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Abstract

As in past pandemics, co-circulating pathogens may play a role in the epidemiology of coronavirus

disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). Here we hypothesized that influenza interacted with SARS-CoV-2 during the early 2020 epidemic

of COVID-19 in Europe. We developed a population-based model of SARS-CoV-2 transmission, com-

bined with mortality incidence data in four European countries, to test a range of assumptions about the

impact of influenza. We found consistent evidence for a 2–2.5-fold population-level increase in SARS-

CoV-2 transmission associated with influenza during the period of co-circulation. These results suggest

the need to increase vaccination against influenza, not only to reduce the burden due to influenza viruses,

but also to counteract their facilitatory impact on SARS-CoV-2.
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Main Text

The current pandemic of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), has led to global alarm. Following the first case reports in December

2019 in Wuhan, China [1], SARS-CoV-2 rapidly spread across the globe and has resulted in approximately

19 million cases and 700,000 deaths worldwide, as of August 6, 2020 [2]. Because of the current lack of pro-

phylactic or therapeutic treatments, the pandemic has caused the implementation of unprecedented control

measures, which culminated in the lockdown of several billion people in over 100 countries during April–May

2020 [3]. Although a number of fixed (e.g., greater age, male sex) and chronic (e.g., hypertension, diabetes)

risk factors of mortality have now been identified [4], the time-varying drivers of COVID-19 epidemiology

remain poorly understood. Experience gained from past pandemics has highlighted the potentially large

contribution of co-circulating pathogens to the burden of an emerging disease [5]. Despite the relevance for

epidemic forecasting and for designing control strategies, the impact of co-circulating pathogens on SARS-

CoV-2 epidemiology has remained largely unexplored [6].

Respiratory viruses—including SARS-CoV-2 and other coronaviruses, rhinoviruses, influenza viruses,

etc.—form a large class of viruses that cause seasonal infections of the respiratory tract in humans. Mounting

evidence indicates that their epidemiologies are not independent, as a result of interaction mechanisms that

may operate at different scales and that can be classified as either facilitatory or antagonistic [7, 8]. The

interaction between the respiratory syncytial virus (RSV) and influenza may provide an example of antago-

nism. Indeed, experimental evidence in ferrets has shown that influenza viruses induce an antiviral state that

transiently limits secondary infection with RSV [9], an effect postulated to explain the delayed epidemic of

RSV during the 2009 influenza pandemic [10, 11]. Although such antagonistic interactions appear, to date,

to be the most common among respiratory viruses [8], experimental evidence indicates that co-infections

may have a facilitatory effect, for example by increasing viral growth [12]. Increased transmission of in-

fluenza during co-infection with other respiratory viruses was also proposed to explain the multiple waves

during the 1918 influenza pandemic [13]. Interestingly, according to recent evidence a viral respiratory infec-

tion (in particular with influenza viruses) can up-regulate the expression of ACE2—the cognate receptor of

SARS-CoV-2 in human cells—in the respiratory epithelium [14]. This suggests that respiratory viruses could

affect the epidemiology of SARS-CoV-2. Here, we hypothesized that influenza—which peaked in February

2020 and therefore co-circulated during the early spread of COVID-19 in Europe (Fig. 1B)—interacted with

SARS-CoV-2.

To test this hypothesis, we developed a stochastic, population-based model of SARS-CoV-2 transmission

and of COVID-19mortality [15, 16, 17]. Our model incorporated a realistic distribution of the generation
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time (mean 6.5 days, coefficient of variation 0.58, see Fig. S2 and Ref. [18]) and of the time from symptom

onset to death (mean 17.8 days, coefficient of variation 0.45 [19]), under the assumption that 1% of all

infections resulted in death [16]. A novel feature of our model was the inclusion of the stringency index,

an aggregate measure of the number and of the strictness of non-pharmaceutical control measures (e.g.,

restrictions on travel, school or work closure, lockdown) implemented by governments in response to COVID-

19 (Fig. 1A and ref. [3]). Specifically, we mapped the stringency index into a relative reduction in SARS-

CoV-2 transmission using a simple linear scaling function, whose slope represented the impact of control

measures (see Methods). To assess the potential impact of influenza, we also incorporated renormalized time

series of influenza incidence as drivers of SARS-CoV-2 transmission into our model. Using state-of-the-art

statistical inference methods [20, 21], we systematically evaluated how different hypotheses about the impact

of influenza explained the observed dynamics of COVID-19mortality.

