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ABSTRACT  

 

Purpose: To improve and test the generalizability of a deep learning-based model for 

assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different 

patient populations. 

 

Materials and Methods: A published convolutional Siamese neural network-based model 

previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient 

CXRs. This model produces a quantitative measure of COVID-19 lung disease severity 

(pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test 

sets, including 3 from the United States (patients hospitalized at an academic medical 

center (N=154), patients hospitalized at a community hospital (N=113), and outpatients 

(N=108)) and 1 from Brazil (patients at an academic medical center emergency department 

(N=303)). Radiologists from both countries independently assigned reference standard CXR 

severity scores, which were correlated with the PXS scores as a measure of model 

performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) 

technique was used to visualize the neural network results.  

 

Results: Tuning the deep learning model with outpatient data improved model performance 

in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to 

baseline r=0.86). Model performance was similar, though slightly lower, when tested on the 

United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, 

respectively). UMAP showed that the model learned disease severity information that 

generalized across test sets. 

 



Conclusions: Performance of a deep learning-based model that extracts a COVID-19 

severity score on CXRs improved using training data from a different patient cohort 

(outpatient versus hospitalized) and generalized across multiple populations. 
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INTRODUCTION 

 

Chest radiographs (CXRs) are routinely obtained in symptomatic patients with suspected or 

confirmed coronavirus disease 2019 (COVID-19) infection. While CXRs have limited 

sensitivity for the diagnosis of COVID-19,1–3 the severity of radiographic lung findings has 

been associated with worse clinical outcomes.4–6 Deep learning-based techniques have been 

used to automate the extraction of measures of lung disease severity from CXR image data, 

which correlate with manual scores of disease severity by radiologists and can be potentially 

used for patient risk stratification.7–12 These techniques are promising; however, the 

performance of CXR deep learning models are known to show variable generalization on 

external data.13 Thus, validation on data from different sources and patient populations is 

essential before such models can be deployed in clinical practice. 

In this study, we aimed to improve and test the generalizability of a previously 

published deep learning-based model for automated assessment of COVID-19 pulmonary 

disease severity, the Pulmonary X-Ray Severity (PXS) score model.7 A limitation of the 

original model was that it was trained and tested on CXRs from patients hospitalized with 

COVID-19, who tend to have more severe disease compared to the general population 

infected by COVID-19. In addition, portable anterior-posterior (AP) CXRs are 

overrepresented compared to standard posterior-anterior (PA) CXRs, which may be more 

common in outpatient settings. In this work, we tuned the PXS score model by training with 

primarily outpatient CXRs and assessed model performance in comparison to manual 

radiologist annotations for lung disease severity in four different test sets with different 

technical and patient characteristics, including CXRs acquired from patients in two countries 

(United States and Brazil). 

 

 



MATERIALS AND METHODS 

 

This retrospective study was reviewed and exempted by the Institutional Review Board of 

Massachusetts General Brigham (Boston, USA), with waiver of informed consent. The parts 

of the study involving data from Hospital Santa Paula was approved by the Institutional 

Review Board of the Universidade Federal de São Paulo (São Paulo, Brazil). The hospitals 

involved in this study include Massachusetts General Hospital (Hospital 1) (Boston, USA), 

Hospital Santa Paula(Hospital 2) (São Paulo, Brazil), and Newton Wellesley Hospital 

(Hospital 3) (Newton, USA), Hospitals 1 and 2 are large academic medical centers, while 

Hospital 3 is a community hospital in the Boston metropolitan area. 

 

PXS Score Base Model 

 

For the base model for this study, we used a previously published convolutional Siamese 

neural network-based model that can extract a continuous measure of lung disease severity 

from CXRs in patients with COVID-19, the PXS score model.7 In brief, a Siamese neural 

network is composed of twinned subnetworks with identical weights; paired images can be 

passed as inputs, each image passing to a subnetwork.14 The Euclidean distance between 

the last fully connected layers of the subnetworks can serve as a continuous measure of 

disease severity similarity between the two input images.15 In the original PXS score model, 

a Siamese neural network composed of twinned DenseNet121 networks16 was pre-trained 

using ~160,000 anterior-posterior (AP) chest radiographs from the publicly available 

CheXpert dataset.17 The model was then trained using 314 admission CXRs from 

hospitalized patients with COVID-19 at Hospital 1 annotated by radiologists using a manual 

scoring system for lung disease severity.7 During model inference, the image-of-interest 

was compared to a pool of normal CXRs from CheXpert, and the median of the Euclidean 

distances between the image-of-interest and each normal CXR served as the PXS score. 



