Delineating genetic and familial risk for psychopathology in the ABCD study

C E Palmer¹*, R Loughnan²*, C Makowski³, W K Thompson⁴, D Barch⁵, T Jernigan¹,²,⁶, A Dale³,⁵,⁶,⁷,⁸ & C C Fan³

*These authors contributed equally to this work

1. Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
2. Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
3. Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, La Jolla, CA 92037, USA
4. Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
5. Psychological & Brain Sciences, Psychiatry and Radiology, Washington University, St. Louis, USA
6. Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
7. Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
8. Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA

ABSTRACT

Psychiatric disorders place a huge burden on those affected and their families, as well as society. Nearly all psychiatric disorders have a heritable component and lifetime prevalence rates of several disorders are higher among first degree biological relatives of individuals with a diagnosis. Given that many psychiatric disorders have their onset in adolescence, estimating genetic risk during childhood may identify at-risk individuals for early intervention that can reduce this burden. Here we measured genetic risk for psychopathology using both polygenic risk scores (PRS) and family history in a large typically developing sample of 9-10 year old children from the Adolescent Brain and Cognitive Development (ABCD) Study℠ and determined associations with a large battery of behavioural phenotypes. By including all genetic risk predictors in the same model, we were able to delineate unique behavioral associations across these measures. Polygenic risk for Attention Deficit Hyperactivity Disorder (ADHD) and depression (DEP) was associated with unique patterns of both externalizing and internalizing behaviors. Family history of conduct problems, depression and anxiety/stress additionally predicted unique behavioral variance across similar measures. These findings provide important insight into the potential predictive utility of PRS and family history in early adolescence and suggest that they may be signaling differential, additive information that could be useful for quantifying risk during development.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
INTRODUCTION

Psychiatric disorders place a huge burden on those affected and their families, as well as society. In 2017, it was estimated that 18.9% of US adults had a mental health diagnosis in the past year[1] with many psychiatric disorders beginning in adolescence. Identifying risk for psychopathology in developmental samples may offer an opportunity for early intervention that can reduce this burden. Nearly all psychiatric disorders have a heritable component, with twin heritability estimates ranging from 33-84% across affective, psychotic and developmental disorders[2]. Lifetime prevalence rates of several disorders are higher among first degree biological relatives of individuals with a diagnosis compared to families of individuals with no diagnosis[3]. Therefore, estimating genetic risk for developing a psychiatric disorder presents one avenue for identifying at risk individuals and probing differential and transdiagnostic risk factors. Many of the studies investigating the genetic basis of psychopathology focus on comparing patients and controls within large adult samples. Here we sought to determine if increased genetic risk within a large, typically developing and demographically diverse developmental sample would be associated with psychopathology and cognitive function. The Adolescent Brain and Cognitive Development (ABCD) Study™ provides an unprecedented opportunity to test this hypothesis in a large sample of 9 and 10 year old children (n=11,880 at baseline) with dense behavioral phenotyping and genotyping.

Family history is the most clinically used factor for predicting psychiatric risk[4]. However, family history likely reflects a complex combination of genetic, environmental and familial factors and does not quantify genetic risk directly based on the individuals own genome. Single Nucleotide Polymorphism (SNP) based heritability estimates suggest that a substantial portion of genetic risk associated with several disorders can be attributed to common genetic variants with minor allele frequencies >5%[5]. Genetics research has shown the aggregation of many small effects distributed across the genome appears to be a better predictor of complex behavioral phenotypes than candidate genes, highlighted through genome-wide association studies (GWAS). Effect sizes at each SNP, estimated from an independent GWAS, can be combined with an individual’s genotype within a predictive model to produce a polygenic risk score (PRS), which estimates an individual’s genetic risk for a particular disorder in a single score. For example, the Schizophrenia PRS, based on the largest training sample, can explain as much variability in diagnosis as socioeconomic factors and family history [6]. Several psychiatric disorders appear to be associated with polygenic risk across common genetic variants and interestingly show a large degree of overlap[7], which may reveal a shared etiology or predictive utility across psychiatric disorders. Schizophrenia PRS have been significantly associated with a general psychopathology factor in healthy adolescents [8] as well as a number of externalizing and internalizing measures in younger typically developing children[9]. However, there has been little evidence for an association with psychotic-like experiences in adolescents [10]. In addition, Attention Deficit Hyperactivity Disorder (ADHD) PRS have been shown to associate specifically with hyperactivity and inattentive behaviors in young children as well as a general psychopathology factor[11]. Understanding how these PRS relate to different dimensions of psychopathology in childhood and the overlap amongst these genetic
predictors is essential for understanding their specificity and potential predictive utility longitudinally. In our sample of 9 and 10 year old children, we would expect that the ADHD and Autism Spectrum Disorder (ASD) PRS would be most predictive of current behavior as these are the disorders that we expect to manifest in this age range.