Based on influenza data availability from the World Health Organization (WHO, Figs. 1B, S1 and

ref. [22]), we conducted our analysis in four European countries (Belgium, Italy, Norway, and Spain), where

COVID-19mortality peaked in March–April 2020 (Refs. [23, 24, 25, 26] and Fig. 2B). The results were un-

equivocal: we found consistent evidence that, during the period of co-circulation, influenza was associated

with an average 2–2.5-fold population-level increase in SARS-CoV-2 transmission (Table 1). After control-

ling for the impact of influenza, our estimates of the basic reproduction number (R0) ranged from 2 (Italy

and Spain) to 3.3 (Belgium). Although the increased transmission associated with influenza early during

the SARS-CoV-2 epidemic explained the data significantly better (Table 1), a model without influenza led

to higher R0 estimates (range 2.5–5, Fig. 2A), consistent with those of a previous study [16]. Also in line

with [16], we found consistent evidence for a marked impact of non-pharmaceutical control measures (Ta-

ble 1), which were associated with a decrease in SARS-CoV-2 transmission below the reproduction threshold

from mid-March to early June 2020 (Fig. 2A). Visual inspection of simulations suggested that our model cor-

rectly captured the dynamics of COVID-19mortality in every country (Fig. 2B). A more detailed model–data

comparison of summary statistics confirmed that our model accurately predicted the peak time, the peak

number and the total number of deaths, and the death growth exponent [27], except in Spain where the latter

statistic was systematically under-estimated (Table S5). Our model-based estimates of the total proportion

of individuals infected with SARS-CoV-2 (as of 4 May 2020, Table 1) were also comparable with those of a

previous modeling study [16] and of a seroprevalence study conducted in early May in Spain [28]. Hence, our

model appeared to precisely recapitulate the epidemiology of SARS-CoV-2morbidity and mortality over a

period of ∼4 months.

To verify the robustness of our results, we conducted three additional analyses (see Supplementary

Results). First, we estimated an extended model in which influenza was allowed to modulate the lethality,
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in addition to the transmission, of SARS-CoV-2 (Table S2). Compared with the base model, we found little

support for such a model in Belgium, Italy, and Norway (log-likelihood difference [∆ logL] in the range

0.0–0.4, likelihood ratio test P-value in the range 0.37–1.00). In Spain, however, the parameter estimates

suggested that influenza was associated with both increased transmission and lethality, but the statistical

evidence was weak (∆ logL = 3.2, P = 0.01). Second, we estimated another model, in which the reduction of

SARS-CoV-2 transmission was allowed to scale non-linearly with the stringency index (Table S3). We found

little statistical evidence that such a model outperformed the simple linear scaling function in Belgium,

Norway, and Spain (∆ logL ∈ [0.1, 1.5], P ∈ [0.08, 0.65]). In Italy, however, we found strong evidence

(∆ logL = 21.3, P < 10−3) for super-linear scaling at low values of the stringency index (Fig. S3), although

our estimate of the impact of influenza was unchanged. This result may reflect the impact of the early

lockdown in part of Lombardy, which preceded the one in Italy as a whole by a few weeks [29]. Third,

to take into account potential spatial effects in the transmission dynamics of SARS-CoV-2 in Italy and in

Spain [29, 28], we relaxed the assumption of homogeneous mixing (Table S4 and Refs. [30, 31]). In Italy

(∆ logL = 26.1, P < 10−3), but not in Spain (∆ logL = 0.0, P = 1), we found evidence that the force

of infection scaled sub-linearly with SARS-CoV-2 infection prevalence. This result may be explained by

the progressive spread of SARS-CoV-2 from northern to southern regions of Italy [29]. Crucially, however,

our estimate of the impact of influenza was unchanged in both countries. In addition, we found that our

parameter estimates varied little when testing alternative hypotheses about the fixed value of the average

generation time, of the onset-to-death time, and of the infection fatality ratio (Table S6). In sum, our main

result about the impact of influenza remained robust to a variety of alternative assumptions regarding the

epidemiological traits of SARS-CoV-2 and the modeled impact of control measures.

Our model makes at least two testable predictions. First, even though our results did not allow to

distinguish between higher transmissibility or higher susceptibility in individuals co-infected with influenza

and SARS-CoV-2, previous experimental work suggests that the latter mechanism may operate, as a result

of up-regulation of the ACE2 receptor caused by influenza infection [14]. Hence, we predict that a recent

influenza infection should be an independent risk factor for subsequent SARS-CoV-2 infection. Estimates of

the frequency of co-detection of influenza and SARS-CoV-2 by polymerase chain reaction (PCR) testing in

nasopharyngeal swabs were highly variable in previous studies (range 0–60% [6, 32]). Although the marked

seasonality of influenza in temperate regions likely explains in part the low frequency found in some stud-

ies [32], we propose that differences in the natural history of influenza and SARS-CoV-2 infections also lead

to a systematic under-estimation of co-infection. Specifically, because the incubation period of SARS-CoV-

2 infection (estimated to average 5.7 days [33]) exceeds that of influenza (A, 1.4 days or B, 0.6 days [34]), it

is likely that, by the time SARS-CoV-2 infection becomes detectable, influenza no longer is. To make that
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statement more precise, we calculated the probability of detectability of a co-infection, with influenza first

then SARS-CoV-2 (Table S7). Assuming that influenza is detectable by PCR up to 4–5 days after [35], and

