Supplementary Table 1: CXR based COVID-19 detection literature

Name of the paper	Accuracy	sensitivity	specificity	Data Description and Classes	Algorithm Description	Models
Covallo et al. Texture Analysis in the Evaluation of Covid-19 Pneumonia in Chest X-Ray Images: a Proof of Concept Study	91.8%	93%	90%	positive/negative	After samples separation into training (n = 132) and test (n = 88) sets (60:40 ratio), the training test was used to train 11 classification models: Partial Least Square Discriminant Analysis (PLS-DA), Naïve Bayes (NB), Generalized Linear Model (GLM), Logistic Regression (LR), Fast Large Margin (FML), Deep Learning (DL), Decision Tree (DT), Random Forest (RF), Gradient Boosted Trees (GBT), articial Neural Network (aNN) and Support Vector Machine (SVM)	Ensembl e Machine Learning (cut- off 132.57)
Asif et al. Classification of COVID-19 from Chest X-ray images using Deep Convolutional Neural Networks Sohaib Asif, Yi Wenhui*, Hou Jin, Yi Tao,	98% (training accuracy of 97% and validation accuracy of 93%).	NA	NA	Normal 1341, Viral Pneumonia 1345, COVID-19 864 (data augmentation and splitting for training, validation and test)	88% for training, 7% for validation and 5% for testing	based model Inception V3 with transfer learning have been CNN
Basu <i>et al.</i> Deep Learning for Screening COVID-19 using Chest X-Ray Images	95.3% ± 0.02 overall,100% of the covid and normal cases being correctly classified in each validation fold	-NA	NA	Normal, Pneumonia, COVID-1, other disease (atelectasis, cardiomegaly, infiltration, effusion, nodule, mass) 225 Covid-19 108,948 frontal chest x-ray 5-fold cross validation	The adopted procedure is outlined below. • Instantiate the convolutional base of the model trained on Data-A and load its pre- trained weights. • Replace the last fully connected layer of the pre-trained CNN with a new fully connected layer. • Freeze the layers of the model up to the last convolutional block. • Finally retrain the last convolution block and the fully connected layers using Stochastic Gradient Descent (SGD) optimization algorithm with a very slow learning rate.	CNN, Connected with Gradient Class Activation Map (Grad- CAM) for detecting the regions Domain extension transfer learning (DETL)
Ahmed 2020 et al ReCoNet - Multi- level Preprocessing of Chest X-rays for COVID-19 Detection Using Convolutional Neural Networks	97.48%	96.39%	97.53%	Training: COVID-19 207, Normal 7966, Pneumonia 5451 Test: COVID-19 31, Normal 885, Pneumonia 594	Used 90% of the data for training and 10% for validation.	ReCoNet – preprocessing before feeding to deep net in the same framework
Chowdhury 2020 Can AI help in screening Viral and COVID-19 pneumonia	Normal vs Covid-19 98.3% Normal vs. viral vs. Covid-19 98.3%	Normal vs Covid-19 96.7% Normal vs viral vs Covid-19 96.7%	Normal vs Covid-19 100% Normal vs viral vs Covid-19 99%	Training: COVID-19 130, Normal 190, Viral Pneumonia 190 Test: COVID-19 60, Normal 1151, Viral Pneumonia		Four different network: 1) ALexNet, 2) ResNet28, 3) DenseNet201 and 4) SqueezeNet

				594		
Ozturk <i>et al.</i>	98.08%	95.3	95.3	binaryclass	80% of X-ray images are used for training and	Dark
Automated				classification	20% for validation.	CovidNet
detection of COVID-				(COVID vs. No-		architecture
19 cases using deep				Findings		
neural networks	87.02%	85.35	92.18	Multiclass		
with X-ray images				(COVID vs. No-		
				Findings vs		
				Pneumomia)		