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about five and three times increases using different variations of the jet whistle, respectively (Fig. 

4a). Such drastic increases in aerosol generation are inherently associated with exhalation 

behaviors used for special techniques. These two special techniques require the musicians to 

completely seal the embouchure hole with lips (Andrus & Shanley, 1980; Heiss, 1972). Such 

behavior can minimize the air leakage near the mouth and shift the flow impingement point from 

the edge of the embouchure hole to the inner surface of the main tube, reducing aerosol loss at the 

inlet. Particularly, for tongue ram, the powerful and rapid tongue propelling into the embouchure 

hole (Andrus & Shanley, 1980) can further increase the aerosol generation (Bake, Larsson, 

Ljungkvist, Ljungström, & Olin, 2019). In addition to concentration, the average size and size 

variation during the flute performance using special techniques decrease compared to those using 

basic techniques (Fig. 4b). Specifically, the variation of aerosols generated using tongue ram 

decreases with almost doubled probabilities at a small size range of 1.4 -2.0 μm than the basic 

performance. Similar trends of increments in the concentration of small size range are also 

observed in the performance of jet whistles with two variations. The significantly higher 

concentration and small size of the aerosols when using the special techniques pose higher risks 

of airborne disease transmission.  

 

Fig. 4. Influence of special techniques on the aerosol concentration for flute performance. (a) Aerosol 

concentrations generated from flute performance using special techniques including tongue ram and jet 

whistle with two variations (i.e., jet whistle 1 that has all holes closed, and jet whistle 2 that leaves the last 

three holes open) in comparison to that from the basic technique. Error bars represent the standard deviation 

of the measurement. The inset figures for each special technique include a schematic illustrating the flow 

of aerosols into the main tube of the flute and the corresponding music note. (b) Probability density 

functions (PDFs) of the aerosol size from flute performance using basic and different special techniques. 
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The red dashed line in each histogram is the log-normal fitting curve of the PDF. In total 16 bins are used 

in the range from 1.4 to 20 μm. Note that the lower bound of 0.5 μm in the raw APS measurement is 

calibrated to 1.4 μm here based on Eq. (3). 

4. Conclusions and Discussion  

In this study, we provide the first systematic investigation of aerosol generation for a variety of 

wind instruments through the collaboration of 15 musicians from the Minnesota Orchestra. We 

find that aerosol generation from wind instrument plays is influenced by a combination of 

breathing techniques as well as the tube structure and inlet design of the instrument. Our results 

show that the aerosol concentration from different instrument plays exhibits two orders of 

magnitude variation. Specifically, tuba produces fewer aerosols than normal breathing, while the 

concentrations from bassoon, piccolo, flute, bass clarinet, French horn, and clarinet stay within the 

range of normal breathing and speaking. Trumpet, oboe, and bass trombone tend to generate more 

aerosols than speaking. Accordingly, we categorize these instruments into low, intermediate, and 

high-risk levels based on a comparison of their aerosol concentrations with the concentration span 

of normal breathing and speaking. In contrast to concentration, the size distribution of aerosols 

from all the brass and woodwinds are all approximately log-normal, and their averages are within 

a close range, i.e., 1.9-3.1 μm. In addition, we find that the span of aerosol size varies more 

significantly across different instruments compared to their average sizes. Moreover, the 

dependence of aerosol production upon the dynamic level and articulation pattern varies for 

different wind instruments. Particularly, only the instruments with straight tube design show an 

increase of aerosol concentration with increasing dynamic level, while such trend is reversed for 

air-jet instruments and becomes unclear for instruments with complex/very long tube structures. 

For free-reed instruments, the slurred play tends to produce more aerosols than playing articulated 

notes, while no clear trend with articulation pattern is observed for reeds. Furthermore, we find 

that the individual’s natural respiratory behaviors can positively influence the aerosol generation 

during instrument plays. However, such dependence only holds for free-reed instruments, not for 

reeds due to the special lip control used in the play of such instruments. Finally, we notice a drastic 

increase in aerosol concentration during flute performance with special techniques, i.e., nearly 50 

times increase using tongue ram and about five and three times increases using different variations 

of the jet whistle, respectively.  

The findings in our study can be generalized for understanding and estimating the aerosol 

generation from other musical instruments that are not included in the present study. For example, 

single-reed instrument like saxophone with steep turnings near its inlet and outlet is likely to 

produce a relatively lower level of aerosols, and its aerosol generation may be insensitive to the 

variation of dynamic level and individual respiratory behaviors like those observed in bass clarinet. 