SARS-CoV-2 from 2–4 days before [36], symptom onset, we find that a large, 30–50% of co-infections may

not be detectable at all. These results may help explain the low frequency of co-detection found in some

studies [37], and suggest that the time window of co-detectability may be too short to adequately infer the

association between influenza and SARS-CoV-2 using PCR testing. Serological studies comparing the preva-

lence of antibodies against influenza in SARS-CoV-2 cases and non-cases may therefore be required to test

the prediction that influenza is a risk factor for SARS-CoV-2 infection. Second, we predict that individuals

vaccinated against influenza should be at lower risk of SARS-CoV-2 infection than those unvaccinated. The

findings of a negative association between influenza vaccine coverage and COVID-19mortality in ecological

studies (in Italy [38] and in other countries [39]) and of a lower risk of SARS-CoV-2 infection in influenza

vaccinees in a US prospective study [40] are consistent with our prediction, but further epidemiological in-

vestigations are needed. Importantly, our results can explain these findings as the direct effect of influenza

vaccines on influenza infection, instead of indirect effects on non-influenza pathogens (e.g., as a result of

trained immunity) [41].

Our study has a number of important limitations. First, for simplicity and as in other studies [15, 17, 16],

our model was not age-structured, even though many aspects of COVID-19 and of influenza epidemiology—

like disease severity and lethality—vary markedly with age [19]. The susceptibility to SARS-CoV-2 infection

was also found to increase with age [42], a finding potentially explained by lower baseline expression of

the ACE2 receptor in children [43]. Another testable prediction of our model, therefore, is that influenza

should be associated with a transient increase in susceptibility to SARS-CoV-2 infection, commensurate

with the variations of influenza incidence over age. Second, we modeled the impact of non-pharmaceutical

control measures using a simple, linear function scaling the stringency index to the reduction of SARS-CoV-

2 transmission. Even though this simple hypothesis provided a more parsimonious fit (except in Italy), that

result may be specific to Europe, where control measures gradually increased in number and in intensity

(Fig. 1A). In general, the association is likely non-linear (e.g., if a high-impact intervention like a lockdown

is implemented early on), and we therefore recommend testing a variety of scaling functions. Third, we

did not specifically model fully asymptomatic cases, which may represent a large fraction of SARS-CoV-

2 infections [17]. The omission of asymptomatic infections may lead to biased R0 estimates if their duration

significantly differs from that of symptomatic infections [44]. A previous study, however, estimated that the

duration of both types of infection is comparable [17], such that our estimates should be robust in more

complex model structures. Finally, we assessed only the impact of influenza, because of its high prevalence

and period of overlap with SARS-CoV-2 in early 2020 in Europe and of the availability of high-quality
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data [22]. Nevertheless, other respiratory viruses, like RSV and rhinoviruses, may also interact with SARS-

CoV-2 and should be considered [14], especially if SARS-CoV-2 continues to spread widely during new seasons

in temperate regions of the Northern hemisphere.

In conclusion, our results suggest that influenza virus infection increases the transmission of SARS-CoV-

2 and facilitated its spread during the early 2020 epidemic of COVID-19 in Europe. Hence, an increase

in the uptake of influenza vaccines may be called for, not only to reduce hospitalizations due to influenza

infections [32, 45], but also to reduce their downstream impact on SARS-CoV-2 transmission and on COVID-

19mortality. More generally, taking into account the microbial environment of SARS-CoV-2may be essential,

not only to better understand its epidemiology, but also to enhance current and future infection control

strategies.
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Figure 1: Potential drivers of SARS-CoV-2 transmission in Belgium, Italy, Norway, and Spain.
A: time plot of the stringency index, a country-level aggregate measure of the number and of the strictness
of non-pharmaceutical control measures implemented by governments. The vertical dashed line indicates
the start of the nationwide lockdown [16]. B: time plot of influenza incidence, calculated as the product of
the incidence of influenza-like illnesses and of the fraction of samples positive to any influenza virus (see also
Fig. S1 for a time plot of the latter two variables). The vertical dashed lines delimitate the period of overlap
between SARS-CoV-2 and influenza, defined as the period between the assumed start date of SARS-CoV-
2 community transmission and 6 weeks after the epidemic peak of influenza [46]. In each country, the time
series displayed were incorporated as covariates, which modulated the transmission rate of SARS-CoV-2 in
our model (see Methods). In B, the y-axis values differ for each panel.

