the pharmacological 

treatment, as we relied on electronic records of drug dispensing. This process is strictly monitored 

and even audited; however, the system does not account for unexpected missing doses. On the other 

hand, it is important to highlight that our study, like an intention-to-treat approach, allows to estimate 

the effectiveness (effect in real conditions) of the studied drugs. This approach includes drug 

discontinuation or regimen modification during hospitalization due to adverse events, poor 

tolerability, or simply non-adherence. Thus, our results are a good approximation to the effectiveness 

of these treatments, but they do not necessarily reflect their efficacy (effect under ideal conditions). 

Although the studied drugs were administered based on the Peruvian Minister of Health guidelines, 

wide variations between different healthcare centers are expected, thus changing the decision criteria 

of who to treat. Despite all this, we are confident that our weighting strategy controlled most of the 
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heterogeneity introduced by inter-hospital disparities; however, some residual confusion is still 

possible.  

 

Despite these limitations, to the best of our knowledge, this is the first clinical trial emulation done in 

Latin America for COVID-19, and so far, the largest performed using robust methods to balance 

groups for emulating random assignment. Also, this is the first study that assess the real-world 

effectiveness of different treatments commonly used in the Region to treat COVID-19 in hospitalized 

patients. Different from traditional observational studies, a clinical trial emulation allows for robust 

design and statistical and machine learning techniques which minimize bias of treatment assignment, 

yielding reliable results. However, equilibrating control and intervention groups is no easy task, since 

the most common methods have disadvantages as sample size reduction (matching) or poor 

overlapping (weighting). The use of machine learning algorithms based on iterative decision trees 

(boosting) offers an excellent opportunity to optimize the balance between groups, maintaining stable 

models. Besides, the use of large observational data from electronic health records provides enough 

power to compare different treatment arms simultaneously, does not require the logistics of a 

randomized clinical trial, and approximates treatment efficacy under real-world conditions. 

 

Conclusion 

The results of this clinical trial emulation match with previous findings of randomized clinical trials 

and observational studies, which showed no beneficial effects of hydroxychloroquine, ivermectin, 

azithromycin, or their combinations. Once assignation bias and possible confounders are controlled, 

the effect of the pharmacological treatments studied is not significant, implying that any effect 

perceived in observational studies and case series is probably due to confounding effect and selection 

bias. We even detected a consistent increase in death risk, as well as transfer to ICU and oxygen 

requirement, with the hydroxychloroquine-azithromycin combination. This association has been 

reported in other studies and clinical trials, corroborating a potentially harmful effect of this 

combination. However, we did not have an adequate registry of pharmacological side effects in our 

electronic database, to suggest adverse reactions as the path for mortality increases. 
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Table 1. Baseline characteristics of patients with COVID-19 assigned to one of the treatment groups (HCQ, IVM, AZIT+HCQ and AZIT+IVM) or 

standard care (control group) 

Baselines covariates 
Standard 

care 
 HCQ  IVM  AZIT  AZIT + 

HCQ 
 AZIT + 

IVM 
 Total 

n %   n %   n %   n %   n %   n %   n % 

Total 2,630  200  203  1,600  692  358  5,683 
Sex                     

Female 1,128 42.9  62 31  73 36  493 30.8  220 31.8  115 32.1  2,091 36.8 
Male 1,502 57.1  138 69  130 64  1,107 69.2  472 68.2  243 67.9  3,592 63.2 
 

Mean age (SD), years 
56.3 (17.2)  59.1 (14.8)  62.9 (15.2)  60.2 (15.4)  59.9 (14.4)  60.0 (15.7)  58.4 (16.3) 

 

Origin of the health care center  
                   

Capital of Peru 1,402 53.3  111 55.5  66 32.5  864 54  317 45.8  113 31.6  2,873 50.6 
East region 144 5.5  14 7  3 1.5  92 5.8  32 4.6  9 2.5  294 5.2 
Center region 268 10.2  18 9  33 16.3  286 17.9  160 23.1  130 36.3  895 15.7 
North region 434 16.5  25 12.5  72 35.5  222 13.9  92 13.3  91 25.4  936 16.5 
South region 382 14.5  32 16  29 14.3  136 8.5  91 13.2  15 4.2  685 12.1 
 