Cognitive impairment is a core feature of several psychiatric disorders, particularly those that include psychotic symptoms. Neurodevelopmental studies have highlighted premorbid cognitive impairment in schizophrenic and psychotic bipolar disorder patients across several cognitive domains[12,13]. Cognitive performance in our developmental sample may therefore associate with genetic risk for psychopathology even in the absence of other symptoms. Indeed, there is a large genetic overlap across schizophrenia, bipolar disorder and general intelligence[14–16], which suggests there are shared etiological mechanisms that effect psychopathology and cognition. In addition, genetic loci with ADHD overlap with educational attainment[17] and individuals, particularly with inattentive subtypes of ADHD, tend to have lower academic performance[18,19]. Given the prevalence of ADHD at 9-10 years, we expect to find an association between cognition and genetic risk for ADHD in this cohort. In contrast, high-functioning autism has been associated with preserved or superior intellectual performance, and polygenic risk for Autism Spectrum Disorder (ASD) has been shown to positively correlate with general cognitive performance in two large developmental cohorts[20]. We therefore expect to replicate this effect in our sample.

There has been a lack of direct comparisons of associations between PRS and family history of psychopathology in childhood and adolescence. SNP heritabilities based on effects across the genome are much lower than twin heritabilities, which suggests that there are other genetic factors driving psychiatric phenotypes that are not measured with common variants at current GWAS sample sizes. Indeed, much of the heritability in ASD has been attributed to rare variants, which are not captured by PRS[21]. However, twin heritabilities do not account for gene-environment correlations or interactions, which likely inflates these estimates[22]. Due to the differential information that PRS and family history measures may provide, it is important to compare associations to determine whether they explain independent or overlapping variance in developmental psychopathology and cognition. Here we have generated five PRS within the ABCD sample that have been trained on large independent datasets. We used these PRS and measures of family history of psychopathology within the same models to predict a large array of both caregiver and youth reported phenotypes thought to reflect behavioral risk for developing psychiatric disorders in a large developing sample. This research is an essential first step in this large longitudinal study in order to highlight risk factors that can be tracked longitudinally and determine their predictive power for future diagnoses.
METHODS

Sample

The ABCD study is a longitudinal study across 21 data acquisition sites following 11,880 children starting at 9 and 10 years old. This paper is analyzing the full baseline sample from the NIMH Data Archive ABCD Collection Release 2.0.1 (DOI: 10.15154/1504041). Recruitment procedures for this study were designed in order to produce an epidemiological informed sample that represents the epidemiological composition of the US population as closely as possible (see Garavan et al, 2018 for details[23]). We therefore careful controlled for this in our analyses. Embedded within the sample is a large twin cohort and many siblings, therefore family relatedness was controlled for by retaining a single family member during model fitting. As the PRS used were all trained on European individuals, the main associations in this study were conducted in a European only sample (n=5204). This is important as allele frequency differences across ancestral groups can lead to spurious results when PRS trained on a single ancestral group are applied to samples of different or mixed genetic ancestry. Supplementary analyses aimed to determine how consistent our results were in a non-European sample (n=3964) and the full sample (n=9168). Table 1 outlines the demographics of the three samples. Prevalence rates of diagnoses based on the KSADS interview for the caregiver and youth can be found in supplementary tables 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>European Sample</th>
<th>Full Sample</th>
<th>Non-European</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total N</td>
<td>5,204</td>
<td>9,168</td>
<td>3,964</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age - months</td>
<td>119.18 (7.48)</td>
<td>119.04 (7.47)</td>
<td>118.86 (7.46)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2744 (52.7)</td>
<td>4789 (52.2)</td>
<td>2045 (51.6)</td>
</tr>
<tr>
<td>N (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< HS Diploma</td>
<td>22 (0.4)</td>
<td>346 (3.8)</td>
<td>324 (8.2)</td>
</tr>
<tr>
<td>HS Diploma/GED</td>
<td>149 (2.9)</td>
<td>713 (7.8)</td>
<td>564 (14.2)</td>
</tr>
<tr>
<td>Some College</td>
<td>963 (18.5)</td>
<td>2313 (25.2)</td>
<td>1350 (34.1)</td>
</tr>
<tr>
<td>Bachelor</td>
<td>1650 (31.7)</td>
<td>2475 (27.0)</td>
<td>825 (20.8)</td>
</tr>
<tr>
<td>Post Graduate Degree</td>
<td>2420 (46.5)</td>
<td>3321 (36.2)</td>
<td>901 (22.7)</td>
</tr>
<tr>
<td>Household Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[<50K]</td>
<td>642 (12.3)</td>
<td>2584 (28.2)</td>
<td>1942 (49.0)</td>
</tr>
<tr>
<td>[>=50K & <100K]</td>
<td>1590 (30.6)</td>
<td>2630 (28.7)</td>
<td>1040 (26.2)</td>
</tr>
<tr>
<td>[>=100K]</td>
<td>2972 (57.1)</td>
<td>3954 (43.1)</td>
<td>982 (24.8)</td>
</tr>
<tr>
<td>Race Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>4934 (94.9)</td>
<td>5093 (55.6)</td>
<td>159 (4.0)</td>
</tr>
<tr>
<td>Black</td>
<td>1 (0.0)</td>
<td>1160 (12.7)</td>
<td>1159 (29.3)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>137 (2.6)</td>
<td>1762 (19.2)</td>
<td>1625 (41.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0.0)</td>
<td>193 (2.1)</td>
<td>193 (4.9)</td>
</tr>
<tr>
<td>Other</td>
<td>126 (2.4)</td>
<td>949 (10.4)</td>
<td>823 (20.8)</td>
</tr>
</tbody>
</table>