Please refer to the previously published work for the technical details of this 

implementation.7 See Figure 1 for a study design schematic. 

 

Chest Radiograph Data  

 

We assembled two new CXR DICOM datasets for this study: 

 

(1) Hospital 1 Outpatient Dataset. This dataset was composed of 358 CXRs from 349 

unique patients who presented for outpatient imaging at urgent care or respiratory illness 

clinics associated with Hospital 1 and tested positive for COVID-19 by nasopharyngeal swab 

RT-PCR obtained at their outpatient visit from March 15, 2020 to April 15, 2020. Raw 

DICOM data for the frontal view CXRs was extracted and anonymized directly from the 

institutional PACS. This dataset was composed of mostly CXRs acquired in the posterior-

anterior (PA) position (342, 96%), with the remainder acquired in the anterior-posterior 

(AP) position (16, 4%). Some radiographs in this data set overlapped with the original PXS 

score model training data set (22, 6%) because the outpatient CXR was used as the 

admission CXR in some patients.7 Thus, in partitioning this outpatient CXR dataset, we 

included the overlapping radiographs in the planned training/validation partition and then 

randomly allocated the remaining CXRs up to a 70:30 distribution (250 for 

training/validation and 108 for testing). The training/validation partition was then randomly 

partitioned 90:10 (225 for training, 25 for validation). Associated age and sex data were 

extracted from the electronic health record. 

 

(2) Hospital 2 Emergency Test Set. This dataset was composed of 303 CXRs from 242 

unique patients who presented to the emergency department with suspected COVID-19 at 

Hospital 2. These CXRs were sampled from patients from February 1, 2020 to May 30, 2020 

with at least one COVID-19 RT-PCR result within ±3 days of the CXR. Sampling was 



stratified on RT-PCR test results, so that 70% of CXRs in the dataset would have at least 

one positive associated test and 30% would have all negative tests. In addition, a subset of 

patients was permitted to have multiple CXRs in the dataset (49 with 2 CXRs, 6 with 3 

CXRs). Raw DICOM data for the frontal view CXRs was extracted and anonymized from the 

institutional PACS. The AP versus PA view position was not available in the DICOM metadata 

for this data. Age and sex data were extracted from the electronic health record. 

  

In addition to these two data sets that were created for this study, we also used previously 

published data sets for model testing, including 154 admission CXRs from 154 unique 

patients hospitalized for COVID-19 at Hospital 1 (Hospital 1 Inpatient Test Set) and 113 

admission CXRs from 113 unique patients hospitalized for COVID-19 at Hospital 3 (Hospital 

3 Inpatient Test Set).7 X-ray equipment manufacturer information from all four test sets 

were extracted from the DICOM metadata tags.  

 Raw pixel data from the CXR DICOMs used in training, validation, and testing were 

pre-processed using the same steps as used in the baseline PXS score model,7 including 

conversion to 8-bit, correction of photometric inversion, histogram equalization, and 

conversion to a JPEG file.  

 

Radiologist Annotations for Lung Disease Severity 

 

We used a manual scoring system for COVID-19 lung disease severity on CXRs previously 

used for training of the PXS score model, which is a modified version of the Radiographic 

Assessment of Lung Edema scoring system (mRALE).7,18 In brief, from the frontal view of 

the CXR, each lung is assigned a score from 0 to 4 for extent of consolidation or ground 

glass/hazy opacities (up to 0, 25, 50, 75, 100%) and a score from 1 to 3 for overall density 

(hazy, moderate, dense). The sum of the products of the extent and density scores for each 

lung is the mRALE score (range from 0-24). Higher mRALE scores have been associated 



with worse clinical outcomes in COVID-19.5 Two diagnostic radiologists with thoracic 

subspecialty expertise (B.P.L., D.P.M.) from Hospital 1 independently annotated the 358 

CXRs from the Hospital 1 Outpatient Dataset for mRALE, viewing the images on a diagnostic 

PACS viewer. Three diagnostic radiologists with non-thoracic subspecialty training (G.C.A.C., 

M.S.T., S.F.F.) from Hospital 2 independently annotated the 303 CXRs from the Hospital 2 

Emergency Test Set for mRALE, viewing the images using the MD.ai annotation platform 

(New York, United States). The average of the rater mRALE scores served as the mRALE 

score for each CXR. All raters had previously rated 10 CXRs using mRALE with feedback on 

their scores, though the Hospital 1 raters had more experience, previously rating ~300 

studies independently. 

