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Abstract:	The	timing	of	SARS-CoV-2	transmission	is	a	critical	factor	to	understand	the	
epidemic	 trajectory	 and	 the	 impact	 of	 isolation,	 contact	 tracing	 and	 other	 non-
pharmaceutical	 interventions	on	the	spread	of	COVID-19	epidemics.	We	examined	the	
distribution	of	transmission	events	with	respect	to	exposure	and	onset	of	symptoms.	We	
show	that	for	symptomatic	individuals,	the	timing	of	transmission	of	SARS-CoV-2	is	more	
strongly	 linked	 to	 the	 onset	 of	 clinical	 symptoms	 of	 COVID-19	 than	 to	 the	 time	 since	
infection.		We	found	that	it	was	approximately	centered	and	symmetric	around	the	onset	
of	symptoms,	with	three	quarters	of	events	occurring	in	the	window	from	2-3	days	before	
to	2-3	days	after.	However,	we	caution	against	overinterpretation	of	the	right	tail	of	the	
distribution,	due	 to	 its	dependence	on	behavioural	 factors	and	 interventions.	We	also	
found	 that	 the	 pre-symptomatic	 infectious	 period	 extended	 further	 back	 in	 time	 for	
individuals	with	longer	incubation	periods.	This	strongly	suggests	that	information	about	
when	a	case	was	infected	should	be	collected	where	possible,	in	order	to	assess	how	far	
into	the	past	their	contacts	should	be	traced.	Overall,	the	fraction	of	transmission	from	
strictly	pre-symptomatic	 infections	was	high	 (41%;	95%CI	31-50%),	which	 limits	 the	
efficacy	of	symptom-based	interventions,	and	the	large	fraction	of	transmissions	(35%;	
95%CI	 26-45%)	 that	 occur	 on	 the	 same	 day	 or	 the	 day	 after	 onset	 of	 symptoms	
underlines	the	critical	 importance	of	 individuals	distancing	themselves	 from	others	as	
soon	as	they	notice	any	symptoms,	even	if	they	are	mild.	Rapid	or	at-home	testing	and	
contextual	risk	information	would	greatly	facilitate	efficient	early	isolation.	

Introduction 
The	COVID-19	disease	emerged	at	the	end	of	2019.	Several	months	after	the	first	reports	
on	the	disease,	our	understanding	of	transmission	of	the	causative	virus	-	SARS-CoV-2	-	
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is	still	incomplete.	A	detailed	knowledge	of	its	transmission	is	urgently	needed	to	improve	
public	health	interventions	aimed	at	reducing	the	burden	of	the	pandemic	on	societies.	
In	particular,	the	temporal	profile	of	infectiousness	in	relation	to	the	onset	of	symptoms	
is	 crucial	 for	 assessing	 and	 optimising	 public	 health	 interventions	 and	 minimising	
disruption	to	society	and	the	economy.	

When	designing	 interventions	to	control	a	communicable	disease	such	as	COVID-19,	a	
key	 quantity	 is	 the	 fraction	 of	 transmissions	 occurring	 while	 the	 source	 is	 non-
symptomatic	(Fraser	et	al.	2004;	Peak	et	al.	2017),	i.e.	either	pre-symptomatic	(before	
symptom	onset)	or	asymptomatic	(for	individuals	who	never	develop	symptoms).	

Symptomatic	individuals	are	easier	to	(self-)identify	and	they	can	take	measures	to	avoid	
spreading	the	virus,	whereas	transmission	 from	non-symptomatic	 individuals	 is	much	
more	difficult	to	prevent.	The	extent	and	timing	of	non-symptomatic	transmission	have	a	
large	impact	on	which	public	health	interventions	can	be	effective	and	how	they	should	
be	 implemented	 (Fraser	 et	 al.	 2004;	 Peak	 et	 al.	 2017).	 For	 example,	 isolation	 of	
symptomatic	cases	may	be	sufficient	to	prevent	spread	for	a	disease	that	is	transmitted	
only	 after	 onset	 of	 clinical	 symptoms,	 as	 was	 the	 case	 with	 SARS	 (May	 et	 al.	 2004);	
however,	further	interventions	may	be	necessary	for	a	disease	with	a	high	proportion	of	
non-symptomatic	 transmission	 such	 as	 COVID-19.	 In	 the	 latter	 case,	 preventing	
transmission	 from	 non-symptomatic	 individuals	 requires	 actively	 finding	 such	
individuals	through	contact	tracing	(Ferretti	et	al.	2020)	or	mass	testing	(Larremore	et	
al.	 2020),	 and/or	measures	 targeting	 the	 entire	 population	 such	 as	 face	masks,	 hand	
hygiene,	and	varying	degrees	of	physical	distancing.	Hence,	knowing	the	contribution	of	
non-symptomatic	transmission	is	key	for	the	choice	of	interventions.	

The	fraction	of	all	COVID-19	transmissions	that	come	from	asymptomatic	individuals	is	
difficult	to	measure	in	an	unbiased	manner;	in	addition,	it	is	likely	dependent	on	the	age	
of	 infected	 individuals	 and	 therefore	 time-	 and	 population-specific.	 Indirect	 evidence	
suggests	that	asymptomatic	individuals	are	less	infectious	than	symptomatic	individuals	
(Zhou	et	al.	2020;	Lee	et	al.	2020;	Madewell	et	al.	2020)	and	accounted	for	less	than	half	
of	 infections	of	 SARS-COV-2	 in	China	and	European	countries	 in	 the	 first	half	of	2020	
(Pollán	et	al.	2020;	Lavezzo	et	al.	2020;	Buitrago-Garcia	et	al.	2020).		

Another	 challenge	 for	 public	 health	 interventions	 is	 the	 occurrence	 of	 transmissions	
before	 or	 shortly	 after	 symptom	 onset,	 from	 individuals	 who	 do	 develop	 symptoms	
during	 the	 course	 of	 the	 infection:	 pre-symptomatic	 and	 early	 symptomatic	
transmissions	hereafter.	Pre-symptomatic	transmissions	have	been	estimated	to	account	
for	almost	half	of	all	non-asymptomatic	transmissions	(see	e.g.	meta-analysis	in	(Casey	et	
al.	2020)).		

The	 timing	 of	 pre-symptomatic	 and	 early	 symptomatic	 transmission	 determines	 the	
speed	 required	 for	 finding	 the	 contacts	 who	 could	 have	 been	 infected,	 before	 these	
contacts,	in	turn,	infect	others.	If	the	interval	from	infection	to	onset	of	symptoms	is	just	
a	few	days,	as	seems	to	be	the	case	for	COVID-19,	it	becomes	critical	to	notify	contacts	
instantly	when	 the	 index	 case	 is	 confirmed	 by	 rapid	 testing	 or	 even	 symptom-based	
clinical	diagnosis.	Therefore	digital	contact	tracing	via	a	smartphone	app,	which	makes	
the	 exposure	 notification	 step	 of	 contact	 tracing	 instantaneous,	 could	 substantially	
enhance	 the	 effectiveness	 of	 traditional	manual	 contact	 tracing	 (Ferretti	 et	 al.	 2020;	
Kucharski	et	al.	2020;	Braithwaite	et	al.	2020;	Anglemyer	et	al.	2020).	Effectiveness	of	
digital	contact	tracing	depends	on	many	factors	(Hinch	et	al.	2020)	including	the	fraction	
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of	the	population	installing	the	app,	and	on	how	clustered	or	correlated	app	use	is	within	
communities	 (Farronato	 et	 al.	 2020),	 the	 time	 until	 diagnosis	 and	 notification	
(Kretzschmar	et	al.	2020),	and	the	compliance	with	quarantine	recommendations.		