Table 1. Sociodemographic breakdown for the three samples analyzed in this study. The European sample (left) had higher proportions of individuals from households with higher income and a higher parental education level. By nature of requiring a European only sample, there were large differences in the proportion of individuals self-identifying as non-White across the three samples. Age, sex, household income, parental education, data collection site and the top 10 principal components of the genetic data were controlled for in the main analyses. Supplementary analyses were conducted without controlling for SES (household income and parental education).
ABCD Baseline Mental Health Battery

The Mental Health Battery in ABCD is an extensive battery of questionnaires and semi-structured interviews that assess both diagnostic and dimensional measures of psychopathology, measures of mania, substance use, psychosis, impulsivity, behavioral inhibition and activation and prosociality. Both the youth and their caregivers provided responses at baseline using divergent and overlapping measures. The reason behind selecting each of the mental health assessment measures in the ABCD study is outlined in detail by Barch et al [24]. Below we will briefly describe each of the measures analyzed in this paper. Supplementary table 3 outlines the names of all the variables used for these analyses.

DIAGNOSTIC ASSESSMENTS

Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS) – caregiver and youth report

The KSADS for DSM-5 (KSADS-5) is a valid and reliable measure of psychopathology in children and adolescents [25]. Both caregivers and youth completed a semi-structured, self-administered, computerized version of the KSADS-5 reporting on different aspects of the youth’s mood and behavior. Research assistants were given extensive training in order to support the youth when completing this assessment due to their young age. Caregivers completed more KSADS modules than the youth. Caregivers and youth both completed the following modules: depression, bipolar disorder, generalized anxiety disorder, social anxiety disorder, suicidality and sleep. Only the caregivers additionally completed the following modules: psychosis, obsessive-compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), conduct disorder (CD), panic disorder and eating disorders. Within each module caregivers/youth were asked a series of questions aiming to determine whether the child endorsed a list of symptoms for a given disorder. A positive diagnosis for a given disorder occurred when a certain number of symptoms were endorsed based on the DSM-V diagnostic criteria. For this study, the number of symptoms endorsed was summed for each module to provide a symptom score for each disorder. We also summed all of the symptom scores across modules to provide a total symptom score, which takes into account whether children have symptoms spanning several domains of psychopathology. In cases where model convergence was an issue, (youth reported bipolar and depression symptoms only) these symptom scores were transformed to be binary with 0=no symptoms, 1=one or more symptoms.

DIMENSIONAL ASSESSMENTS

Child behavior checklist (CBCL) – caregiver report

The Child Behavior Checklist (CBCL)[26] consists of 112 items, each of which describes a particular behavior. Caregivers were asked whether each item described their child’s behavior now or in the past 6 months and marked their response on a scale with the following options: not true (0), somewhat/sometimes true (1), very true (2). The questionnaire has eight syndrome scales: anxious/depressed, withdrawn/depressed,
somatic complaints, social problems, thought problems, attention problems, rule breaking behavior and aggressive behavior. Responses for all items within each scale were summed to produce syndrome scale scores. A total problems score was computed from summing all of the items on the questionnaire.