 To assess the correlation between the radiologists from both hospitals in applying the 

mRALE score, the two thoracic radiologists from Hospital 1 rated a subset of 69 studies from 

the Hospital 2 dataset in PACS viewers. This subset was composed of studies with mRALE ≥ 

3.0 assigned by the Hospital 3 raters, in order to focus re-assessment on abnormal lungs, 

rather than normal / near-normal lungs. 

 

PXS Score Model Re-Training 

 

The base PXS score Siamese neural network model was re-trained (“tuned”) using the 250 

CXR training/validation partition of the Hospital 1 Outpatient Dataset, using the same 

training strategy with mean square error (MSE) loss as previously reported.7 In brief, 

random CXR image pairs were fed to the Siamese neural network. The difference between 

the Euclidean distance between the final fully connected layers of the network and the 

absolute difference in mRALE scores between the two input images served as the “error” for 

the MSE loss function. During model training and validation, 1600 and 200 input image pairs 

were randomly sampled per epoch, respectively. For training, input images were randomly 

rotated ± 5° and then randomly cropped to a scale of 0.8-1 and resized to 320 x 320 pixels. 



For validation, input images were resized to 336 x 336 pixels and center cropped to 320 x 

320 pixels. The model training was implemented in Python (version 3.6.9) with the Pytorch 

package (version 1.5.0), using the Adam optimizer19 (initial learning rate = 0.00002, β1 = 

0.9,  β2 = 0.999). Training/validation batch sizes of 8 and early stopping at 7 epochs 

without improvement in validation loss were set. The lowest validation loss model was 

saved for evaluation. The code used for model training is available at 

https://github.com/QTIM-Lab/PXS-score. 

 

PXS Score Model Inference 

 

The PXS score for an image-of-interest is the median of Euclidean distances calculated from 

paired image inputs passed through the Siamese neural network, where each paired image 

input consists of the image-of-interest and an image from a pool of N normal CXRs. In this 

study, we created a set of 15 manually curated normal chest x-rays with varying body 

habitus and field-of-view from CXRs from Hospital 1 to serve the pool of normal CXRs (age 

range 18-72 years, 7 women and 8 men).  

In some CXR images, primarily in the Hospital 3 dataset, large black borders may 

surround the actual CXR. Immediately before the histogram normalization step described in 

the pre-processing step described above, a Python script for automated rectangular 

cropping for black borders was applied to the image (i.e. border pixels with normalized 

values <2 were cropped). Code used for model inference and this cropping step is also 

available at the GitHub link above.    

 

Statistics / Data Visualization 

 

To evaluate differences in sex between the datasets, we used the Chi-square test. To 

evaluate differences in age and mRALE scores (treated as a continuous variable from 0-24), 



we used the Kruskal-Wallis test and post-hoc Mann-Whitney tests (two-sided). Interrater 

correlations for mRALE labeling and correlations between PXS score and mRALE were 

assessed using Pearson correlations (r). Statistical tests were performed using the scipy 

Python package (version 1.1.0), with an a priori threshold for statistical significance set at 

P<0.05.  

The Seaborn Python package (version 0.10.0) was used for scatterplot data 

visualizations. To perform dimensionality reduction for visualizing the neural network 

results, we used the Python implementation of UMAP (Uniform Manifold Approximation and 

Projection) (version 0.4.2) (number of neighbors = 20, minimum distance = 0.6, metric = 

correlation).20,21 Each test set image was passed through a single subnetwork of the 

Siamese neural network and the last fully connected layer (1000 nodes in DenseNet121) 

from each image was used as an input for UMAP. 

 

 

RESULTS 

 

Chest Radiograph Dataset Characteristics 

 

The Hospital 1 Outpatient Dataset (including training/validation and test partitions) and 

Hospital 2 Emergency Test Set characteristics are summarized in Table 1. The Hospital 1 

Inpatient Test Set and Hospital 3 Inpatient Test Set characteristics were previously 

published.7 There were significantly different age distributions between the test sets 

(p=0.003) (Figure 2A).The Hospital 1 Outpatient Test Set patient ages were significantly 

lower compared to the Hospital 1 and 3 Inpatient Test Sets (median 53 versus 59 years, 

p=0.003, and median 53 versus 74 years, p<0.001, respectively). The Hospital 2 

Emergency Test Set ages were significantly lower than the Hospital 1 Outpatient Test Set 

ages (median 41 versus 53 years, p<0.001). There was a significantly higher proportion of 



CXRs from women in the dataset from Brazil compared to the combined datasets from the 

United States (58% versus 45%, p=0.001). The X-ray equipment used to obtain these CXRs 

came from a variety of manufacturers that differed by dataset (Table 2). 