8



Figure 2: Dynamics of SARS-CoV-2 transmission and of COVID-19mortality in Belgium, Italy,
Norway, and Spain. A: time plot of the estimated effective reproductive number (Re). In each panel,
the black line represents the maximum likelihood estimate and the grey ribbon the 95% confidence interval
(calculated based on the likelihood profile of the influenza impact parameter, cf. Table 1) in each country.
The dotted black line represents the effective reproduction number estimated from a model without influenza
(i.e., with the influenza impact parameter fixed to 0 and the other parameters estimated from the data). The
horizontal grey line is at Re = 1. B: time plot of the simulated and observed numbers of daily deaths caused
by SARS-CoV-2. In each panel, the light grey lines represent 1,000 model simulations, with one simulation
highlighted in dark grey; the black line represents the actual death counts. In A and B, the x -axis and the
y-axis values differ for each panel.
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Quantity Belgium Italy Norway Spain 
Study period (year 2020) 13 Feb–28 Jun 29 Jan–28 Jun 25 Feb–28 Jun 06 Feb–28 Jun 

Log-likelihood (SE) –383.2 (<0.1) –669.1 (<0.1) –160.8 (<0.1) –558.8 (0.1) 

Basic reproduction number (𝑅!) 3.3 
(2.0, 4.0) 

2.0 
(2.0, 2.3) 

2.3 
(2.0, 2.7) 

2.0 
(2.0, 2.6) 

Impact of control measures (𝑏) 1.02 
(0.90, 1.06) 

0.76 
(0.75, 0.81) 

1.07 
(0.94, 1.09) 

0.89 
(0.88, 0.96) 

Average relative variation in SARS-
CoV-2 transmission rate associated 

with influenza (𝑒"!) 

1.9 
(1.5, 2.8) 

2.4 
(2.2, 2.7) 

2.1 
(1.2, 2.8) 

2.5 
(2.1, 3.1) 

Initial number exposed to SARS-CoV-
2 (𝐸#(0)) 

60 
(10, 100) 

40 
(15, 85) 

50 
(80, 1550) 

130 
(45, 540) 

Proportion infected, as of 4 May 2020 
(%) 

8.1 
(6.1, 10.5) 

6.1 
(4.2, 8.3) 

0.4 
(0.3, 0.6) 

5.5 
(4.4, 6.6) 

 
Table 1: Model parameter estimates in Belgium, Italy, Norway, and Spain. For the proportion
infected as of May 4, the numbers between parentheses represent a 95% prediction interval, based on 1,000
simulations at the maximum likelihood estimate. For the other parameters, they represent an approximate
95% confidence interval, calculated using either the profile likelihood [47] (parameter eβF ) or a parametric
bootstrap (other parameters). SE: standard error, calculated using 5 replicate particle filters, each with
20,000 particles, at the maximum likelihood estimate.
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Supplementary Materials

S1 Materials and Methods

Data

Stringency index data Country-level time series of the stringency index were available from the Oxford

COVID-19 Government Response Tracker, developed at the University of Oxford and described elsewhere [3].

Briefly, the stringency index provides an aggregate measure of the number and of the strictness of non-

pharmaceutical control measures implemented by governments in response to the COVID-19 epidemic. The

stringency index is defined as the average of 9 normalized ordinal variables, which quantify the strength (e.g.,

recommended or required) and the scope (e.g., targeted or general) of closure and containment measures (8

variables) and of health measures (1 variable). The resulting index allows to quantify the strength of control

measures in a systematic way, on a scale ranging from 0 (no interventions) to 100 (maximum number and

maximal intensity of control measures). Of note, however, the stringency index does not quantify the impact

of control measures, which likely varied across countries [16]. In formulating our model, we therefore modeled

the relationship between the stringency index and the relative reduction in SARS-CoV-2 transmission using

a non-decreasing function, whose parameters represented the impact of control measures and were estimated

from the data.

Influenza incidence data Virological data on the weekly numbers of samples tested and of samples

positive to any influenza virus were available from the FluNet database, compiled by the WHO(Fig. S1A).

Parallel syndromic data on the weekly incidence rate of influenza-like illnesses (ILI) were available from the

FluID database, also compiled by the WHO(Fig. S1B). Those data were deemed high-quality and used in

a previous study on influenza forecasting in the countries considered here [22]. The weekly incidence rate

of influenza was then calculated as the product of ILI incidence and of the fraction of samples positive to

any influenza virus (Fig. 1B). Because the magnitude of influenza incidence thus calculated varied markedly

across countries (e.g., as a result of different surveillance systems and case definitions), we rescaled each

time series by its average during the period of co-circulation of influenza and SARS-CoV-2 (Fig. 1B). The

resulting time series was therefore dimensionless and equalled 1 when influenza equalled its average value

during that period.
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Figure S1: Syndromic ILI data (A) and virological influenza data (B) in Belgium, Italy, Norway,
and Spain. In A, the red bars represent the numbers of samples positive to any influenza virus and the
grey bars those negative.