General behavior inventory – caregiver report

Mania symptoms were measured using the ten-item Mania Scale[27] derived from the 73-item Caregiver General Behavior Inventory (PGBI) for Children and Adolescents[28]. The items describe variability and persistence in bipolar mood and behavior. Caregivers reported on the youth’s behavior. Items were answered on a scale from “never” (0) to “very often” (3). All items on the scale were summed to provide a measure of the child’s current manic/hypomanic behaviors.

Prosociality – caregiver and youth report

The Prosocial Behavior Survey asked three questions about how helpful and considerate the youth was in general. Both caregivers and youth answered on a scale from “not true” (0) to “certainly true” (2). Scores were averaged across the three questions for each informant to provide two measures of the prosociality of each child dependent on informant.

Prodromal psychosis scale (PQ-B) – youth report

The Prodromal Questionnaire Brief Version (PQ-B) [29–31], which was modified for use in children in our age range, is a 21-item scale assessing subclinical manifestations of psychosis. Each item is a yes or no question asking whether the youth has ever experienced a symptom associated with psychosis. If the youth answered “yes”, a follow-up question asked how distressing the symptom was on a scale of 1-5. The prodromal psychosis severity score is the sum of the number of symptoms endorsed weighted by how distressing the symptoms were.

UPPS impulsivity scale – youth report

The UPPS-P for children short scale [32] is an impulsive behavior scale completed by the youth, which includes five sub-scales that measure four factors of impulsivity: urgency (e.g. acting without thinking when experiencing strong positive or negative emotions; two separate sub-scales), lack of perseverance (e.g. giving up easily), preméditation (e.g. lack of planning and not thinking before acting), and sensation seeking. The short scale consists of 20 items each of which describes an impulsive behavior. Youth reported how much each statement described them on a scale from “not at all like me” (1) to “very much like me” (4). Items were summed to produce non-overlapping scores for each sub-scale: positive urgency, negative urgency, lack of planning, lack of perseveration and sensation seeking.

Behavioral inhibition and behavioral activation (BISBAS scale) – youth report

The behavioral inhibition system and the behavioral activation system (BISBAS) scale [33] measures approach and avoidance behaviors within the two broad motivational systems outlined by Gray [34]. The 24 item scale (including filler items) assesses three facets of behavioral activation: drive (intensity of goal directed behavior), fun seeking (enjoyment for its own sake, spontaneity), and reward responsiveness (excitement over reinforcing
outcomes); and one facet of behavioral inhibition (e.g., worry, fearfulness). Youth rated each item on a scale from “not true” (0) to “very true” (3) depending on how much each behavior described themselves.

Cognitive Assessment

NIH Toolbox®

The NIH Toolbox Cognition Battery® (NIHTBX) is a widely used battery of cognitive tests that measures a range of different cognitive domains. All of the tasks within the NIHTBX were administered using an iPad with support or scoring from a research assistant where needed. Each participant completed the following tasks: the Toolbox Oral Reading Recognition Task® (TORRT), the Toolbox Picture Vocabulary Task® (TPVT), the Toolbox Pattern Comparison Processing Speed Test® (TPCPST), the Toolbox List Sorting Working Memory Test® (TLSWMT), the Toolbox Picture Sequence Memory Test® (TPSMT), the Toolbox Flanker Task® (TFT), the Toolbox Dimensional Change Card Sort Task® (TDCCS). Details of these tasks can be found here[35,36]. In the current study, we only analyzed the uncorrected composite scores, which define two broad components of intelligence: fluid and crystallized[37,38]. The NIHTBX fluid composite score (mean of TPCPST, TLSWMT, TPSMT, TFT and TDCCS) measures an individual’s ability to solve problems, act quickly and adapt to novel situations. The NIHTBX fluid composite score (mean of TPVT and TORRT) encompasses task-specific knowledge that accrues throughout the lifespan reflected by reading and vocabulary tasks. These measures are highly correlated with ‘gold standard’ measures of intelligence in adults [39] and children [40].

Family History Assessment

Caregivers were given a questionnaire asking about family history of behaviors associated with psychopathology. For each question the caregivers were asked specifically if any blood relative had experienced any of the described behaviors. For example, for family history of alcohol use the question asked: ‘Has ANY blood relative of your child ever had any problems due to alcohol, such as: Marital separation or divorce; Laid off or fired from work; Arrests or DUIs; Alcohol harmed their health; In an alcohol treatment program; Suspended or expelled from school 2 or more times; Isolated self from family, caused arguments or were drunk a lot.’ All of the family history measures analyzed are outlined in supplementary table 4. Importantly, these variables do not indicate clinical diagnoses associated with these behaviors. Each question had a yes/no response and was coded such that ‘yes’ was equal to 1 and ‘no’ was equal to 0.