The brass instrument like cornet with comparable tube length with trumpet is likely to produce a 

high level of aerosols, and the performance with cornet may generate more aerosols with slurred 

notes than using articulated notes and have a positive correlation in individual respiratory 

behaviors. In general, our findings can provide valuable insights into the risk assessment of 

airborne disease transmission and the corresponding mitigation strategies (e.g., seating 

arrangement and ventilation) for different musical activities involving the usage of wind 

instruments, including orchestras, community and worship bands, classes in music conservatories, 

etc. Specifically, for the activities involving high-risk level wind instruments (i.e., trumpet, bass 

trombone, oboe, etc.), extra preventive measures such as a reduction in occupancy, additional 
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social distancing, and ventilation enhancement are needed in comparison to playing instruments 

with lower risk levels.  

Note that different musicians have different performance styles when they are playing the same 

music piece, particularly for reed instrument plays, which may affect the aerosol generation levels. 

Specifically, based on the performance styles, musicians have their own preferences on reed 

selection (e.g., reed width, reed hardness, etc.) that can potentially influence aerosol generation. 

For example, as to the clarinet performance, some musicians prefer to adjust the blowing pressure 

to change the dynamic level and articulation pattern, while some alter the mouthpiece pressure 

instead, which may lead to substantial difference in  aerosol generation as shown in the 

complicated individual effect in Fig. 3. In addition, the hardness of a reed varies as it ages and with 

the change of temperature and humidity, which may also contribute to variations in aerosol 

generation. All the aforementioned factors can add uncertainties to our findings. To obtain a more 

accurate assessment of airborne transmission during wind instrument plays, it is desirable to 

integrate our findings with the information of instrument-generated flows and ambient flows 

(including both ventilation and natural convection) under specific settings. Such information can 

be derived from in situ measurements of flow and aerosol transport and the numerical simulations 

in the future. 
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Supplementary Information 

Supplementary Figures  

Supplementary Figure 1 

 

Fig. S1 | Images of 10 instruments used for the aerosol measurements. Brass instruments 

include (a) tuba, (b) French horn, (c) bass trombone, and (d) trumpet. Air-jet woodwinds include 

(e) piccolo and (f) flute. Single-reed woodwinds include (g) clarinet and (h) bass clarinet. Double-

reed woodwinds include (i) oboe and (j) bassoon. The dashed line marks the main flow path in 

each instrument. 
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Supplementary Figure 2 

 

Fig. S2 | Experimental setups of the Aerodynamic Particle Sizer (APS) measurements 

and digital inline holography (DIH) system used to calibrate APS. (a) APS setup. The 

funnel is adjusted to fit the different size of orchestra instrument outlets for the instrument 

measurements. A laptop is used for data acquisition, and a tripod is employed for holding the 

tube and funnel at the fixed location during the tests. (b) Photos of the funnel and instrument 

outlet for each instrument. The location of funnel is highlighted with a red circle in each photo. 

(c) DIH setup for APS calibration.  
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Supplementary Figure 3 

 
Fig. S3 | Aerosol concentrations and size of breathing and speaking cases of the participants 

for each instrument. (a) Aerosol concentrations are ranking from lowest to highest. The error bar 

corresponds to ±1 standard deviation of the dataset. (b) The average size and size variation of 

aerosols of the breathing and speaking tests for 10 instrument cases. The size variation here uses 

the standard deviation of the dataset. 
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Supplementary Figure 4 

Fig. S4 | The aerosol concentration measured at different locations during flute and bassoon 

plays. For flute play using the standard music sample, the aerosol concentrations measured near 

the embouchure hole and main outlet are 51 particles/L and 44 particles/L, respectively. For 

bassoon play with special music pieces, the aerosol concentrations measured near the keyholes 

and main outlet are 26 particles/L (24 particles/L for piece one, and 28 particles/L for piece two) 

and 37 particles/L, respectively. Note that for the aerosol measurements near the lower keyholes 

during bassoon plays, two special music pieces which are likely to cause more air leakages near 

the lower keyholes are selected due to frequent usage of corresponding keys. The pieces used are 

the first 17 s of the Bassoon Concerto in B-Flat Major (W.A. Mozart), K. 191, Allegro, and the 

first 13 s of the bassoon cadenza in the second movement of Scheherazade, i.e., Kalendar Prince. 
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Supplementary Figure 5 

 
Fig. S5 | Illustrations of three types of mouthpieces for woodwinds. (a) Air-jet mouthpiece used 

by flute and piccolo. In most situations (Putnik, 1973), the generated aerosols from the mouth 

directly impinge onto the edge of the embouchure hole with a steep angle (marked by the red 

dashed lines in the image). This process can lead to a large amount of deposition and air leakage. 