Both	traditional	and	digital	contact	 tracing	require	a	reliable	estimate	of	 the	temporal	
profile	 of	 infectiousness	 in	 order	 to	 assess	which	 contacts	 are	 at	 risk	 of	 having	 been	
infected	 and	 which	 are	 not.	 Assessing	 the	 risk	 of	 exposed	 contacts	 as	 accurately	 as	
possible	 is	 key	 to	maximising	 the	 number	of	 infectious	 individuals	 in	 quarantine	 and	
preventing	 further	 spread,	while	minimising	 the	number	of	non-infectious	 individuals	
unnecessarily	quarantined.		

In	 this	 study	 we	 examine	 the	 temporal	 profile	 of	 infectiousness	 for	 SARS-CoV-2.	We	
estimate	 the	 distributions	 for	 the	 length	of	 the	 intervals	 between	 infection,	 symptom	
onset	 and	 transmission	 using	 multiple	 datasets	 containing	 information	 on	 191	
transmission	pairs.	We	find	that	the	timing	of	transmission	events	depends	more	strongly	
on	onset	of	symptoms	than	time	since	infection.	Infectiousness	reaches	its	peak	near	the	
onset	of	symptoms,	after	increasing	gradually	from	the	time	of	infection.	We	estimate	the	
fraction	of	pre-symptomatic	transmissions,	and	the	relative	importance	of	transmissions	
before	and	shortly	after	the	time	of	symptom	onset.	Finally,	we	outline	the	relevance	of	
these	findings	for	contact	tracing,	timing	of	isolation	and	other	individual	precautionary	
measures.	

Time intervals 

The	 temporal	profile	of	COVID-19	 infection	and	 transmission	 is	 characterised	by	 four	
epidemiologically	relevant	time	intervals	(Table	1	and	Figure	1):	the	incubation	period,	
the	 serial	 interval,	 the	 generation	 time	 and	 the	 time	 from	 onset	 of	 symptoms	 to	
transmission	(TOST).	These	four	time	intervals	are	delimited	by	four	key	time	points:	the	
time	at	which	an	individual	gets	infected,	the	time	at	which	they	infect	another	individual,	
the	times	at	which	the	source	develops	symptoms	and	at	which	the	recipient	does.		With	
the	 exception	 of	 the	 incubation	 period,	which	 is	 defined	 for	 a	 single	 individual,	 these	
intervals	are	defined	for	a	transmission	pair:	an	index	(primary)	case	and	a	secondary	
case	infected	by	the	index.	

The	incubation	period	is	the	time	between	infection	and	onset	of	symptoms.	From	the	
average	of	multiple	distributions	from	the	literature	(see	Methods),	its	mean	is	5.7	days	
and	its	SD	is	3.5	days.	

The	 serial	 interval	 is	 the	 interval	 between	 times	 of	 onset	 of	 symptoms	 in	 index	 and	
secondary	 cases.	 It	 can	be	directly	measured	 from	 the	data,	 and	has	been	extensively	
studied	for	COVID-19	(Griffin	et	al.	2020;	Nishiura,	Linton,	and	Akhmetzhanov	2020;	Du	
et	al.	2020;	Tindale	et	al.	2020),	although	it	can	be	affected	by	several	biases	(Park	et	al.	
2020).	It	is	occasionally	negative	-	when	the	secondary	case	develops	symptoms	before	
the	index	case.	It	is	undefined	if	either	case	has	an	asymptomatic	infection	or	does	not	
report	symptoms.	

The	generation	time	is	the	interval	between	the	time	of	infection	of	the	index	case	and	
the	time	of	infection	of	the	secondary	case.	It	is	typically	harder	to	estimate	directly	unless	
the	interval	of	exposure	is	short	for	both	index	and	secondary	case.	The	generation	time	
is	usually	inferred	indirectly	from	intervals	of	exposure	and	onset	of	symptoms.	It	has	
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been	 inferred	 for	COVID-19	by	 (Ferretti	 et	 al.	 2020;	Ganyani	 et	 al.	 2020).	 It	 is	 always	
positive	by	definition.	

TOST	 is	 the	 time	 elapsed	 between	 the	 onset	 of	 symptoms	 in	 the	 index	 case,	 and	 the	
transmission	from	index	to	secondary	case.	It	is	positive	for	symptomatic	transmission	
and	negative	for	pre-symptomatic	transmission	by	definition.	It	is	undefined	if	the	index	
case	has	an	asymptomatic	infection	or	does	not	report	symptoms.	This	time	interval	has	
rarely	been	discussed	in	epidemiology,	although	it	has	been	considered	for	COVID-19	(He	
et	al.	2020;	Ashcroft	et	al.	2020).	

Knowledge	 of	 these	 four	 intervals	 enables	 us	 to	 predict	 the	 relative	 effectiveness	 of	
different	interventions,	e.g.	physical	distancing,	wearing	of	face	masks,	mass	testing	or	
contact	tracing.	

	

Table	1:	 Four	 time	 intervals	 that	 influence	 control	 via	 isolation	of	 symptomatic	
individuals.	

Time	interval	 From	 	 To	
Incubation	period	 infection	 →	 onset	of	symptoms	
Generation	time	 infection	 →	 transmission	(secondary)	
TOST	 onset	of	symptoms	 →	 transmission	(secondary)	
Serial	interval	 onset	of	symptoms	 →	 onset	of	symptoms	(secondary)	

Results 

Serial interval 

We	analysed	transmission	pairs	from	the	only	four	datasets	in	the	literature	(Ferretti	et	
al.	2020;	Xia	et	al.	2020;	Cheng	et	al.	2020;	He	et	al.	2020)	that	contain	the	date	of	onset	
of	 symptoms	 for	 both	 index	 and	 secondary	 cases,	 as	 well	 as	 partial	 information	 on	
intervals	of	 exposure.	To	 test	 the	 robustness	of	 the	 results,	we	 included	an	additional	
dataset	by	(Zhang	et	al.	2020)	with	serial	intervals	only.	

The	empirical	serial	interval,	when	analysing	all	five	datasets	combined,	had	a	mean	of	
5.1	days,	a	median	of	4	days,	and	a	standard	deviation	of	3.8	days;	the	mean	was	4.1	days	
without	Zhang	et	al.	These	results	are	consistent	with	other	studies	(Tindale	et	al.	2020;	
Du	et	al.	2020;	Bi	et	al.	2020).	Most	studies	fit	a	lognormal	distribution	to	the	data,	even	
though	 serial	 intervals	 are	 occasionally	 negative.	 The	 empirical	 distribution	 and	 the	
lognormal	 distribution	with	 the	 same	mean	 and	 SD	 are	 illustrated	 in	 Supplementary	
Figure	1.	There	are,	however,	many	caveats	in	using	the	serial	interval	distribution	for	
epidemiological	inference	(Park	et	al.	2020).	