Genetic Data

At the baseline visit blood or saliva samples of participants were collected and sent to Rutgers University Cell and DNA Repository for DNA isolation and storage. Genotyping was performed on 646,247 genetic variants using the smokescreen array[41]. 1,221 individuals and 128,523 markers were removed due to missing genetics or failing to meet QC of greater than 5% minor allele frequency and less than 20% of the sample missing for each marker. We derived genetic ancestry using fastStructure[42] and genetic relatedness was
computed using PLINK[43]. Imputation was performed using the Michigan Imputation Server[44] with hrc.r1.1.2016 reference panel, Eagle v2.3 phasing and multiethnic imputation process. Best guess conversion at a threshold of 0.9 was used to convert dosage files to plink files using PLINK[43]. Post imputation QC criteria were minor allele frequency above 5%, missingness per individual of 10%, missingness per marker of 10% and Hardy-Weinberg threshold of 10^-6. This QC filtering was performed using PLINK[19] and resulted in 1,427,972 remaining markers and 10,659 individuals.

Analysis

Polygenic Risk Scores

Polygenic Risk Scores take effect sizes estimated for individual SNPs from previous GWAS analyses and aggregate them together to produce a single score for each individual. We downloaded summary statistics for ADHD[45], Autism Spectrum Disorder (ASD)[46], Bipolar Disorder (BDP)[47], Schizophrenia (SCZ)[48] and Depression (DEP)[49] from the Psychiatric Genetics Consortium (https://www.med.unc.edu/pgc/results-and-downloads). The association between SNP heritability (h^2\text{SNP}) and sample size of each GWAS used to produce the PRS is shown in supplementary figure 1. Due to linkage disequilibrium nearby SNPs are often correlated with one another, as such these are removed before polygenic scoring, this process is known as clumping and pruning. After genetic imputation and post imputation QC, we performed clumping of SNPs using PRSice[50] with a clumping r^2 of 0.1, clumping window of 250 kb. We did not use a p-value threshold for calculating the polygenic scores, except for DEP which only included the top 10k SNPs due to legal stipulations of the 23andMe sample – this induced an effective threshold of ~0.003. Additionally, variants part of the major histone compatibility (MHC) region (chromosome 6 28MB-34MB) were removed from the analysis due to its highly variable LD structure[51]. However, we retained the C4 locus (situated in the MHC region) due to its strong association with schizophrenia[48,52]. The PRS for each participant was calculated as the dot product of the allele value at each loci multiplied by its effect size. Due to some polygenic scores having skewed distributions we decided to rank normalize[53] each score to ensure they followed a normality.

Statistical Models

We fit Generalized Linear Models (GLMs) to predict behavioral phenotypes from family history measures (FH) and PRS. All models controlled for fixed covariates of no interest of sex, age, top 10 PCs of the genetic analysis, household income, highest parental education and data collection site. There is high genetic relatedness in the ABCD sample, however due to convergence issues we were unable to run mixed effects models with a random effect of family. We therefore used a random subset of the sample that only included singletons. To ensure the stability of our findings we ran all models in 1000 random subsamples of singletons and took the median of effect sizes across all iterations. Supplementary analyses were conducted without controlling for household income and parental education to understand how these socioeconomic measures impacted the associations detected. We fit both “univariate” models, which included one independent variable (IV) of interest (PRS or FH) in each model, and “multivariable” models, which included all PRS and FH measures in the same model. Each behavioral phenotype
(dependent variable, DV) was predicted using a separate model. As PRS were trained on European individuals and ABCD has high ancestral admixture, the main analyses were performed in a European only sample (European Genetic Ancestry Factor (EUR-GAF)>0.9) and supplementary analyses were conducted in the full sample and a non-European sample (EUR-GAF<0.9) to check for consistency across ancestral groups. However, these supplementary results must be interpreted with caution due to the training of the PRS. We calculated effect sizes of fixed effects as $R^2 = t^2 / (t^2 + DF)$ where DF is equal to the degrees of freedom. P-values were calculated using the Wald test statistic for fixed effects and significant associations determined using a false discovery rate (FDR) significance threshold calculated using the Benjamini-Hochberg method[54]. GLMs were implemented using the R stats package. Model output for all models is downloadable as a text file in the supplemental material.