 

Radiologist Annotations of COVID-19 Lung Disease Severity 

 

The correlation between the two raters at Hospital 1 for assigning mRALE scores to the 358-

CXR Hospital 1 Outpatient Dataset was high (r=0.89, p<0.001). The correlation between 

the three raters at Hospital 2 for assigning mRALE scores to the 303-CXR Hospital 2 

Emergency Test Set was lower (r=0.85, 0.81, and 0.84, for each pairwise comparison; 

p<0.001 in all comparisons). In the 69-CXR subset of the Hospital 2 Emergency Test Set 

that the Hospital 1 raters also evaluated, the correlation between the average Hospital 1 

and average Hospital 2 rater mRALE scores was 0.86 (p<0.001). However, the individual 

Hospital 2 rater mRALE scores showed variable correlation with the average Hospital 1 

raters (r=0.65, 0.75, 0.86). 

 There were significantly different mRALE distributions between the test sets 

(p=0.011) (Figure 2B). The mRALE scores were significantly lower in the Hospital 1 

Outpatient Dataset compared to the Hospital 1 and 3 Inpatient Test Sets (median 1.0 

versus 4.0, p<0.001, and median 1.0 versus 3.3, p<0.001). The mRALE scores in the 

Hospital 2 Emergency Test Set were significantly lower compared to each of the other test 

sets (all p<0.001). 

 

Improved Deep Learning Model Performance and Testing of Generalizability 

 

The PXS score model tuned using the Hospital 1 Outpatient Training/Validation Set showed 

improvements in correlation between the model output (PXS score) and radiologist-

determined mRALE scores in the Hospital 1 Inpatient and Hospital 3 Inpatient Test Sets 



(r=0.88 and r=0.90, respectively, p<0.001; increased from r=0.86 and r=0.86 using the 

baseline model) (Figures 3A and 3D) 

 We further tested this tuned PXS score model on the Hospital 1 Outpatient and 

Hospital 2 Emergency Test Sets, which showed that the model could generalize to these 

additional datasets (r=0.86 and r=0.85 respectively, p<0.001) (Figures 3B and 3C). 

However, there was a steeper slope for the regression on the Hospital 2 Emergency Test Set 

data (slope=2.3) versus the slope of the other test sets (in aggregate, slope=0.6). While 

the model learned a measure of disease severity as evidenced by the significant correlation 

between mRALE and PXS scores, for this specific test set, the relationship between mRALE 

and PXS was scaled differently. 

 

Visualizing Test Set Relationships Using Dimensionality Reduction 

 

When CXRs from all four test sets were analyzed in aggregate (total N=678), UMAP showed 

that the CXRs appear to cluster principally in relation to similar disease severity (PXS and 

mRALE scores) (Figures 4A and 4B). Contrastingly, there was substantial overlap between 

the CXRs from different test sets (Figure 4C). These findings support the finding that the 

PXS score model learned a generalizable representation of lung disease severity. However, 

the normal or near-normal severity CXRs appear to have a larger cluster in the Hospital 2 

Emergency Test Set compared to the other test sets (Figure 4C). We visually inspected 

these images and did not find a systematic perceptible difference in view position, body 

habitus, heart size or x-ray exposure. 

 

 

DISCUSSION 

 



We improved the performance of the deep learning-based PXS score model for assessment 

of a quantitative measure of COVID-19 lung disease severity on CXRs and tested its 

generalizability on four test sets reflective of different populations from the United States 

and Brazil. The PXS model was originally trained using admission CXRs from hospitalized 

COVID-19 patients.7 In this study, we found that tuning the deep learning model using CXR 

data from outpatients improved model performance on the test sets from hospitalized 

patients. This may be because the model was able to learn from a different distribution of 

data, as outpatients have typically less severe lung disease and also different view positions 

compared to admitted patients. Based on the correlation of the model results with manual 

radiologist annotations for lung disease severity in multiple test sets, the PXS score model 

does appear to generalize to different patient cohorts. Further supporting this conclusion, a 

dimensionality reduction technique showed that the CXRs from different test sets cluster 

primarily by lung disease severity, as opposed to by test set source.  