Month 
                    

April 65 2.5  40 20  1 0.5  42 2.6  155 22.4  1 0.3  304 5.3 
May 397 15.1  99 49.5  11 5.4  223 13.9  377 54.5  18 5  1,125 19.8 
June 1,075 40.9  44 22  100 49.3  735 45.9  117 16.9  180 50.3  2,251 39.6 
July 1,093 41.6  17 8.5  91 44.8  600 37.5  43 6.2  159 44.4  2,003 35.2 
 

Emergency stay previous to hospitalization 
                    

No 1,802 68.5  131 65.5  147 72.4  1,234 77.1  443 64  249 69.6  4,006 70.5 
Yes 828 31.5  69 34.5  56 27.6  366 22.9  249 36  109 30.4  1,677 29.5 
 

Charlson index 
                    

0 2,416 91.9  190 95.0  190 93.6  1,497 93.6  650 93.9  336 93.9  5,279 92.9 
1 125 4.8  7 3.5  10 4.9  79 4.9  31 4.5  18 5.0  270 4.8 
2 66 2.5  3 1.5  2 1.0  16 1.0  7 1.0  3 0.8  97 1.7 
3 9 0.3  0 0.0  1 0.5  5 0.3  0 0.0  0 0.0  15 0.3 
4 9 0.3  0 0.0  0 0.0  1 0.1  4 0.6  1 0.3  15 0.3 
5 1 0.0  0 0.0  0 0.0  1 0.1  0 0.0  0 0.0  2 0.04 
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6 3 0.1  0 0.0  0 0.0  0 0.0  0 0.0  0 0.0  3 0.05 
7 1 0.0  0 0.0  0 0.0  1 0.1  0 0.0  0 0.0  2 0.04 
 

Obesity 
                    

No 2,522 95.9  188 94  191 94.1  1,534 95.9  648 93.6  345 96.4  5,428 95.5 
Yes 108 4.1  12 6  12 5.9  66 4.1  44 6.4  13 3.6  255 4.5 
 

Uncomplicated/complicated hypertension 
                    

No 2,220 84.4  173 86.5  153 75.4  1,364 85.3  587 84.8  293 81.8  4,790 84.3 
Yes 410 15.6  27 13.5  50 24.6  236 14.8  105 15.2  65 18.2  893 15.7 
 

Cardiovascular disease 
                    

No 2,593 98.6  199 99.5  200 98.5  1,584 99  689 99.6  354 98.9  5,619 98.9 
Yes 37 1.4  1 0.5  3 1.5  16 1  3 0.4  4 1.1  64 1.1 
 

Neurological disorder 
                    

No 2,582 98.2  198 99  195 96.1  1,586 99.1  689 99.6  354 98.9  5,604 98.6 
Yes 48 1.8  2 1  8 3.9  14 0.9  3 0.4  4 1.1  79 1.4 
 

Chronic lung disease 
                    

No 2,594 98.6  196 98  199 98  1,572 98.3  676 97.7  349 97.5  5,586 98.3 
Yes 36 1.4  4 2  4 2  28 1.8  16 2.3  9 2.5  97 1.7 
 

Mil/severe liver disease 
                    

No 2,604 99  199 99.5  201 99  1,595 99.7  689 99.6  356 99.4  5,644 99.3 
Yes 26 1  1 0.5  2 1  5 0.3  3 0.4  2 0.6  39 0.7 
 

Uncomplicated/complicated diabetes mellitus 
                    

No 2,335 88.8  177 88.5  168 82.8  1,397 87.3  613 88.6  314 87.7  5,004 88.1 
Yes 295 11.2  23 11.5  35 17.2  203 12.7  79 11.4  44 12.3  679 11.9 
 

Chronic kidney disease 
                    

No 2,498 95  192 96  190 93.6  1,549 96.8  674 97.4  349 97.5  5,452 95.9 
Yes 132 5  8 4  13 6.4  51 3.2  18 2.6  9 2.5  231 4.1 
 

Cancer 
                    

No 2,589 98.4  198 99  201 99  1,588 99.3  690 99.7  356 99.4  5,622 98.9 
Yes 41 1.6  2 1  2 1  12 0.8  2 0.3  2 0.6  61 1.1 
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Metabolic disease 
                    