(b) Single-reed mouthpiece used by clarinet and bass clarinet. The aerosols move into the tube 

through the opening between the edge and reed with a shallower angle in comparison to that in the 

air-jet woodwinds (marked by the red dashed lines in the image). (c) Double-reed mouthpiece used 

by oboe and bassoon. The generated aerosols from mouth transport into the tube via the opening 

between two reeds. The airflow is well aligned with these two reeds.  
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Supplementary Figure 6 

 
Fig. S6 | Illustration of mouthpiece for brass. The aerosols generated from the mouth transport 

straight into the main tube of the brass instrument.   
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Supplementary Figure 7 

 

Fig. S7 | Probability density functions (PDFs) of the aerosol size for each instrument. The red 

dashed line in each histogram is the log-normal fitting curve of the PDF. In total 16 bins are used 

in the range from 1.4 to 20 μm. Note that lower bound of 0.5 μm in the raw APS measurement is 

calibrated to 1.4 μm here based on Eq. (3). 
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Supplementary Figure 8 

 
Fig. S8 | Images of reed instruments. (a) Clarinet and oboe. Both clarinet and oboe have straight 

structures. (b) Bass clarinet and bassoon. Bass clarinet has steep turnings near its inlet and outlet 

while bassoon has a steep turning near the inlet and a U-turning in the middle. 
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Supplementary Tables 

Table S1 | A summary of the calibration parameters used in digital inline holography (DIH) 

for Aerodynamic Particle Sizer (APS) measurements. 

Pressure 

(psi) 

APS DIH  DIH/APS 

µ σ µ σ mean 

(ratio) 

SD 

(ratio) 

Amplifying 

ratio (AR) 

Shrink 

ratio (SR) 

30 0.969 0.486 1.566 0.246 1.663 0.803 

1.66 0.84 35 0.933 0.466 1.513 0.247 1.653 0.841 

40 0.808 0.463 1.397 0.252 1.670 0.872 
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Table S2 | Technical parameters of 10 instruments tested in the study. 

Instrument Category Mouthpiece Main tube length 

[m]  

Participant 

number 

Trumpet 

Brass 

Semi-Spherical 1.40 2 

Bass trombone Semi-Spherical 2.75 1 

French horn Conical 3.70 2 

Tuba Conical 4.90 1 

Oboe 

Woodwind 

Double reeds 0.64 2 

Bassoon Double reeds 2.56 2 

Clarinet Single reed 0.66 2 

Bass clarinet Single reed 0.94 1 

Flute Single unit 0.66 2 

Piccolo Single unit 0.33 1 

Note that the main tube lengths for the instruments are based on the references (Berkopec, 2013; 

Bucur, 2019; Campbell, Greated, & Myers, 2004; Thompson, 2010).  
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Table S3 | Estimation of aerosol deposition time and residence time in the flute and piccolo.  

𝐷P 

[μm] 

Flute  

deposition time[s] 

Piccolo  

deposition time [s] 

Flute  

residence time [s] 

Piccolo  

residence time [s] 

1.00 33.91 19.63 0.66 0.11 

2.00 8.48 4.91 0.66 0.11 

3.00 3.77 2.18 0.66 0.11 

4.00 2.12 1.23 0.66 0.11 

5.00 1.36 0.79 0.66 0.11 

6.00 0.94 0.55 0.66 0.11 

7.00 0.69 0.40 0.66 0.11 

8.00 0.53 0.31 0.66 0.11 

9.00 0.42 0.24 0.66 0.11 

10.00 0.34 0.20 0.66 0.11 

The residence time (𝑇R) and deposition time (𝑇D) of the aerosol in the tube are estimated using Eq. 

S1 and Eq. S2. 

𝑇R = 𝐿/𝑉                                                                   (Eq. S1) 

where L is the tube length of the instrument, and V is the air speed inside the tube. Note that the 

inlet flowrate for flute and piccolo is assumed to be the same. The air speed inside the flute is set 

to 1 m/s for the calculation of residence time, which within the range of below 3 m/s (Bamberger, 

2002).  

𝑇R = 𝑅/𝑉t                                                                   (Eq. S2) 

where R is the half of the inner diameter of the tube (i.e., half of bore size), and 𝑉t is the terminal 

velocity of the aerosol, as given in Eq. S3.  

𝑉t  =  
𝑔𝐷𝑃

2

18𝜇
(𝜌P − 𝜌)                                                        (Eq. S3) 

where μ is the air viscosity; g is the acceleration due to gravity, 𝐷P is the aerosol diameter; 𝜌P and 

𝜌 are the density of aerosols (assuming to be water droplets in this case) and air, respectively. As 

shown in the Table, for flute, the deposition time of large aerosols (𝐷P > 8 μm) is smaller than the 

corresponding residence time, indicating those large aerosols tend to deposit in the tube before 

they move out from the instrumental outlet. However, for piccolo, the residence time for the 

aerosols cross a wide range of sizes is smaller than their deposition time, suggesting that all 

aerosols can travel out from the outlet. Such trends consolidate the wider size distribution of 

piccolo than flute in Figs.S7 i and j.  
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