The	median	of	the	serial	interval	was	similar	across	different	datasets	(all	p>0.2,	Mann-
Whitney	U-test)	but	the	variance	was	different,	with	Ferretti	&	Wymant	et	al	and	Cheng	
et	al	showing	significant	underdispersion	and	overdispersion	with	respect	to	the	others	
(p=0.001	and	0.025	respectively,	Fligner-Killeen	test).	14	out	of	40	transmission	events	
from	Ferretti	&	Wymant	et	al	occurred	during	a	phase	of	exponential	epidemic	growth,	
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when	the	corresponding	serial	interval	is	expected	to	be	shorter	(Svensson	2007).	We	
explicitly	corrected	for	this	effect	in	the	inference	of	generation	time	in	the	next	section.	

Generation time 

We	inferred	the	generation	time	distribution	by	maximum	likelihood	estimation,	using	
dates	of	onset	of	symptoms	for	both	index	and	secondary	cases,	as	well	as	their	intervals	
of	exposure	(when	available).	We	corrected	for	exponential	growth	and	right	censoring,	
as	detailed	in	the	Methods.	

To	determine	the	functional	form	of	the	distribution,	we	tested	a	wide	range	of	possible	
shapes	that	are	consistent	with	the	near-absence	of	infectiousness	of	the	index	case	at	the	
time	of	infection.	This	requirement	stems	from	the	very	low	initial	viral	load,	since	each	
cycle	of	viral	replication	takes	several	hours	(Bar-On	et	al.	2020).	

The	best-fitting	shape,	as	determined	by	the	Akaike	Information	Criterion	(AIC),	was	a	
Weibull	 distribution	 (Figure	 1A;	 mean	 5.5	 days,	 standard	 deviation	 1.8	 days).	 A	
Gompertz,	a	 log-logistic	and	a	gamma	distribution	provided	good	fits	as	well	 (𝛥𝐴𝐼𝐶 =	
0.57,	 0.93	 and	 1.06	 respectively,	 Supplementary	 Table	 1).	 The	 generation	 time	
distributions	 corresponding	 to	 the	 best	 parameter	 fits	 for	 each	 shape	 are	 shown	 in	
Supplementary	Figure	2,	and	the	maximum-likelihood	parameter	values	for	each	shape	
in	Supplementary	Table	2.	

Given	 the	 heterogeneity	 among	 datasets	 in	 terms	 of	 interventions	 and	 stage	 of	 the	
epidemic,	 it	 is	 important	 to	assess	 the	robustness	of	 the	 inference	with	respect	 to	 the	
choice	of	datasets.	We	re-inferred	the	generation	time	distribution	removing	one	dataset	
at	a	time,	as	well	as	adding	the	additional	dataset	by	Zhang	et	al.	The	results	were	quite	
robust	and	within	the	uncertainties	of	the	inference,	as	illustrated	in	Figure	1A.	
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Figure	1:	Top:	 illustration	of	 the	definitions	of	epidemiologically	relevant	time	 intervals.	
Bottom:	maximum-likelihood	distributions	of	(A)	generation	time	and	(B)	TOST,	excluding	
or	including	different	datasets,	shown	with	different	colours.	The	pointwise	95%	CI	for	the	
fit	to	the	baseline	dataset	(‘full’,	which	does	not	include	Zhang	et	al.)	is	shown	in	grey.	The	
dashed	black	line	shows	the	incubation	period	distribution	for	comparison.		

Time from onset of symptoms to transmission (TOST) 

We	inferred	the	distribution	for	TOST	by	maximum	likelihood	estimation.	As	COVID-19	
is	often	transmitted	pre-symptomatically	(negative	TOST),	we	considered	distributions	
which	 include	 both	 positive	 and	 negative	 times.	 The	 best	 fit	 was	 given	 by	 a	 scaled	
Student’s	 t	 distribution	 (Fig.	 1B;	 mean=-0.07	 days,	 SD=2.8	 days).	 A	 skew-logistic	
distribution	 (mean=0.02	 days,	 SD=2.65	 days)	 also	 provided	 a	 good	 fit	 (𝛥𝐴𝐼𝐶 =	 0.65;	
Supplementary	Table	3).	The	TOST	distributions	corresponding	to	the	best	parameter	fits	
for	 each	 shape	 are	 shown	 in	 Supplementary	 Figure	 3,	 and	 the	 parameter	 values	 in	
Supplementary	Table	4.	

We	tested	the	robustness	with	respect	to	choice	of	datasets	by	removing	one	dataset	at	a	
time	and	adding	an	additional	dataset	as	before.	All	best-fit	distributions	were	centered	
around	the	time	of	onset	of	symptoms	with	roughly	similar	width	(Figure	1B).	
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The peak of infectiousness depends on the onset of symptoms rather than the 
time of infection 

It	has	previously	been	noted	that	the	similarity	between	the	mean	incubation	period	and	
the	mean	generation	time	(about	5.5	days)	suggests	a	mean	TOST	of	close	to	zero	i.e.	an	
almost-centered	distribution	of	TOST	(Nishiura,	Linton,	and	Akhmetzhanov	2020;	Casey	
et	 al.	 2020).	 Transmission	 events	 are	 indeed	 clearly	 concentrated	 around	 the	 time	 of	
onset	 of	 symptoms,	 regardless	 of	 the	 details	 of	 the	 inference.	 This	 can	 be	 either	 a	
coincidence,	with	no	relation	between	generation	time	and	incubation	period	(symptom-
independent	infectiousness),	or	the	time	since	onset	of	symptoms	could	determine	the	
infectiousness	of	an	individual,	rather	than	the	time	since	the	individual	was	first	infected	
(symptom-dependent	infectiousness).	These	two	scenarios	are	illustrated	in	Figure	2A	
and	2B	respectively.	

	

Figure	2:	Three	alternative	hypotheses	for	the	timing	of	infectiousness	of	the	blue	individual	
(and	 individuals	 generally).	 In	 (A),	 infectiousness	 depends	 on	 the	 time	 since	 infection,	
regardless	 of	 whether	 symptoms	 develop	 quickly	 (A	 top)	 or	 slowly	 (A	 bottom).	 In	 (B),	
infectiousness	depends	on	the	time	of	the	onset	of	symptoms,	regardless	of	whether	the	time	
since	infection	is	short	(B	top)	or	long	(B	bottom).	In	(C),	infectiousness	depends	on	the	time	
of	onset	of	symptoms,	but	it	increases	gradually	from	the	time	of	infection,	therefore	leading	
to	a	shorter	infectious	period	if	symptoms	develop	rapidly	(C	top)	and	a	longer	infectious	
period	if	symptoms	appear	late	(C	bottom).	

We	 tested	 which	 of	 these	 two	 scenarios,	 i.e.	 symptom-dependent	 and	 symptom-
independent	infectiousness,	best	fit	our	data	on	transmission	pairs,	using	the	information	
on	the	interval	of	exposure	of	the	index	and	secondary	cases	compared	with	the	time	of	

A 

infection transmissionsymptom onset symptom onset
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B

C
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onset	of	symptoms	of	the	index.	Comparing	the	AIC	values	in	Supplementary	Tables	F	and	
G	for	the	most	directly	informative	datasets	(Ferretti	&	Wymant	et	al,	Xia	et	al,	and	both	
combined),	we	found	clear	differences	between	the	best	fits	for	symptom-dependent	and	
symptom-independent	 infectiousness	 (𝛥𝐴𝐼𝐶 =	 -13.9,	 -11.1,	 -22.4	 for	 the	 different	
datasets	 respectively;	 Supplementary	 Table	 5).	 Even	 the	 simplest	 Gaussian	 fit	 for	
symptom-dependent	infectiousness	was	a	much	better	fit	to	the	data	than	any	choice	of	
generation	 time	 distribution	 for	 symptom-independent	 infectiousness	 (𝛥𝐴𝐼𝐶 =	 -5.4,	 -
11.1,	-18.8).	