COVID-19mortality data Data on the daily number of deaths caused by SARS-CoV-2 (counted by

date of death) were available from national public health public institutes, in Belgium (Sciensano [23]), in

Italy (Dipartimento della Protezione Civile [24]), and in Spain (Instituto de Salud Carlos III, official data

with historical corrections compiled by the media DATADISTA [26]). In Norway, the data were available

from the worldwide database compiled by the European Center for Disease Control and Prevention [25].
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Following a previous study [16], and to avoid a possible bias caused by the dominance of deaths due to

non-locally acquired infections early in the epidemic, we included observed deaths from the date after which

the cumulative observed death count exceeded 10. Data points before that date were treated as missing and

were assigned a conditional log-likelihood of 0, such that they did not contribute to the overall log-likelihood.

The data were not further pre-processed, except in Italy, where a negative death count was reported on 24

June 2020 and was treated as missing and also assigned a log-likelihood of 0.

Transmission model

Model formulation We formulated a variant of the standard Susceptible–Exposed–Infected–Recovered

transmission model [48], using the method of stages to allow for a realistic distribution of the latent, infectious,

and onset-to-death periods [49, 50]. Specifically, we assumed that the latent and infectious periods were

Erlang-distributed with shape parameter 2 and mean 1/σ = 4 days and 1/γ = 5 days, respectively [17]. The

resulting generation time Tg (i.e., the time from infection of a primary case to transmission to a secondary

case) had a mean of 6.5 days and a coefficient of variation of 0.58 (see Fig. S2 for the full distribution and

the details of the calculation), consistent with empirical observations and with the values fixed in a previous

modeling study [18, 16]. To model the impact of the gradual implementation of non-pharmaceutical control

measures (e.g., border closure, school closure, lockdown), we mapped the stringency index (denoted by s(t))

to the time-varying relative reduction in transmission of SARS-CoV-2 (denoted by rβ(t)). Specifically, we

used the following simple linear scaling function, with saturation:

rβ(t) = min(1, b× s(t)

100
)

Here the parameter b quantifies how fast the transmission rate of SARS-CoV-2 decreases as the stringency

index increases. Hence, this parameter can be interpreted as a measure of the impact of non-pharmaceutical

control measures on SARS-CoV-2 transmission. The deterministic variant of the model was represented by

the following set of differential equations:

Ṡ = −λ(t)S

Ė1 = λ(t)S − 2σE1

Ė2 = 2σ(E1 − E2)

İ1 = 2σE2 − 2γI1
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İ2 = 2γ(I1 − I2)

Ṙ = 2γI2

The force of infection (that is, the per capita rate at which susceptible individuals contract infection [48]),

λ(t), was modeled as:

λ(t) = β(t)
I1 + I2
N

(1)

β(t) = R0γ[1− rβ(t)]eβFF (t) (2)

rβ(t) = min(1, b× s(t)

100
) (3)

Re(t) =
β(t)

γ
(4)

where R0 represents the basic reproduction number of SARS-CoV-2, Re(t) the time-varying effective repro-

duction number, N the population size (assumed constant during the study period), and F (t) the renor-

malized time series of influenza incidence, incorporated as a covariate into the model (Fig. 1). With this

formulation, the parameter βF quantifies the impact of influenza on SARS-CoV-2 transmission: βF > 0 if

influenza increases transmission, βF < 0 if influenza decreases transmission, and βF = 0 if influenza has

no impact on transmission (null hypothesis). More specifically, the average incidence of influenza during

the period of co-circulation with SARS-CoV-2 corresponds to F (t) = 1, such that eβF represents the av-

erage relative variation of SARS-CoV-2 transmission associated with influenza (null hypothesis: eβF = 1).

In the main text and in the following text, we report the estimates of eβF to facilitate the interpretation

of the impact of influenza. In writing equation (2), we implicitly assume that the impact of influenza on

SARS-CoV-2 transmission, if any, is short-lived and does not extend long after influenza infection.

Finally, we incorporated an observation model that related the dynamics of SARS-CoV-2 infection to

that of COVID-19mortality, taking into account the fact that only a fraction of infections results in death

and that, among those, death occurs some time after symptom onset [19, 33, 16]. We assumed an average

duration of pre-symptomatic of 2.5 days, resulting in an average incubation duration of 6.5 days, in broad

agreement with previous empirical studies [36, 33]. Hence, individuals in the first infected state (I1) were

considered pre-symptomatic, and the onset of symptoms was assumed to coincide with the transition from

I1 to I2. The onset-to-death time was then assumed to be Erlang distributed with shape parameter 5 and

mean 1/κ = 17.8 days (coefficient of variation of 0.45), the value estimated in a previous epidemiological

study [19]. In sensitivity analysis, we also tested a mean onset-to-death time of 1/κ = 13 days, the lower
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bound estimated in a meta-analysis [33]. According to previous studies, the infection fatality ratio (IFR)

typically ranges from 0.5% to 1% [51, 19]. We fixed the IFR to µ = 0.01 in the base model, but we considered

an alternative value of 0.005 in a sensitivity analysis. Given those assumptions, the observation model was

modeled by the following set of ordinary differential equations:

Q̇1 = 2γµI1 − 5κQ1

Q̇i=2,...,5 = 5κ(Qi−1 −Qi)

ḊM = 5κQ5

Here DM is the simulated number of daily deaths, modeled as an accumulator variable and reset to 0

at the end of each day. The observed number of daily deaths, DO, was modeled using a negative binomial

distribution with meanDM and over-dispersion kD (i.e., V(DO|DM ) = DM+kDD
2
M ), a standard distribution

used in a number of previous modeling studies [16, 52].

As in Flaxman et al. [16], simulations were started 30 days before the date from which the cumulative

observed death count first exceeded 10. At that date, we assumed that E1(0) individuals had been exposed

to SARS-CoV-2; other individuals were assumed susceptible to infection (i.e., S(0) = N − E1(0)), and all

other compartments were initialized to 0.

The stochastic variant of the model was implemented as a continuous- time Markov process approximated

via a multinomial modification of the τ -leap algorithm [31], with a fixed time step of 10−1 day.
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distribution is bell-shaped, with mean σ−1 + γ−1

2 = 6.5 days and coefficient of variation 0.58.

Model estimation The following five parameters were estimated from the data:

1. The basic reproduction number, R0. According to a previous meta-analysis [55], this parameter was

searched in the interval 2–10.

2. The impact of non-pharmaceutical control measures, b. The lower bound of the search interval of this

parameter was fixed to 0.5, such that the maximal value of the stringency index (s = 100) corresponded

to a minimal reduction of SARS-CoV-2 transmission of 50% [16].

3. The impact of influenza on SARS-CoV-2 transmission, βF (search interval: R).

4. The initial number of individuals exposed to SARS-CoV-2, E1(0) (search interval: 0–104).

5. The over-dispersion in death reporting, kD (search interval: R+).

A summary list of fixed and estimated model parameters is presented in Table S1

All parameters were transformed to be estimated on an unconstrained scale, using a log transformation

for positive parameters and the extended logistic function f(θ) = log θ−a
b−θ for parameters constrained in

the interval [a, b]. The maximum iterated filtering algorithm (MIF2 [20]), implemented in the R package

pomp [21, 56], was used to estimate model parameters. The estimation was completed in several steps,
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starting with trajectory matching to identify good starting parameters for MIF2, followed by 100 independent

runs of MIF2 to locate the maximum likelihood estimate (MLE). The profile likelihood was calculated to

verify the convergence of MIF2 and to derive an approximate 95% confidence interval for the parameter

βF [47]. For the other parameters, a parametric bootstrap was used to calculate approximate 95% confidence

intervals, by re-estimating the parameters for each of 200 synthetic datasets simulated at the MLE [57, 58].

Symbol Meaning Fixed value or
estimation range Comment/Source

DE = 1/σ
Average latent

period 4 days [17]

DI = 1/γ
Average
infectious
period

5 days

Fixed to have average
generation time of 6.5

days. Sensitivity analyses:
DI = 2, 7days

Tg = DE +DI/2
Average

generation time 6.5 days [16, 18]

1/κ
Average

onset-to-death
time

17.8 days
[19, 16]

Sensitivity analysis:
1/κ = 13days

µ
Infection-
fatality
ratio

0.01
[16]

Sensitivity analysis:
µ = 0.005

N Population size
Belgium: 11.50M; Italy:
60.32M; Norway: 5.37M;

Spain: 47.01M

2019 demographic data
from the World Bank

s(t)
Stringency

index fixed (covariate) Fig. 1

F (t)
Incidence of
influenza
(rescaled)

fixed (covariate) Fig. 1

R0

Basic
reproduction

number
2–10 [55]

b

Impact of non-
pharmaceutical

control
measures

0.5–2 [16]

βF

Impact of flu on
SARS-CoV-
2 transmission

R

kD

Over-dispersion
in death
reporting

R+

E1(0)
Initial no
exposed 0–104 Initial condition

Table S1: List of model parameters.
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S2 Supplementary results

Model with impact of influenza on both transmission and lethality To test the hypothesis that

influenza increases COVID-19 lethality, in addition to SARS-CoV-2 transmission, we extended our base model

so that influenza was also allowed to modulate the IFR. Specifically, we replaced the constant IFR µ by the

time-varying parameter:

µ(t) = min(1, µ× eµFF (t))

where µF ∈ R quantifies the impact of influenza on COVID-19mortality and was estimated from the data.

The results are presented in Table S2 and are discussed in the main text.