No 2,627 99.9  200 100  203 100  1,599 99.9  692 100  358 100  5,679 99.9 
Yes 3 0.1  0 0  0 0  1 0.1  0 0  0 0  4 0.1 
 

Peptic ulcer disease 
                    

No 2,628 99.9  200 100  203 100  1,600 100  692 100  358 100  5,681 100 
Yes 2 0.1  0 0  0 0  0 0  0 0  0 0  2 0 
 

HIV  
                    

No 2,621 99.7  200 100  203 100  1,599 99.9  688 99.4  357 99.7  5,668 99.7 
Yes 9 0.3  0 0  0 0  1 0.1  4 0.6  1 0.3  15 0.3 
 

Antibiotics use in the first 48 hours after admission 
                    

No 2,303 87.6  180 90  172 84.7  1,357 84.8  604 87.4  316 88.5  4,932 86.8 
Yes 325 12.4  20 10  31 15.3  243 15.2  87 12.6  41 11.5  747 13.2 
 

Treatment with ACEI or ARB 
                    

No 2,468 93.9  184 92  196 96.6  1,548 96.8  670 97  341 95.5  5,407 95.2 
Yes 160 6.1  16 8  7 3.4  52 3.3  21 3  16 4.5  272 4.8 
 

Corticoid use during first 48 hours 
                    

No 2,399 91.2  182 91  188 92.6  1,455 90.9  641 92.6  341 95.3  5,206 91.6 
Yes 231 8.8  18 9  15 7.4  145 9.1  51 7.4  17 4.7  477 8.4 
 

Anticoagulation 
                    

No 2,287 87  173 86.5  182 89.7  1,410 88.1  598 86.4  318 88.8  4,968 87.4 
Yes 343 13  27 13.5  21 10.3  190 11.9  94 13.6  40 11.2  715 12.6 
 

Pneumonia diagnosis at first 48 hours 
                    

No 2,186 83.1  143 71.5  159 78.3  1,292 80.8  485 70.1  244 68.2  4,509 79.3 
Yes 444 16.9   57 28.5   44 21.7   308 19.3   207 29.9   114 31.8   1,174 20.7 

HCQ: Hydroxychloroquine or chloroquine. IVM: ivermectin. AZIT: azithromycin. AZIT + HCQ: azithromycin plus hydroxychloroquine. AZIT + IVM: azithromycin 
plus ivermectin. ACEI: angiotensin converting enzyme inhibitor. ARB: angiotensin receptor blocker. SD: standard deviation; %: Percentage of column. 
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Table 2. Primary and secondary outcomes in patients with COVID-19 assigned to treatment groups or standard care (control group) 

Outcome Standard of care HCQ group IVM group AZIT group AZIT + HCQ group AZIT + IVM group 

All-cause mortality             

Nº of events / Total 401/2630 49/200 47/203 325/1600 165/692 85/358 

30-days Cumulative Incidence (%)* 42.6 (37.5-48.2) 49.7 (33.1-69.1) 51.4 (35.2-69.9) 50.3 (43.5-57.6) 48.7 (40.1-58.2) 47.2 (37.0-58.6) 

uHR (95% CI) 1.00 (Ref) 1.39 (0.94-2.05) 1.40 (0.94-2.08) 1.13 (0.94-1.37) 1.20 (0.95-1.53) 1.40 (1.03-1.90) 

wHR (95% CI)** 1.00 (Ref) 1.73 (0.94-3.17) 1.39 (0.88-2.22) 1.15 (0.94-1.40) 1.84 (1.12-3.02) 1.37 (0.91-2.05) 

Survival without transfer to ICU     

Nº of events / Total 652/2630 71/200 79/203 481/1600 237/692 122/358 

30-days Cumulative Incidence* 51.3 (45.1-57.9) 65.6 (43.8-86.1) 58.7 (42.5-75.5) 54.3 (47.2-61.8) 54.4 (47-62.2) 55.7 (45.9-66.0) 

uHR (95% CI)** 1.00 (Ref) 1.29 (0.93-1.78) 1.57 (1.16-2.14) 1.06 (0.91-1.23) 1.13 (0.93-1.37) 1.24 (0.96-1.59) 

wHR (95% CI) 1.00 (Ref) 1.55 (0.96-2.49) 1.58 (1.11-2.25) 1.08 (0.92-1.27) 1.49 (1.01-2.19) 1.28 (0.94-1.76) 