The distribution of each of the DVs fell into three categories a) normal, b) right skewed, zero inflated or c) binary, and we appropriately modelled each of these distributions differently. A) For normal distributions we further ensured normality by rank normalizing[53] (as was performed for PRS), and fit GLMs using the default gaussian family. B) For the right skewed, zero inflated distributions we fit using a gamma distribution with a log link function, first ensuring that each distribution was non-negative to ensure correct bounds for the link function. C) For binary variables we fit using a binomial log link function. KSADS symptom scores that were unstable as continuous measures (models did not converge) were treated as binary (youth reported KSADS symptoms bipolar and KSADS symptoms depression).

Additional models were implemented to measure pairwise spearman correlations across all of the DVs and IVs in the European sample after residualizing for the covariates of no interest.

RESULTS

Unique associations between genetic risk and behavioral phenotypes
We used generalised linear models (GLMs) to predict each behavioral phenotype from the genetic risk measures and covariates of no interest. Univariate models contained a single genetic predictor. In contrast, multivariable models included all genetic predictors within each model. This approach allowed us to identify the unique behavioral variance associated with each genetic predictor, when controlling for all other measures of genetic risk. Correlation matrices showing the pairwise associations between the behavioral phenotypes and the genetic risk measures are in supplementary figures 2 & 3. The low correlations across the PRS and family history (FH) measures suggests these measures may predict unique additive variance in behavior.

PRS associations with behavior
The pattern of associations was very similar in the univariate and multivariable models (Figure 1), however the overall effect sizes for the associations between PRS and behavior
were attenuated in the multivariable models resulting in fewer associations reaching statistical significance. CBCL rule breaking was significantly associated with ADHD, DEP, BPD and SCZ in the univariate models, but only ADHD in the multivariable models, which suggests this may represent a general psychopathology factor with a common genetic etiology across psychiatric disorders.

The ADHD and DEP PRS had the strongest associations across all of the behaviors many of which survived in the multivariable models when controlling for all other genetic predictors, including FH. The ADHD PRS significantly predicted inattentive and impulsive behavioral phenotypes previously associated with ADHD symptomatology, as well as prodromal psychosis symptoms. The DEP PRS showed the strongest association with caregiver reported somatic complaints, suicidality, anxious behaviors and youth reported depression symptoms, as well externalizing behavioral problems. In the multivariable models, the only significant association with the ASD PRS was a positive association with caregiver reported prosociality. These multivariable associations highlight that the PRS predict unique variance in behavior not otherwise associated with the other PRS or FH measures.

In contrast to the literature, the SCZ PRS was not predictive of individual differences in psychopathology in this sample. However, as hypothesized, the SCZ PRS was negatively associated with the fluid composite score from the NIH Toolbox® in both the univariate and multivariable models and this was robust to controlling for SES. This suggests participants with higher genetic risk for schizophrenia performed worse on the fluid intelligence tasks from the NIH Toolbox®. Supplementary analyses not controlling for SES, in general showed a greater magnitude of effects, but the pattern across the measures was very similar with exceptions for associations with cognition (supplementary figures 4 and 5). The crystallized composite score from the NIH Toolbox® was positively associated with ASD and BPD, and negatively associated with ADHD, but only in models not controlling for SES.

FH associations with behavior

Behavioral associations with FH measures (controlling for the PRS) were larger than with PRS, particularly for the univariate models (Figure 1). The univariate models showed several large effects across domains of psychopathology that were reduced substantially in the multivariable models due to the moderate correlation across the FH measures. Nevertheless, in the multivariable models, FH of conduct problems, depression and anxiety/stress showed specific effects across domains as expected (Figure 1). FH of conduct problems showed the largest effects with caregiver reported externalizing behaviors on the CBCL and KSADS bipolar symptoms with additional associations across caregiver reported depressive behaviors. FH of depression was associated with both internalizing and externalizing behaviors, similar to DEP PRS, but only associated with caregiver reported measures. FH of anxiety/stress showed several associations across domains of psychopathology with the largest effects for caregiver reported KSADS anxiety symptoms and the CBCL anxious/depressive subscale. FH of use of professional health services was most strongly associated with somatic complaints from the CBCL and the total problem/symptom scores, and also showed a positive association with the crystallized
composite score after controlling for SES. In the multivariable model, FH of hospitalization showed several negative associations with caregiver reported internalizing behaviors, which were positive in the univariate models. This may be due to collinearity across the genetic risk measures (supplementary figure 2) as negative associations were only apparent when measuring the residual variance after controlling for all of the other genetic measures. These results show that the FH measures predict unique variance in behavior not predicted by PRS.