Quantity Belgium Italy Norway Spain
logL (SE) –383.2 (<0.1) –668.7 (<0.1) –160.8 (<0.1) –555.6 (0.3)

∆ logL (P)∗ 0.0 (1.00) 0.4 (0.37) 0.0 (1.00) 3.2 (0.01)
R0 3.3 2.0 3.3 2.1
b 1.02 0.77 0.90 0.90
eβF 1.8 2.1 0.6 3.2
eµF 0.9 0.6 NA† 1.83
kD 8.4× 10−4 1.1× 10−2 2.0× 10−1 7.2× 10−2

E1(0) 90 260 20 10

Table S2: Point parameter estimates of an extended model with impact of influenza on both
transmission and mortality. ∗Log-likelihood difference (P-value, from a log-likelihood ratio test) with
the base model presented in Table 1. †Parameter not identified.

Model with non-linear function mapping the stringency index to the relative reduction in

transmission Although we assumed a simple linear scaling in our base model, it can also be hypothesized

that the reduction of SARS-CoV-2 transmission scales non-linearly with the stringency index. For example,

super-linear scaling for low values of the stringency index may occur if a potentially high-impact intervention

(e.g., lockdown) is implemented early on, such that a modest increase in the stringency index results in

a marked decrease in SARS-CoV-2 transmission. Conversely, sub-linear scaling may also be plausible if

potentially low-impact interventions (e.g., border closure) are implemented first. To test those hypotheses,

we considered an alternative, non-linear scaling function of the form:

rβ(t) = f(b2 × f−1(min(1, b× s(t)

100
)))

where f(x) = (1+e−x)−1 is the logistic function. Here the extra parameter b2 controls the slope at the origin,

with b2 < 1 representing super-linear scaling at low values of the stringency index, and b2 > 1 super-linear
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scaling. For b2 = 1, rβ(t) = min(1, b× s(t)
100 ), such that the base model with linear scaling is nested within this

more general model. The corresponding parameter estimates are presented in Table S3; the scaling function

estimated in Italy is also plotted in Fig. S3 and further discussed in the main text.

Quantity Belgium Italy Norway Spain
logL (SE) –383.1 (0.1) –647.8 (<0.1) –160.7 (<0.1) –557.3 (0.1)

∆ logL (P)∗ 0.1 (0.65) 21.3 (< 10−3) 0.1 (0.65) 1.5 (0.08)
R0 2.9 2.0 2.1 2.0
b 0.87 0.99 0.91 0.94
b2 1.60 0.33 1.62 0.84
eβF 1.9 2.5 2.1 2.9
kD 1.3× 10−3 6.6× 10−2 1.6× 10−1 7.9× 10−2

E1(0) 70 150 60 50

Table S3: Point parameter estimates of an extended model with a non-linear scaling function
for the stringency index. ∗Log-likelihood difference (P-value from a log-likelihood ratio test) with the
base model presented in Table 1.
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Figure S3: Estimated shape of the scaling function in Italy. The dashed grey line represents the
identity line.

Model extension with inhomogeneous mixing To model spatial effects in the dynamics of SARS-CoV-

2 transmission in Italy and in Spain [29, 28], we implemented an extended model in which we relaxed the

assumption of homogeneous mixing [30]. Here we assumed that the force of infection could scale non-linearly

with SARS-CoV-2 infection prevalence [31]:
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λ(t) ∝ (
I1 + I2
N

)α

where the mixing coefficient α ≥ 0 was estimated from the data. Given that I1+I2
N < 1, α > 1 represents

sub-linear scaling and α < 1 super-linear scaling. The results of those experiments are presented in Table S4

and further discussed in the main text.

Quantity Italy Spain
logL (SE) –643.0 (<0.1) –558.8 (<0.1)

∆ logL (P)∗ 26.1 (< 10−3) 0.0 (1.0)
R0 2.1 2.1
b 0.59 0.91
eβF 2.5 2.4
kD 6.3× 10−2 8.0× 10−2

E1(0) 570 120
α 1.07 1.00

Table S4: Point parameter estimates of an extended model with inhomogeneous mixing. ∗Log-
likelihood difference (P-value) with the base model presented in Table 1.

Model fit to data summary statistics To evaluate the model fit in more detail, we examined the model–

data agreement on a number of statistics that summarized important aspects of the mortality data—that is,

probes [59, 21]). Specifically, we considered the following probes:

• Peak time (in days relative to the start of the study period).

• Peak daily number of deaths.

• Total number of deaths.

• Epidemic growth exponent. According to a previous study [27], we assumed that, until the peak time,

the daily number of deaths grew algebraically, i.e., D(t) ∝ tα. We then estimated the growth exponent

α using a log-log linear regression model.