These	 results	 confirm	 the	 observation	 that	 for	 individuals	 that	 eventually	 develop	
symptoms,	 the	 period	 of	 SARS-CoV-2	 infectiousness	 is	 directly	 related	 to	 onset	 of	
symptoms	 rather	 than	 being	 independent	 of	 it.	 For	 symptomatic	 individuals,	 most	
transmission	events	occurred	in	a	range	of	a	few	days	before	and	after	onset	of	symptoms.	
More	than	5	days	before	symptom	onset,	infectiousness	appeared	to	decrease	below	a	
tenth	of	its	peak	value,	and	we	observed	only	a	few	percent	of	transmissions	beyond	5	
days	after	symptom	onset.	

Infectiousness increases gradually from time of infection to onset of 
symptoms 
Our	 analyses	 suggest	 that	 time	 of	 symptom	 onset	 is	 the	 main	 determinant	 of	 when	
transmission	occurs,	with	transmission	peaking	before	and	after	the	onset	of	symptoms.	
However,	the	incubation	period	could	still	affect	the	width	of	the	distribution	of	the	time	
of	transmission	events.	Indeed,	the	data	suggest	a	weak	negative	correlation	between	the	
incubation	period	of	the	source	and	the	serial	interval	of	the	pair	(Supplementary	Figure	
4),	which	would	not	be	expected	if	the	timing	of	transmission	was	determined	only	by	the	
TOST	(see	Methods).	

To	 examine	 the	 possibility	 that	 the	 length	 of	 the	 infectious	 period	 depends	 on	 the	
incubation	 period	 (incubation/symptom-dependent	 infectiousness),	 we	 considered	
several	possible	dependencies	between	the	TOST	distribution	and	the	incubation	period.	
We	modelled	them	by	rescaling	the	time	of	transmission	by	a	factor	dependent	on	the	
incubation	period,	affecting	either	the	whole	distribution	or	its	left	part	only	(details	in	
Methods	and	Supplementary	Table	5).		

The	model	of	incubation/symptom-dependent	infectiousness	with	the	best	fit	across	all	
datasets	was	a	linear	rescaling	of	pre-symptomatic	values	of	TOST	by	the	length	of	the	
incubation	period	(Figure	2C;	𝛥𝐴𝐼𝐶 =	0,	-9.3,	-10.2,	-15.5	for	Ferretti	&	Wymant	et	al,	Xia	
et	al,	both	combined,	and	all	datasets	combined,	respectively).	In	other	words,	individuals	
with	longer	incubation	periods	also	tend	to	have	a	proportionally	earlier	and	longer	pre-
symptomatic	 infectious	 period	 (Figure	 3A).	 The	 profiles	 of	 transmission	 for	 different	
incubation	periods	in	relation	to	TOST	are	depicted	in	Figure	3B.	The	best	fit	for	TOST	is	
provided	 by	 a	 rescaled	 skew-logistic	 distribution	 as	 a	 function	of	 the	TOST	 𝑡	 and	 the	
incubation	period	𝑡(:	

𝑝*+,*(𝑡|𝑡() ∝
𝑒2(*23)/5

(1 + 𝑒2(*23)/5)89:
		𝑓𝑜𝑟	𝑡 ≥ 0,

𝑒2(*23)/(5*B/C)

(1 + 𝑒2(*23)/(5*B/C))89:
		𝑓𝑜𝑟	𝑡 < 0	
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with	parameters	𝜇 = −4.00	days,	𝜎 = 1.85	days,	𝛼 = 5.85.	The	constant	𝜏 = 5.42	days	is	
the	mean	incubation	period	according	to	(McAloon	et	al.	2020).	For	an	incubation	period	
𝑡( = 𝜏,	the	TOST	has	a	mean	of	0.1	days	and	SD	of	2.4	days.	

	

Figure	 3:	 probability	 of	 transmission	 as	 a	 function	 of	 generation	 time	 (left)	 and	 TOST	
(right)	for	a	given	duration	of	the	incubation	period,	relative	to	the	peak	probability.	The	
black	 line	represents	 the	average	with	respect	 to	 the	 incubation	period	distribution.	The	
envelopes	correspond	to	the	pointwise	95%	CI.		

	

It	is	unclear	whether	the	magnitude	of	infectiousness	depends	on	the	incubation	period.	
It	is	possible	that	an	early	host	immune	response	could	initially	reduce	viral	replication,	
but	once	initial	barriers	of	immunity	are	overcome,	the	same	peak	infectiousness	could	
be	reached.	This	would	mean	that	individuals	with	later	onset	of	symptoms	have	a	longer	
infectious	period	with	the	same	peak	infectiousness;	i.e.	their	cumulative	infectiousness	
increases	with	the	duration	of	their	incubation	period.	Our	dataset	cannot	discriminate	
between	 this	 scenario	 and	 the	 one	where	 cumulative	 infectiousness	 does	 not	 change	
depending	on	the	length	of	the	incubation	period	(Supplementary	Table	5).	Irrespective	
of	this,	the	average	distribution	of	TOST	over	all	durations	of	the	incubation	period	is	very	
similar	to	the	previous	fit	(Supplementary	Figure	5).	

Since	the	time	of	symptom	onset	is	the	main	determinant	of	infectiousness,	we	notice	a	
strong	 positive	 correlation	 between	 incubation	 period	 and	 generation	 time,	 which	 is	
clearly	visible	in	Figure	3A,	and	a	weaker	negative	one	between	incubation	period	and	
TOST	(Supplementary	Table	6).	

Epidemiological biases could affect symptomatic transmissions 

Many	biases	 can	 potentially	 affect	 the	 shape	 of	 the	 temporal	 profile	 of	 transmissions	
inferred	from	observed	transmission	pairs	These	include	both	sampling	biases	and	self-
isolation	or	public	health	interventions.	
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The	more	time	has	passed	since	an	individual	became	infected,	the	more	likely	they	are	
to	have	developed	symptoms	or	have	a	positive	test	result	(either	through	mass	testing	
or	as	a	traced	contact),	and	thus	the	more	likely	they	are	to	have	begun	taking	precautions	
to	 avoid	 transmitting	 the	 virus.	 Hence,	 inferred	 distributions	 of	 transmission	 events	
could	be	prematurely	truncated	relative	to	the	distribution	that	would	be	observed	with	
no	interventions,	and	therefore	differ	from	the	profile	of	purely	biological	infectiousness	
over	time.	