While the correlation between the radiologist-determined severity score (mRALE) and 

the deep learning-based PXS score was generalizable between test sets, there was a 

difference in the mRALE/PXS slope between the test sets from the United States and Brazil. 

Thus, differences in calibration between mRALE and PXS scores may occur for CXRs coming 

from different sources and this needs to be considered before the use of such a model 

clinically. This phenomenon could be due to systematic differences in x-ray equipment 

manufacturers and acquisition technique (including parameters like x-ray tube voltage and 

current), which can alter the properties of tissue contrast in the image. Subjectively, our 

radiologist raters found a perceptible difference in exposure/contrast in the images from 

Brazil versus the United States. The PXS score model attempts to address this issue using 

histogram normalization, but this transformation may not eliminate all systematic 

differences. Model training on data from an increased variety of vendors could help address 

this calibration issue and is a direction of future research. 



In spite of the calibration issue, the finding that the PXS score model was able to 

correlate with manual radiologist annotations at multiple test sites has potential clinical 

application for the reproducible assessment of COVID-19 lung disease severity at different 

sites. This reproducible assessment is important because CXR findings have been associated 

with worse clinical outcomes in patients with COVID-19,4–6 which may be useful for clinical 

risk stratification, and there is interrater variation between radiologist assessments (which 

will be more pronounced in the “real world” where radiologists are not uniformly trained on 

the use of a scoring system). Another possible application is for radiologist worklist 

prioritization, which could help the expedite identification of the sickest patients.22 

Previous work on developing deep-learning based models to assess COVID-19 lung 

disease severity on CXRs have shown correlations between various systems of manual 

radiologist assessments and deep learning outputs, though often without external testing. 

For example, Cohen et al. split their 94 posterior-anterior CXR dataset 50:50 for training 

and testing,12 Zhu et al. split their 131 portable CXR dataset 80:20 for training and testing,8 

and Blain et al. reported performance on a 65 CXR dataset using 5-fold cross validation.10 

On the other hand, work from Amer et al. and Signoroni et al.9,11 does include external 

testing of their deep learning models on CXRs from the Cohen et al. dataset,12 and Barbosa 

et al. also perform external testing on an 86 CXR dataset.23 Future work in this field should 

continue to include assessment of model performance across multiple sites, to characterize 

generalizability for different x-ray acquisition techniques and patient populations before 

these artificial intelligence-based tools can be deployed for possible clinical use.  

There are limitations to this study. First, the reference standard label used for 

disease severity assessment on CXRs is determined by radiologists, which has inherent 

variability. We used the average of multiple radiologist raters for the reference standard to 

decrease the variability in this study. However, other reference standards such as CT-

derived scores may be promising, as has been found using digitally reconstructed 

radiographs from CT.23 Second, while studying the technical properties of deep learning-



based models like PXS score is necessary, making such CXR-based severity scores clinically 

useful in addressing the COVID-19 pandemic is a different avenue of important research. 

Future work into how radiologists and other clinicians can use the PXS score (and other 

developed lung disease severity scores) to guide patient management or workflows will be 

essential to deliver value.  
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TABLES 

 

Table 1. Summary of dataset characteristics and radiologist mRALE scores. N, Number; Q1-

Q3, Quartile 1 to Quartile 3 (i.e. interquartile range). 

 

ap-value for comparison of internal test set with training/validation set; bp-value for 

comparison of patients who tested positive versus negative by COVID-19 RT-PCR. 

 

 

  

 Hospital 1 Outpatient Dataset  
(UNITED STATES) 

Patients presenting for outpatient imaging who 
tested positive by COVID-19 RT-PCR 

 

Hospital 2 Emergency Test Set  
(BRAZIL) 

Patients presenting to emergency department 
with suspected COVID-19 

 
All Training/ 

Validatio
n Set 

Outpatie
nt 
Test Set 

p-valuea  All RT-PCR 
positive 

RT-PCR 
negative 

p-valueb 

CXRs, N 
 

358 250 108  303 203 100  

Unique Patients, N 349 248 106  242 167 75  
Age (years), 
median (Q1-Q3) 

53 (41-64) 52 (41-65) 53 (41-63) 0.9 41 (33-52) 40 (33-50) 44 (33-52) 0.2 

Sex, N women (%)   186 (52%) 132 (53%) 54 (50%) 0.7 175 (58%) 113 (56%) 62 (62%) 0.4 
mRALE, median 
(Q1-Q3) 
 
mRALE, N (%) 
     mRALE = 0  
     0 < mRALE ≤ 4 
     4 < mRALE ≤ 10 
     mRALE > 10 
 

1.0 (0-3.5) 
 