The observed and simulated probe values are summarized in Table S5 and discussed in the main text.
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Probe Belgium Italy Norway Spain 
 Data Model Data Model Data Model Data Model 

Peak time (days) 30 27 
(22– 32) 28 35 

(26–47) 21 16 
(5–32) 24 32 

(23–42) 
Peak number of 

deaths 343 315 
(237– 413) 969 1,476 

(966–2,261) 13 16 
(10–26) 888 1,048 

(762–1,435) 

Total number of 
deaths 9,745 

9,746 
(7,309–
12,540) 

 

34,752 
39,004 

(27,240–
54,067) 

238 
247 

(165, 
348) 

28,158 
26,452 

(20,897–
32,422) 

Growth 
exponent 1.67 

1.64 
(1.45– 
1.88) 

1.99 1.80 
(1.56, 2.06) 0.55 

0.53 
(0.00, 
1.51) 

2.23 1.42 
(1.24, 1.62) 

 

Table S5: Model–data comparison on probes. The values highlighted in red indicate model-based
probes that did not enclose the observed data probe value.

Sensitivity analyses To verify the robustness of our results, we conducted a number of sensitivity analy-

ses. Specifically, we modified the value of 3 fixed model parameters (infection fatality ratio, average onset-to-

death time, and average generation time) and we repeated the estimations as before. As shown in Table S6,

the estimate of the impact of influenza on SARS-CoV-2 transmission (eβF ) remained consistently above 1

for all scenarios tested.

 

Model Belgium Italy Norway Spain 

 log L  
(SE) 𝑅! 𝑏" 𝑒#! 𝐸"(0) 

log L  
(SE) 𝑅! 𝑏" 𝑒#! 𝐸"(0) 

log L  
(SE) 𝑅! 𝑏 𝑒#! 𝐸"(0) 

log L 
(SE) 𝑅! 𝑏 𝑒#! 𝐸"(0) 

Base model –383.2 
(<0.1) 3.3 1.02 1.9 60 –669.1 

(<0.1)  2.0 0.76 2.4 40 –160.8 
(<0.1)  2.3 1.07 2.1 50 –558.8 

(0.1) 2.0 0.89 2.5 130 

𝐸(𝑇$* = 5 days –384.4 
(0.1) 2.8 0.94 1.5 30 –688.4 2.0 0.73 1.9 10 –161.1 

(<0.1) 2.1 0.97 1.5 70 –562.5 
(0.1) 2.0 0.84 1.5 340 

𝐸(𝑇$* = 7.5 
days 

–382.3 
(<0.1) 3.5 1.06 2.4 50 –662.9 

(<0.1) 2.0 0.79 2.8 40 –160.7 
(<0.1) 2.5 1.12 2.5 60 –556.4 

(0.4) 2.0 0.94 3.8 20 

𝜇 = 0.005 –383.3 
(<0.1) 3.7 1.02 1.7 140 –661.9 

(<0.1) 2.0 0.74 2.3 90 –160.5 
(<0.1) 2.3 1.07 2.2 100  –557.4 

(0.1) 2.0 0.88 2.7 110 

𝜅%" = 13 days –395.7 
(0.1) 2.0 0.88 7.6 1 –692.8 

(0.1) 2.0 0.76 3.1 2 –162.3 
(0.1) 2.1 1.00 2.8 15 –538.8 

(0.4) 2.0 0.87 4.7 2 

Table S6: Sensitivity analyses.

Probability that an influenza–SARS-CoV-2 co-infection is detectable To calculate the probability

that a co-infection with influenza then SARS-CoV-2 can be be detected, we ran a simulation study. Assuming

that influenza infection occurred first, we first generated a sample of influenza incubation periods from a log-

Normal distribution with median 1.4 days and dispersion 1.51, based on the results of a previous review [34].

We then generated a sample of detection periods, assuming that influenza could be shed (and therefore

detected) up to 4–5 days after symptom onset [35]. Second, we generated a sample of SARS-CoV-2 infection

times, uniformly between the time of infection and the end time of detectability of influenza. Finally, we
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generated a sample of SARS-CoV-2 incubation periods (from a Gamma distribution with mean 5.7 days [33]

and coefficient of variation 0.86 [16]) and of SARS-CoV-2 detection start times, assuming that SARS-CoV-

2 could be detected from 2 to 4 days before symptom onset [36]. In each simulation, we calculated the

probability that co-detection can be detected as the fraction of the sample for which the maximal detection

time of influenza exceeded the minimal detection time of SARS-CoV-2. The results are presented in Table S7

and discussed in the main text.

Detection time of
influenza after
symptom onset

Detection time of
SARS-CoV-2 before
symptom onset

Probability of
co-detection

4 days 2 days 0.52
4 days 4 days 0.67
5 days 2 days 0.55
5 days 4 days 0.70

Table S7: Probability that an influenza–SARS-CoV-2 co-infection can be detected. The results
are based on sample size of 105; replicate simulations gave identical results, such that the estimates may be
considered exact.
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