Such	epidemiological	biases	also	affect	the	right	tail	of	the	distribution	of	serial	intervals.	
In	particular,	the	serial	interval	can	change	due	to	interventions	(Ali	et	al.	2020)(Sun	et	
al,	personal	communication)	as	it	depends	strongly	on	time	to	isolation	(Bi	et	al.	2020).	
These	biases	cannot	be	disentangled	using	data	from	transmission	pairs	only,	but	require	
information	on	dates	of	exposure	for	traced	contacts	who	were	exposed	but	did	not	get	
infected.	We	extended	our	approach	to	include	such	information	from	(Cheng	et	al.	2020)	
(Supplementary	Figure	6),	fitting	a	model	with	dataset-dependent	decay	of	transmissions	
after	symptoms	(Supplementary	Methods).	The	resulting	distribution	of	TOST	does	not	
differ	from	our	previous	fit,	lying	mostly	within	its	confidence	intervals	(Supplementary	
Figure	7).	Furthermore,	 the	 right	 tail	of	 symptomatic	 transmissions	 is	 identical	 for	all	
datasets.	 These	 results	 confirm	 that	 the	 distribution	 of	 TOST	 is	 robust	 and	 that	
epidemiological	 biases	 are	 similar	 between	 the	 studies,	 such	 as	 the	 tendency	 to	 self-
isolate	when	experiencing	acute	respiratory	symptoms.		

We	caution,	however,	that	infected	individuals	could	be	still	infectious	well	beyond	the	
time	periods	 suggested	by	 this	 epidemiological	 analysis.	Viral	 loads	 from	nasal	 swabs	
provide	substantial	evidence	of	an	infectious	period	after	symptom	onset	longer	than	the	
3-4	days	 inferred	here.	High	 viral	 loads	 have	 been	 observed	 for	 at	 least	 a	week	 after	
symptoms	(Wölfel	et	al.	2020;	Pan	et	al.	2020;	He	et	al.	2020).	The	crucial	determinant	of	
infectiousness	however	is	the	probability	of	shedding	viable	virus,	which	decays	rapidly	
after	5-10	days	(Wölfel	et	al.	2020;	Bullard	et	al.	2020).	However,	Supplementary	Figure	
7	 clearly	 shows	 that	both	viral	 load	and	 the	probability	of	 viable	virus	 isolation	 from	
multiple	studies	(Arons	et	al.	2020;	van	Kampen	et	al.	2020)	decay	more	slowly	than	our	
epidemiological	observations	suggest.	Resolution	of	this	mismatch	is	likely	accounted	for	
by	the	increased	compliance	to	isolation	after	onset	of	symptoms,	discussed	above.	

Fractions of pre-symptomatic and early symptomatic transmissions 

A	key	feature	of	COVID-19	spread	is	pre-symptomatic	transmission.	Several	studies	have	
estimated	 its	 fraction	 by	 assuming	 time	 to	 symptoms	 and	 time	 to	 transmission	 are	
independent	(Ferretti	et	al.	2020;	Casey	et	al.	2020).	As	we	have	shown,	this	assumption	
is	not	supported	by	data:	transmission	events	are	closely	tied	to	symptom	onset.	Also,	
transmission	on	the	day	of	symptom	onset	is	not	necessarily	pre-symptomatic	and	should	
be	considered	separately.	Here	we	assess	 the	contribution	of	strictly	pre-symptomatic	
transmission	using	two	different	approaches.		

First,	we	estimated	the	fraction	of	transmission	on	each	individual	day	by	discretizing	the	
TOST	 distribution	 and	 considering	 the	 part	 of	 the	 distribution	 that	 corresponds	 to	
negative	 times,	 i.e.	 the	 fraction	 of	 transmission	 events	 that	 occur	 before	 the	 day	 of	
symptom	onset	(Figure	4).	
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The	 fraction	 of	 strictly	 pre-symptomatic	 transmissions	 (TOST<0)	 from	 non-
asymptomatic	 individuals	was	42%,	which	 is	consistent	with	previous	studies,	even	 if	
some	of	them	included	the	same	day	as	symptom	onset	(TOST=0).	

	

Figure	4:	Left:	distribution	of	transmissions	relative	to	the	day	of	onset	of	symptoms.	The	
left-most	 bin	 contains	 all	 transmission	 5+	 days	 before	 symptom	 onset.	 Right:	 posterior	
distributions	 of	 the	 fraction	 of	 all	 transmissions	 that	 occur	 before	 symptoms	 (pre-
symptomatic,	 TOST<0),	 on	 the	 day	 of	 onset	 of	 symptoms	 or	 the	 following	 day	 (early	
symptomatic,	TOST=0-1)	or	thereafter	(late	symptomatic,	TOST>1),	obtained	from	10000	
bootstraps	from	all	pairs	in	the	full	dataset.	

We	also	estimate	the	fraction	of	pre-symptomatic	transmissions	among	all	pairs	in	our	
dataset	with	a	Bayesian	approach,	assuming	that	pre-symptomatic	infectiousness	would	
scale	 with	 the	 incubation	 period	 (i.e.	 our	 best	 model,	 illustrated	 in	 Figure	 3).	 This	
approach	also	estimates	the	fraction	of	presymptomatic	transmissions	to	be	41%	(95%	
CI:	31-50%;	the	full	distribution	is	shown	in	Figure	4).	

While	 much	 attention	 has	 been	 focused	 on	 pre-symptomatic	 transmission,	 the	
contribution	 of	 early	 symptomatic	 transmission	 is	 also	 crucial	 for	 the	 spread	 of	 the	
disease.	

The	peak	of	transmission	occurs	on	the	day	of	symptom	onset,	with	an	estimated	20%	of	
transmissions,	as	 illustrated	 in	Figure	4.	The	day	after	onset	of	symptoms	 is	also	very	
relevant,	 accounting	 for	 16%	 of	 transmissions.	 Together,	 these	 two	 days	 account	 for	
about	 a	 third	 of	 non-asymptomatic	 transmissions,	 comparable	 to	 the	 fraction	 of	 pre-
symptomatic	 transmission.	 This	 estimate	 is	 confirmed	 by	 the	 Bayesian	 analysis	 of	
individual	pairs	in	our	datasets	which	gives	a	value	of	35%	(95%	CI:	26-45%).		

In	 contrast,	 symptomatic	 transmissions	 occurring	 two	 days	 or	 more	 after	 onset	 of	
symptoms	account	for	only	22%	of	transmissions	(24%	from	Bayesian	analysis,	95%	CI:	
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16-32%),	 although	 this	 value	 is	 likely	 to	 be	 affected	 by	 self-isolation	 and	 non-
pharmaceutical	interventions	as	discussed	before.	

The	 above	 results	 demonstrate	 the	 importance	 of	 implementing	 non-pharmaceutical	
interventions	 to	 reduce	 pre-symptomatic	 transmission,	 such	 as	 mass	 testing,	 contact	
tracing	and	physical	distancing.	

They	also	underline	the	importance	of	strict	infection	control	measures	at	the	first	sign	
of	even	mild	symptoms	potentially	related	to	COVID-19	(such	as	cough,	fever,	fatigue	or	
anosmia),	in	order	to	reduce	early	symptomatic	transmission.	According	to	our	results,	
perfect	 isolation	 of	 cases	 from	 onset	 of	 symptoms	 would	 stop	 twice	 as	 many	
transmissions	 compared	 to	 isolation	 from	 the	 second	 day	 after	 onset	 of	 symptoms,	
relative	 to	 a	 baseline	 with	 no	 intervention	 at	 all	 (excluding	 transmissions	 from	 fully	
asymptomatic	 individuals).	 Self-isolation	 of	 symptomatic	 individuals	 is	 therefore	
especially	important	for	the	first	two	days.		