Survival without need for oxygen         

Nº of events / Total 494/2630 59/200 52/203 414/1600 198/692 101/358 

30-days Cumulative Incidence* 48.5 (43.1-54.2) 55.2 (37.8-74.3) 58.7 (42-76.1) 57.8 (50.8-65) 54.3 (45.4-63.6) 51.7 (41.5-62.8) 

uHR (95% CI) 1.00 (Ref) 1.47 (1.03-2.10) 1.29 (0.88-1.88) 1.17 (0.98-1.40) 1.23 (0.98-1.53) 1.39 (1.04-1.85) 

wHR (95% CI)** 1.00 (Ref) 1.77 (1.01-3.11) 1.21 (0.77-1.90) 1.17 (0.97-1.41) 1.70 (1.07-2.69) 1.21 (0.82-1.80) 

uHR = unweighted hazard ratio; wHR = weighted hazard ratio; 95% CI = 95% confidence interval.   
* Cumulative incidence and 95% confidence intervals were obtained by Kaplan Meier life table method to account by censors. 

** Weighted hazard ratios and 95% confidence intervals were obtained by inverse probability treatment weighting. A gradient boosting machine was trained 
to estimate each patient's probability of receiving treatments given their baseline probabilities. Baselines covariates used to train the GBM were age, sex, 
Charlson's index at hospital admission, comorbidities registered in the first 48 hours (myocardial infarct/chronic heart failure/peripheral vascular disease, stroke, 
chronic lung disease, mild/severe liver disease, uncomplicated/complicated diabetes mellitus, cancer, stroke/dementia/paralysis, chronic kidney disease, 
metabolic disease, peptic ulcer disease, HIV, uncomplicated/complicated hypertension, healthcare network, month, history of emergency care before hospital 
admission, antibiotics used (other than azithromycin) in the first 48 hours,  antecedent of angiotensin-converting enzyme inhibitors/angiotensin-II receptor 
antagonists, and pneumonia diagnosis in the first 48 hours. 
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Figure 1. Study flowchart 

 

 

 

 

 

 

 

 

 

(n = 5863) 

Adult patients with confirmed COVID-19 without severity criteria 

(n = 200) 

Patients received 

HCQ within 48 hours 

of admission 

(n = 203) 

Patients received 

IVM within 48 hours 

of admission 

(n = 1600) 

Patients received 

AZIT within 48 hours 

of admission 

(n = 692) 

Patients received 

AZIT + HCQ within 48 

hours of admission 

(n = 358) 

Patients received 

AZIT + IVM within 48 

hours of admission 

(n = 2630) 

Patients received 

standard of care within 

48 hours of admission 

Transfer to ICU /Died  
(n = 71) 

 
Prescripted 

Oxygen/Died  
(n = 59) 

 
Died  

(n = 49) 

Transfer to ICU/Died  
(n = 79) 

 
Prescripted 

Oxygen/Died  
(n = 52) 

 
Died 

(n = 47) 
 

Transfer to ICU/Died  
(n = 481) 

 
Prescripted 

Oxygen/Died  
(n = 414) 

 
Died  

(n = 325) 
 

Transfer to ICU/Died  
(n = 237) 

 
Prescripted 

Oxygen/Died 
 (n = 198) 

 
Died  

(n = 165) 
 

Transfer to ICU/Died 
(n =122) 

 
Prescripted 

Oxygen/Died 
 (n = 101) 

 
Died  

(n = 85) 
 

Transfer to ICU/Died 
(n = 652) 

 
Prescripted 

Oxygen/Died 
 (n = 494) 

 
Died  

(n = 401) 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.06.20208066doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.06.20208066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Balance plot of the standardized differences of baseline covariates used to estimate the propensity score (n = 5683) 
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Figure 3. Weighted Kaplan-Meier curves for overall survival between each group of 

treatment versus standard care (control group)
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