 
 
123 (34%) 
164 (46%) 
58 (16%) 
13 (4%) 

1.0 (0-3.0) 
 
 
 
88 (35%) 
122 (49%) 
30 (12%) 
10 (4%) 

1.0 (0-4.5) 
 
 
 
35 (32%) 
42 (39%) 
28 (26%) 
3 (3%) 

0.2 0.3 (0-2.7) 
 
 
 
122 (40%) 
126 (42%) 
29 (10%) 
26 (9%) 

0.3 (0-2.8) 
 
 
 
84 (41%) 
78 (38%) 
22 (11%) 
19 (9%) 

0.3 (0-1.8) 
 
 
 
38 (38%) 
48 (48%) 
7 (7%) 
7 (7%) 

0.6 



Table 2. Summary of x-ray equipment manufacturers extracted from DICOM metadata. 

 

Dataset Manufacturer (Headquarters) Number of CXRs 

Hospital 1 Inpatient 
Test Set (United 
States) 

Agfa (Mortsel, Belgium) 
GE Healthcare (Chicago, USA) 
Varian (Palo Alto, USA) 
Not available 

136 
1 
4 
13 

Hospital 1 Outpatient 
Test Set (United 
States) 

Agfa (Mortsel, Belgium) 108 

Hospital 2 Emergency 
Test Set (Brazil) 

Fujifilm Corporation (Tokyo, Japan) 303 
 

Hospital 3 Inpatient 
Test Set (United 
States) 

Agfa (Mortsel, Belgium) 
Caresteam (Rochester, USA) 
Kodak (Rochester, USA) 
Philips (Amsterdam, Netherlands) 
Siemens (Munich, Germany) 

33 
72 
2 
2 
2 

 

 

 

 

 

 

 

 

 

  



FIGURE CAPTIONS 

 

Figure 1. Schematic of study design. Previously published Siamese neural network-based 

model for extracting lung disease severity from CXRs7 was tuned using new CXR data and 

evaluated in four test sets. 

 

Figure 2. Boxplots show variable distributions in patient age (A) and lung disease severity 

by mRALE score (B) in the different CXR test sets. Boxplots show the median and 

interquartile range (IQR), where the whiskers extend up to 1.5 x IQR. 

 

Figure 3. Scatterplots show the correlation between radiologist-determined mRALE score 

and the deep learning-based PXS score in the Hospital 1 Inpatient Test Set (r=0.88) (A), 

Hospital 1 Outpatient Test Set (r=0.86) (B), Hospital 2 Emergency Test Set (r=0.85) (C), 

and Hospital 3 Inpatient Test Set (r=0.90) (A). Linear regression 95% confidence intervals 

are shown in each scatterplot. 

 

Figure 4. Dimensionality reduction using UMAP shows the relationships between CXR data 

passed through the deep learning-based PXS score model from all four test sets (total 

N=678), color coded for PXS score (A), mRALE score (B), and test set (C). For the legend in 

(C), H indicates Hospital. Across the different test sets, a representation of lung disease 

severity is learned by the PXS score model. 

 



New PXS 
Score Model

Baseline Model from Li et al. (2020),
Siamese neural network model previously trained on:

Model Tuning

CheXpert
(~160,000 AP CXRs)

Hospital 1 COVID-19 Inpatient
Training/Validation Set
(314 admission CXRs)

Hospital 1 COVID-19 Outpatient
Training/Validation Set

(250 CXRs)

Hospital 1 
Inpatient 
Test Set

(154 CXRs)
United States

Hospital 2 
Emergency 

Test Set
(303 CXRs)

Brazil

Hospital 1 
Outpatient 

Test Set
(108 CXRs)

United States

Hospital 3  
Inpatient 
Test Set 

(113 CXRs)
United States

Multi-Population Test Sets



Hospital 1
Inpatient

Hospital 1
Outpatient 

Hospital 2
Emergency 

Hospital 3
Inpatient 

Hospital 1
Inpatient

Hospital 1
Outpatient 

Hospital 2
Emergency 

Hospital 3
Inpatient 

A B



A B

C D



PXS ≤ 2.5
0 < PXS ≤ 5
5 < PXS ≤ 9
PXS > 9

mRALE ≤ 4
4 < mRALE ≤ 8
8 < mRALE ≤ 12
mRALE > 12

H1 - Inpatient
H1 - Outpatient
H2 - Emergency
H3 - Inpatient

A

B

C