Instant,	 universal,	 and	 perfect	 self-isolation,	 including	 from	 family	 members,	 is	
challenging,	 given	 the	 low	 specificity	 of	 early	 COVID-19	 symptoms	 and	 the	 high	
prevalence	of	 respiratory	viruses	with	similar	symptoms	between	autumn	and	spring	
(Menni	et	al.	2020).	Nevertheless,	 if	 low-cost	good	practices	 that	are	widely	advisable	
irrespective	of	symptoms	-	wearing	a	face	mask,	increasing	spatial	distance,	practicing	
enhanced	 hygiene	 (especially	 hand	 hygiene),	 and	 limiting	 social	 contacts	 (including	
staying	away	as	much	as	possible	from	offices,	schools,	public	transport,	and	closed	public	
spaces)	-	were	followed	strictly	at	the	first	onset	of	symptoms,	even	if	mild,	this	could	
have	 a	 substantial	 impact	 on	 the	 epidemic.	 Such	 a	 policy	 would	 greatly	 depend	 on	
compliance	and	collaboration	from	the	public.	Symptom	tracker	apps	(Drew	et	al.	2020)	
could	 play	 a	 role	 in	 enhancing	 public	 awareness	 of	 mild	 COVID-19	 symptoms	 and	
compliance.	As	a	 further	advantage,	 this	policy	 could	also	 reduce	 the	burden	of	other	
respiratory	viruses.		

Reducing	 barriers	 to	 testing,	 and	 increasing	 the	 speed	 of	 results	 is	 also	 critical;	mass	
testing	with	home-based	or	point-of-care	rapid	testing	could	help	 individuals	respond	
appropriately	and	quickly	to	onset	of	mild	symptoms	(Larremore	et	al.	2020).	Likewise,	
exposure	notification	by	contact	tracing,	and	any	information	that	can	be	provided	that	
will	help	individuals	gauge	their	local	risk,	will	help	individuals	correctly	interpret	the	
onset	of	initial	symptoms	that	might	be	very	non-specific	at	initial	onset.			

Discussion 
	

We	have	presented	an	in-depth	analysis	of	the	timing	of	transmission	from	a	selection	of	
the	most	 informative	datasets	of	 transmission	pairs	 currently	available.	The	 resulting	
picture	of	the	temporal	infectiousness	profile	of	COVID-19	has	some	clear	consequences	
in	terms	of	policy.		

The	 most	 immediate	 consequences	 concern	 the	 assessment	 of	 the	 transmission	 risk	
associated	 to	 contacts	 for	 both	 manual	 and	 digital	 tracing	 or	 exposure	 notification	
approaches.	Contact	 tracing	guidelines	 from	the	CDC	(CDC	2020)	and	the	WHO	(WHO	
2020)	support	tracing	of	contacts	up	to	two	days	before	the	onset	of	symptoms	or,	for	
asymptomatic	 individuals,	 before	 a	 positive	 test.	 For	 symptomatic	 individuals,	 this	
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approach	 misses	 approximately	 10%	 of	 all	 transmissions	 overall,	 but	 a	 much	 larger	
fraction	for	individuals	with	a	longer	incubation	period	(Supplementary	Figure	8).	Hence,	
public	health	advice	should	consider	appropriately	 longer	 intervals	 for	contact	 tracing	
whenever	an	estimate	of	the	date	of	infection	is	available	(e.g.	through	backward	contact	
tracing)	and	it	precedes	symptoms	by	more	than	4-5	days.		

For	digital	contact	tracing,	which	relies	on	algorithms	for	risk	scoring	that	can	take	into	
account	 the	 time	 profile	 of	 infectiousness	 (Wilson	 et	 al.	 2020),	 our	 results	 are	 highly	
valuable	to	 inform	the	appropriate	risk	scoring	algorithm.	They	show	that	 the	date	of	
onset	of	symptoms	for	the	index	case	is	a	critical	piece	of	information	for	the	algorithm,	
which	should	be	collected	preferably	within	the	app	itself,	or	by	public	health	officials	at	
the	time	the	case	is	confirmed.					

Before	symptom	onset,	relative	transmission	probabilities	estimated	here	can	be	used	as	
a	proxy	for	infectiousness,	i.e.	the	degree	of	danger	from	a	given	exposure.	After	symptom	
onset,	risk	scores	should	take	into	account	that	the	distribution	inferred	here	is	likely	to	
underestimate	 infectiousness.	We	note	that	quantitative	treatment	of	 infectiousness	 is	
only	 possible	 in	 early	 versions	 of	 the	 Google/Apple	 exposure	 notification	 system;	
unfortunately,	recent	versions	do	not	permit	more	than	two	levels	of	infectiousness.	

The	profile	of	infectiousness	possibly	depends	also	on	other	parameters,	such	as	infection	
severity	 and	 age.	 The	 infectiousness	 profile	 for	 fully	 asymptomatic	 individuals	 is	
unknown.	For	symptomatic	individuals,	the	limited	data	available	do	not	suggest	a	strong	
dependence	on	age	(Ali	et	al.	2020;	Furuse	et	al.	2020),	but	further	studies	are	needed.		

The	 definition	of	 the	 date	 of	 onset	 of	 symptoms	 suffers	 from	uncertainties	 related	 to	
ambiguities	in	the	choice	of	the	set	of	symptoms	associated	to	COVID-19,	the	time	of	onset	
of	 different	 symptoms,	 and	 the	 uncertainties	 in	 their	 recall.	 All	 these	 sources	 of	
uncertainty	 are	 implicitly	 present	 in	 our	 study	 as	 well.	 Given	 a	 known,	 fixed,	 and	
identifiable	 set	 of	 symptoms,	 the	 date	 of	 onset	 of	 symptoms	 can	 be	 retrieved	 with	
reasonable	 precision.	 However,	 the	 lack	 of	 specificity	 for	 COVID-19	 symptoms,	
international	variation	in	recognised	symptoms,	and	reliance	on	patients'	recollections	
all	 present	 challenges.	 The	 date	 of	 infection	 often	 has	 an	 even	 greater	 degree	 of	
uncertainty	 due	 to	 the	 challenges	 in	 identifying	 infectors	 (who	 could	 be	 non-
symptomatic)	and	in	assessing	the	number	and	duration	of	exposures.	When	the	profile	
of	infectiousness	as	a	function	of	TOST	is	used	for	risk	scoring,	uncertainties	in	the	date	
of	 symptom	 onset	 should	 be	 taken	 into	 account	 (e.g.	 averaging	 the	 index’s	 expected	
infectiousness	at	 the	time	of	exposure	over	the	window	of	possible	 times	of	symptom	
onset).			

The	 large	 fraction	 of	 transmissions	 that	 occur	 either	 before	 or	 shortly	 after	 onset	 of	
symptoms	confirms	that	isolation	of	cases	more	than	2	days	after	onset	of	symptoms	is	
insufficient	 to	 control	 the	 epidemic.	 Physical	 distancing,	 mask	 wearing,	 community	
testing	and	contact	tracing	are	key	non-pharmaceutical	interventions	that	are	able	to	stop	
transmissions	before	and	around	the	onset	of	symptoms,	and	should	be	included	in	any	
effective	strategy	against	COVID-19.		

Current	physical	distancing	policies	in	many	countries	already	include	self-isolation	after	
COVID-19	symptoms,	 reduction	of	 social	 interactions,	 and	use	of	 face	masks	 in	public	
places.	 Our	 results	 on	 early	 symptomatic	 transmission	 underline	 the	 importance	 of	
following	existing	guidelines	as	strictly	as	possible	for	the	first	two	days	of	symptoms,	
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even	if	symptoms	are	mild	or	it	is	unclear	whether	they	are	compatible	with	COVID-19.	A	
policy	based	on	reinforcing	official	advice	or	suggesting	to	take	extra	precautions	for	the	
first	two	days	of	symptoms	is	advisable	and	likely	beneficial	with	minor	economic	and	
social	costs.		