Figure 1 Univariate (left) and multivariable (right) associations for each behavioral phenotype predicted by the genetic risk measures. Effect sizes for each association are displayed as the variance explained multiplied by the sign of the beta estimate for the association to indicate the sign of the association (red=positive, blue=negative). Each row represents a model with the dependent variable along the y-axis and each genetic predictor of interest on the x-axis. In the univariate models (left) only a single genetic predictor was included in each model. In the multivariable models (right) all the genetic predictors were included in each model. Along the x-axis from left to right: the five PRS measured (Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Bipolar Disorder (BPD), Depression (DEP), Schizophrenia (SCZ)) and the 10 FH measures as labelled. FH variables were binary representing the presence or absence of a blood relative with psychopathology across a range of domains. All models controlled for covariates of age, sex, the top 10 Principal Components of the genetic data, household income, highest parental education and data collection site. Dots indicate FDR significant associations.
Associations across ancestry strata

Supplementary figures 6 and 7 shows the same univariate and multivariable PRS and FH associations in the full sample (n=9,168 with complete genetic data) and a non-European sample (n=3,964). There was a similar pattern of associations for the full sample compared to the Europeans, but with far fewer significant associations for the non-European sample, despite very similar prevalence rates across KSADS diagnoses for the three samples (supplementary table 1 and 2). Supplementary figure 8 shows broadly consistent analogous associations between European and non-European groups; however, there was moderate dispersion observed between estimated effect sizes between groups. These effects are difficult to interpret as the discovery sample only included European individuals. These inconsistencies once again demonstrate the issues of portability of GWAS between ancestry groups[55–57].

DISCUSSION

In the current study, we aimed to delineate the genetic contributions to a number of behaviors associated with poor mental health and cognition in a large sample of typically developing 9 and 10-year-old children. We found that genetic risk for ADHD and DEP predicted unique variance across both externalizing and internalizing behaviors with the strongest associations for behaviors associated with ADHD and depression symptomatology respectively. Genetic risk as indicated by FH of psychopathology predicted additional unique variance across the behavioral measures with specificity in the magnitude of effects across domains. This specificity was only clear when including all the genetic risk measures in the same model due to the moderate correlation across the FH measures driven by comorbidities across psychopathology. These findings provide an important insight into the potential differential and additive predictive utility of PRS and family history in early adolescence.

Our results have replicated previous findings showing that ADHD PRS significantly predicted hyperactive and inattentive traits in a developmental sample[58,59]. However, the effect sizes in our current study were much larger, which is likely due to the increase in sample size for the ADHD GWAS used to generate the PRS for the current study. Across the PRS, ADHD and ASD were moderately correlated and indeed when controlling for the other genetic predictors ASD no longer associated with behavioral problems on the CBCL, which highlights the genetic overlap between these disorders. Importantly, an inability to carry out the ABCD protocol, which includes a two-hour MRI scan, was an exclusion criterion, therefore many individuals with low functioning ASD would have been ineligible for the study. This suggests that the prevalence of ASD symptoms in the ABCD cohort is likely small and restricted to only part of the autism spectrum, which may have a larger overlap with ADHD. Moreover, only 17% of twin heritability in ASD is thought to be attributable to common genetic variants[5], therefore our current PRS is not sensitive to important rare chromosome deletions in ASD [60]. Only when not controlling for SES did we replicate a previous association between the ASD PRS and cognition[20], which highlights the
importance of understanding the role of these sociodemographic factors in cognitive development.

Despite previous studies showing that the SCZ PRS predicts several markers of general psychopathology in adolescence[9,10], we did not find any associations with psychopathology and the SCZ or BPD PRS in either the multivariable models and only one association with rule breaking in the univariate models. This could be driven by differences in the statistical approach, the phenotypes measured or the demographics of the samples. Nevertheless, as hypothesized, we did identify a significant negative association between the SCZ PRS and the fluid composite score from the NIH Toolbox, which remained after controlling for sociodemographic factors and was unique to the SCZ PRS. This may differentiate individuals at risk for developing psychosis later in development.