Materials and Methods 

Relation between generation time, incubation period and TOST 
The	 generation	 time	 𝑡O,	 incubation	 period	 𝑡( 	 and	 time	 from	 onset	 of	 symptoms	 to	
transmission	(TOST)	𝑡+,* 	by	definition	satisfy	the	equation	

𝑡O = 𝑡( + 𝑡+,* 	

In	terms	of	Pearson’s	correlation	between	these	epidemiological	variables,	this	implies	

𝑐𝑜𝑟(𝑡O, 𝑡() =
𝑠𝑑(𝑡()
𝑠𝑑(𝑡O)

+ 𝑐𝑜𝑟(𝑡+,*, 𝑡()
𝑠𝑑(𝑡+,*)
𝑠𝑑(𝑡O)

	

If	 the	 generation	 time	 is	 independent	 of	 the	 incubation	 period,	 this	 would	 imply	 an	
anticorrelation	between	the	latter	and	the	TOST,	i.e.	

𝑐𝑜𝑟(𝑡O, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡+,*, 𝑡() = −
𝑠𝑑(𝑡()
𝑠𝑑(𝑡+,*)

	

On	the	other	hand,	 if	 the	TOST	is	 independent	of	 the	 incubation	period,	 this	 implies	a	
positive	correlation	between	generation	time	and	incubation	period	

𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡O, 𝑡() =
𝑠𝑑(𝑡()
𝑠𝑑(𝑡O)

	

Therefore,	 if	 index	 cases’	 incubation	 periods	 correlate	 more	 strongly	 with	 their	
generation	times,	this	suggests	infectiousness	is	driven	more	strongly	by	TOST;	if	they	
correlate	 more	 strongly	 with	 TOST,	 this	 suggests	 that	 infectiousness	 is	 driven	 more	
strongly	by	time	since	infection.	Equivalently,	if	a	model	with	independent	distributions	
for	TOST	and	incubation	period	better	describes	the	pattern	of	infectiousness	in	the	data	
than	one	with	independent	generation	time	and	incubation	period,	this	strongly	suggests	
a	 correlation	 between	 the	 generation	 time	 and	 the	 incubation	 period	 of	 the	 disease.	
Assuming	 no	 correlation	 in	 the	 incubation	 periods	 of	 source	 and	 recipient	 (no	
heritability),	it	would	also	imply	a	null	correlation	between	the	incubation	period	of	the	
source	and	the	serial	interval:	

𝑐𝑜𝑟(𝑡+,*, 𝑡() = 0  ⇒  𝑐𝑜𝑟(𝑡,, 𝑡() ∝ 𝑐𝑜𝑣(𝑡,, 𝑡() = 𝑐𝑜𝑣(𝑡+,*, 𝑡() + 𝑐𝑜𝑣(𝑡′(, 𝑡() = 0	

We	define	the	distributions	for	𝑡O,	𝑡( 	and	𝑡+,* 	to	be	𝑝O,	𝑝( 	and	𝑝+,*respectively.	It	is	well	
known	 that	 the	 generation	 time	 distribution	 𝑝O(𝑡)	 plays	 a	 key	 role	 in	 the	 renewal	
equation	for	incidence	𝐼(𝑡) = 𝑅X ∫ 𝑑𝜏	𝑝O(𝜏)𝐼(𝑡 − 𝜏)

Z
X 	(Wallinga	and	Lipsitch	2007;	Fraser	

2007).	 Similarly,	 the	 TOST	 distribution	 𝑝+,*(𝑡|𝑡()	 for	 a	 specific	 incubation	 period	 𝑡( 	
appears	 naturally	 in	 an	 alternative	 renewal	 equation	 relating	 the	 number	 of	 newly	
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symptomatic	individuals	at	time	𝑡	with	incubation	period	𝑡(, 𝐶(𝑡, 𝑡(),	to	the	number	of	new	
infections	at	time	𝑡	from	infectors	with	incubation	period	𝑡( ,	𝐼(𝑡, 𝑡():	

𝐼(𝑡, 𝑡() = 𝑅X [ 𝑑𝜏	𝑝+,*(𝜏|𝑡()𝐶(𝑡 − 𝜏, 𝑡()
Z

2Z
	

The	ansatz	of	𝐼(𝑡, 𝑡()	exponentially	growing	with	𝑡	leads	to	an	alternative	version	of	the	
Euler-Lotka	equation	relating	R0	and	individual	transmission	timing	to	the	exponential	
growth	rate	r	:	

1
𝑅X

= [ 𝑑𝑝((𝑡()𝑒2\*B
Z

2Z
⋅ [ 𝑑𝜏	𝑝+,*(𝜏|𝑡()𝑒2\C

Z

X
	

This	equation	neglects	asymptomatic	infections.	

Data and datasets 
Estimations	of	generation	time	often	use	information	on	the	dates	of	onset	of	symptoms	
for	 both	 index	 and	 secondary	 cases	 from	 transmission	 pairs	 (i.e.	the	 empirical	 serial	
intervals),	combined	with	knowledge	of	the	incubation	period	distribution	(Ferretti	et	al.	
2020;	 Ganyani	 et	 al.	 2020).	 However,	 an	 implicit	 assumption	 in	 this	 approach	 is	
independence	between	incubation	period	and	generation	time.	Since	this	is	precisely	the	
assumption	being	 tested	 in	 this	work,	we	 restricted	our	analysis	 to	more	 informative	
datasets.	 To	 avoid	 issues	 with	 misassignment	 of	 the	 index	 case,	 we	 discarded	
transmission	pairs	in	clusters	with	multiple	possible	index	cases	(except	for	pairs	from	
(Ferretti	et	al.	2020)	who	already	considered	this	issue).	

For	a	direct	assessment	of	the	relationship	between	𝑡( ,	𝑡O	and	𝑡+,* ,	information	on	timing	
of	 exposure	 for	both	 index	and	secondary	 case	 is	needed,	 as	well	 as	date	of	 symptom	
onset	for	the	index	case.	We	were	able	to	find	only	two	datasets	that	provide	both	the	
dates	of	onset	of	symptoms	and	(partial)	information	on	exposure	intervals	for	both	the	
index	case	and	the	secondary	case,	namely	(Ferretti	et	al.	2020)	(40	pairs	from	different	
geographic	areas),	and	(Xia	et	al.	2020)	(32	pairs	from	China).	

To	further	improve	the	accuracy	of	the	inferred	distribution	of	TOST,	we	also	included	
datasets	providing	dates	of	onset	of	symptoms	for	the	index	cases	as	well	as	intervals	of	
exposure	 for	 the	 secondary	 cases,	namely	 (He	et	 al.	 2020)	 (66	pairs	 from	China)	and	
(Cheng	et	al.	2020)	(18	pairs	 from	Taiwan,	excluding	asymptomatic	secondary	cases).	
The	latter	also	provides	dates	of	onset	of	symptoms	and	intervals	of	exposure	for	contacts	
that	did	not	lead	to	infections	(2740	pairs).	