Interestingly, the ADHD PRS was also predictive of many bipolar-related behaviors in our sample. Symptom profiles for pediatric BPD and ADHD are very similar and there is a high comorbidity across these disorders[61]. Other studies have shown that childhood ADHD is also often a premorbidity for the later development of schizophrenia and relatives of individuals with schizophrenia have higher rates of ADHD than the general population[62–64]. Given the low correlation between ADHD and SCZ PRS in this study, the ADHD PRS may be highlighting individuals at risk for developing a number of different disorders, which may be etiologically distinct from those with a high SCZ PRS. Longitudinal analyses are required to determine the differential diagnostic predictive utility of these PRS.

The DEP PRS showed several significant associations across both internalizing (depression symptoms) and externalizing (aggression, symptoms of oppositional defiance and conduct disorder) behaviors. The prevalence of major depressive disorder is currently very low in this sample (~2%), however, despite this, it is clear that this PRS is detecting continual variation across behaviors associated with depression. At this age, there is a greater endorsement of externalizing compared to internalizing behaviors, therefore these externalizing behaviors may indicate early risk for depression. Interestingly, in the multivariable models, youth reported depression symptom scores were more highly associated with the DEP PRS and caregiver reported depression was associated with a FH of depression. Informant discrepancies between caregiver and child reported measures have been widely reported[65] and internalizing behaviors show the greatest discrepancy in this age range due to the lack overt behaviors that can be seen by the caregiver [66,67]. Moreover, negative biases from caregivers, particularly due to caregiver depression, can impact behavioral reports [28,68]. The FH measure of depression may be more closely mapping onto these caregiver biases. Longitudinal analyses will be required to delineate which informant reported measures more readily predict later diagnoses.

The FH measures showed a moderate correlation among them indicative of the comorbidity across psychiatric disorders. However, including all of the genetic risk markers in the same model highlighted that FH for conduct problems, depression, anxiety/stress, use of professional health services, alcohol abuse and psychosis predicted unique variance across specific domains of psychopathology. FH of anxiety/stress showed
the greatest number of associations across different behavioral domains supporting a role for anxiety or sensitivity to stress as a transdiagnostic trait. However, given the collinearity across these FH measures, multivariable associations should always be described in reference to the univariate and pairwise associations. The FH measures showed a greater number of associations across the behavioral measures compared to the PRS, however these measures encompass both environmental and genetic risk. The PRS may therefore represent a more specific marker of an individual’s genetic risk.

There are several limitations in the current study that must be addressed. PRS associations are limited by the phenotype’s heritability and the training sample used which are not matched across discovery GWAS. The discovery sample for DEP was the largest (supplementary figure 1), however it also showed the lowest h²_{snp}. Despite this, DEP PRS displayed some of the largest associations in our sample. This may be due to DEP having relatively greater prevalence compared to the other psychiatric disorders measured and, with ABCD being a population sample, risk alleles for lower prevalence disorders may be less represented in this sample. Indeed, the correlations between the PRS generated in this study were much lower than the genetic correlations determined in the original GWAS, which may be because this cohort is not enriched for individuals who have those risk alleles. Moreover, many psychiatric disorders may have increased penetrance during adolescence, therefore the lack of variance in psychopathology symptoms at this age may explain the limited associations between behavior and the other PRS. Finally, the GWAS used to produce the PRS in this study were all conducted on European samples. The ABCD sample is demographically diverse, however PRS trained in different ancestry groups do not validly predict phenotypes in admixed or different ancestry samples. This highlights the limited predictive utility of European only GWAS for admixed populations and emphasizes the need for more GWAS in different ancestry groups.

Here we have shown that PRS and FH explain unique variance in psychopathology and cognition in a large sample of 9 and 10-year-old children. The differing associations for ADHD and DEP PRS in the multivariable models suggest there may different mechanistic pathways underlying different patterns of coexisting externalizing, internalizing, psychotic and inattentive behaviors. The unique associations across all genetic measures provides encouraging evidence that genetic data may be useful in identifying specific risk for psychiatric disorders. Longitudinal analyses will determine the specificity of these associations and the differential predictive utility for PRS and FH measures.
ACKNOWLEDGEMENTS

The authors wish to thank the youth and families participating in the Adolescent Brain Cognitive Development (ABCD) Study and all ABCD staff. Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, U24DA041147, U01DA041093, and U01DA041025. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/Consortium_Members.pdf. ABCD consortium investigators designed and implemented the study and/or provided data but did not all necessarily participate in analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. The data was downloaded from the NIMH Data Archive ABCD Collection Release 2.0.1 (DOI: 10.15154/1504041).
REFERENCES

https://doi.org/10.1126/science.aap8757.

It is made available under a CC-BY-NC 4.0 International license.

preprint (which was not certified by peer review) is the author/lender, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC 4.0 International license.