As	 a	 check	 of	 robustness	 of	 our	 selection	 of	 datasets,	we	 also	 included	data	 on	 serial	
intervals	from	(Zhang	et	al.	2020)	(35	pairs	from	China).	There	could	be	some	overlap	
among	 the	 three	 datasets	 of	 Chinese	 pairs;	 however,	 the	 empirical	 serial	 interval	
distributions	are	sufficiently	different	to	assume	that	any	overlap	represents	a	minority	
of	transmission	pairs.	

For	 the	 incubation	 period,	 we	 considered	 a	 meta-distribution	 obtained	 by	 averaging	
seven	lognormal	distributions	reported	in	the	literature	(Bi	et	al.	2020;	Lauer	et	al.	2020;	
Li	et	al.	2020;	Linton	et	al.	2020;	Ma	et	al.	2020;	Zhang	et	al.	2020;	Jiang	et	al.	2020).	The	
probability	 of	 onset	 of	 symptoms	 𝑃((t)	 at	 day	 t	 was	 obtained	 by	 integrating	 this	
distribution	between	t-0.5	and	t+0.5.	To	test	the	robustness	of	the	results,	we	replicated	
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them	using	a	 lognormal	distribution	with	mean	5.42	days	and	standard	deviation	2.7	
days,	following	the	meta-analysis	(McAloon	et	al.	2020).	The	latter	provided	a	worse	fit	
to	our	data	(Supplementary	Table	5),	but	confirmed	all	our	conclusions;	in	practice,	the	
difference	between	the	inferred	distributions	was	small	(Supplementary	Figure	5).	

Likelihood 
We	used	a	maximum	composite	likelihood	approach	similar	to	previous	work	on	COVID-
19	(Ferretti	et	al.	2020;	He	et	al.	2020).	Assuming	that	the	transmission	probability	per	
contact	per	day	is	small,	the	likelihood	function	for	a	transmission	pair	is	

𝐿*\`a,(𝛩, 𝛽) ∝ 𝛽 d 𝑒\eB𝑃((𝑑, − 𝑑()
fg

*Bhfi

d 𝑊(𝑑′(|𝑑(, 𝑑,, 𝛩)𝑃((𝑑′, − 𝑑′()
fkg

*kBhfki

	

where	𝑒l, 𝑒m	are	the	extremes	of	the	interval	of	exposure	for	the	index	case,	𝑑( 	and	𝑑,	are	
the	dates	of	infection	and	onset	of	symptoms	for	the	index	case,	and	𝑒′l, 𝑒′m, 𝑑′(, 𝑑′,	are	
the	same	quantities	for	the	secondary	case.	The	parameters	𝛽	(absolute	infectiousness)	
and	𝛩	(set	of	parameters	of	the	time	distribution)	depend	on	the	dataset.	We	considered	
multiple	 choices	 for	 the	 discretised	 infectiousness	 profile	𝑊(𝑑′(|𝑑(, 𝑑, 𝛩) = 𝛺O*(𝑑′( −
𝑑(|𝛩)	and	𝑊(𝑑′(|𝑑, 𝑑,, 𝛩) = 𝛺opqo(𝑑′( − 𝑑,|𝛩).	The	growth	rate	𝑟	of	 the	epidemic	was	
taken	 to	 be	 0.14/day	 for	 those	 transmission	 pairs	 sampled	 from	 the	 early	 Chinese	
outbreak	as	explained	in	(Ferretti	et	al.	2020),	and	0	otherwise.	The	factor	𝑒\eB 	weights	
an	otherwise	uniform	distribution	for	𝑑( 	within	the	exposure	window	[𝑒l,𝑒m],	to	correct	
for	the	fact	that	growing	incidence	in	the	wider	population	makes	more	recent	infection	
more	likely	(except	when	conditioning	on	a	known	infector,	as	for	the	secondary	case).		

Finally,	the	likelihood	is	the	product	of	the	individual	likelihoods	over	all	transmission	
pairs.	For	the	inclusion	of	case-contact	pairs	from	(Cheng	et	al.	2020)	where	transmission	
did	 not	 occur,	 each	 such	 pair	 contributes	 a	 multiplicative	 factor	 𝐿a+*(𝛩, 𝛽) =
𝑒𝑥𝑝s−𝛽∑ 𝛺opqo(𝑑′( − 𝑑,|𝛩)

fkg
*kBhfki u	to	the	likelihood.	

Choice of distributions 
For	 the	 generation	 time,	 we	 tested	 lognormal,	 gamma	 and	 Weibull	 distributions	
previously	 used	 in	 other	 studies,	 as	 well	 as	 generalised	 gamma,	 Gompertz,	 inverse	
gamma,	log-logistic,	Frechet,	Beta’,	and	Levy	distributions.	Discretised	distributions	as	a	
function	of	the	number	of	days	d	were	obtained	by	integrating	each	distribution	between	
d-0.5	and	d+0.5.	

For	TOST,	we	considered	the	normal	distribution,	distributions	with	more	weight	in	the	
tails	(rescaled	Student’s	t,	rescaled	Cauchy),	and	asymmetric	distributions	with	Gaussian	
and	 exponential	 tails	 (skew-normal,	 skew-logistic).	 We	 considered	 both	 the	 naive	
distribution	and	a	version	truncated	at	the	time	of	infection	(Supplementary	Table	5);	the	
difference	between	inferred	shapes	was	small	(Supplementary	Figure	5).	

For	the	analysis	of	the	TOST	distribution	with	different	tails,	we	considered	a	range	of	
shifted	 and	 rescaled	 symmetric	 functions	 (normal,	 generalised	 normal,	 Student’s	 t,	
Cauchy)	 and	 we	modelled	 the	 left	 and	 right	 side	 of	 the	 peak	 separately,	 assuming	 a	
continuous	probability	density.	
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Finally,	we	modelled	 several	 options	 for	 joint	distributions	 by	 rescaling	 the	 values	 of	
TOST	depending	on	the	incubation	period.	More	specifically,	we	either	rescaled	the	TOST	
either	relative	to	the	onset	of	symptoms	or	to	the	location	parameter	of	the	distribution,	
and	we	 rescaled	 either	 both	 tails	 or	 the	 left	 tail	 only.	We	 also	performed	 some	more	
complex	 rescalings	 (Supplementary	 Table	 5	 and	 Supplementary	 Methods).	 Note	 that	
when	 conditioning	 on	 the	 incubation	 period,	 the	 left	 tail	 of	 TOST	 distributions	 was	
truncated	at	the	time	of	infection.		

Bayesian reconstruction of timing of transmission for individual pairs 

For	each	transmission	pair,	we	assumed	an	equal	prior	probability	of	 transmission	on	
any	 given	 day.	 The	 pair’s	 posterior	 probability	 of	 pre-symptomatic	 transmission	
therefore	is	the	likelihood	of	transmission	conditional	on	being	pre-symptomatic,	divided	
by	 the	 overall	 likelihood	 of	 transmission.	 To	 estimate	 the	 uncertainty	 on	 the	 overall	
fraction	of	pre-symptomatic	transmissions,	first	we	resampled	the	same	number	of	pairs	
at	 random	 with	 replacement,	 then	 we	 assigned	 each	 pair	 as	 pre-symptomatic	
transmission	or	not	according	to	the	abovementioned	posterior;	we	repeated	the	process	
10,000	times	to	obtain	the	corresponding	empirical	distribution.	We	proceeded	 in	the	
same	way	for	early	and	late	symptomatic	transmissions.	
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