1 SARS-CoV-2 RNA viremia is associated with a sepsis-like host response and critical illness in COVID-19

Jesús F Bermejo-Martin1,2,3*, Milagros González-Rivera4,5*, Raquel Almansa1,2,3*, Dariela Micheloud6*, Marta Domínguez-Gil7*, Salvador Resino8*, Marta Martín-Fernández1,2, Pablo Ryan Murua9, Felipe Pérez-García10, Luis Tamayo1,11, Raúl Lopez-Izquierdo12, Elena Bustamante13, César Aldecoa1,14,15, José Manuel Gómez16, Jesús Rico-Feijoo1,15, Antonio Orduña17, Raúl Méndez18, Isabel Fernández Natal19, Gregoria Megías20, Montserrat González-Estecha4,5, Demetrio Carriedo21, Cristina Doncel1,2,3, Noelia Jorge1,2,3, Félix del Campo22, José Antonio Fernández-Ratero23, Wysali Trapiello24, Paula González-Jiménez18, Guadalupe Ruiz24, Alyson A. Kelvin25,26, Ali Toloue Ostadgavahi25,26, Ruth Oneizat7, Luz María Ruiz7, Iria Miguéns6, Esther Gargallo6, Ioana Muñoz6, Sara Pelegrín15, Silvia Martín1,15, Pablo García Olivares16, Jamil Antonio Cedeño16, Tomás Ruiz Albi22, Carolina Puertas4, José Ángel Bereo1,11, Gloria Renedo13, Rubén Herrán1,11, Juan Bustamante-Munguira27, Pedro Enríquez11, Ramón Cicuendez13, Jesús Blanco11, Jessica Abadia28, Julia Gómez Barquero28, Nuria Mamolar13, Natalia Blanca-López9, Luis Jorge Valdivia21, Belén Fernández Caso19, María Ángeles Mantecón20, Anna Motos3,29, Laia Fernandez-Barat3,29, Ricard Ferrer3,30, Ferrán Barbe3,31, Antoni Torres3,29, Rosario Menéndez3,18, José María Eiros7, David J Kelvin

* These authors contributed equally

Δ These authors contributed equally

1. Group for Biomedical Research in Sepsis (BioSepsis). Instituto de Investigación Biomédica de Salamanca, (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
2. Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.

3. Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain

4. Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.

5. Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.

6. Emergency Department, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.

7. Microbiology Service, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.

8. Viral Infection and Immunity Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, 28222 Majadahonda, Spain

9. Hospital Universitario Infanta Leonor, Av. Gran Vía del Este, 80, 28031 Madrid, Spain

10. Servicio de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, Carr. de Alcalá, s/n, 28805, Madrid, Spain

11. Intensive Care Unit, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.

12. Emergency Department, Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.

13. Intensive Care Unit, Hospital Clínico Universitario de Valladolid. Av. Ramón y Cajal, 3, 47003 Valladolid, Spain
14. Department of Anesthesiology, Facultad de Medicina de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain.

15. Anesthesiology and Reanimation Service, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.

17. Microbiology Service, Hospital Clinico Universitario de Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.

18. Pulmonology Service, Hospital Universitario y Politécnico de La Fe, Avinguda de Fernando Abril Martorell, 106, 46026, Valencia Spain

19. Clinical Microbiology Department. Complejo Asistencial Universitario de León. Calle Altos de nava, s/n, 24001 León, Spain.

20. Microbiology Service, Hospital Universitario de Burgos, Av. Islas Baleares, 3, 09006 Burgos, Spain

21. Intensive Care Unit. Complejo Asistencial Universitario de León. Calle Altos de nava, s/n, 24001 León, Spain.

22. Pneumology Service, Hospital Universitario Río Hortega / Biomedical Engineering Group, Universidad de Valladolid, Calle Dulzaina, 2, 47012 Valladolid, Spain.

23. Intensive Care Unit. Hospital Universitario de Burgos, Av. Islas Baleares, 3, 09006 Burgos, Spain.

24. Clinical Analysis Service. Hospital Clínico Universitario de Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain
25. Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

26. International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Rd, Jinping, Shantou, Guangdong, China.

27. Department of Cardiovascular Surgery, Hospital Clínico Universitario de Valladolid. Av. Ramón y Cajal, 3, 47003 Valladolid, Spain

28. Infectious diseases clinic, Internal Medicine Department, Hospital Universitario Río Hortega, Valladolid, Calle Dulzaina, 2, 47012 Valladolid, Spain

29. Department of Pulmonology, Hospital Clinic de Barcelona, Universidad de Barcelona, Institut D investigacions August Pi I Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain.

30. Intensive Care Department, Vall d’Hebron Hospital Universitari. SODIR Research Group, Vall d’Hebron Institut de Recerca, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain.

31. Respiratory Department, Institut Ricerca Biomedica de Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain.

Corresponding author: David J Kelvin Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada. E-mail address: dkelvin@jidc.org.
Abstract

Background: Severe COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis. SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs, however viral RNA can be found also in peripheral blood and other tissues. Whether systemic spreading of the virus or viral components plays a role in the pathogenesis of the sepsis-like disease observed in severe COVID-19 is currently unknown.

Methods: We determined the association of plasma SARS-CoV-2 RNA with the biological responses and the clinical severity of patients with COVID-19. 250 patients with confirmed COVID-19 infection were recruited (50 outpatients, 100 hospitalised ward patients, and 100 critically ill). The association between plasma SARS-CoV-2 RNA and laboratory parameters was evaluated using multivariate GLM with a gamma distribution. The association between plasma SARS-CoV-2 RNA and severity was evaluated using multivariate ordinal logistic regression analysis and Generalized Linear Model (GLM) analysis with a binomial distribution.

Results: The presence of SARS-CoV-2-RNA viremia was independently associated with a number of features consistently identified in sepsis: 1) high levels of cytokines (including CXCL10, CCL-2, IL-10, IL-1ra, IL-15, and G-CSF); 2) higher levels of ferritin and LDH; 3) low lymphocyte and monocyte counts 4) and low platelet counts. In hospitalised patients, the presence of SARS-CoV-2-RNA viremia was independently associated with critical illness: (adjusted OR= 8.30 [CI95%=4.21 - 16.34], p < 0.001). CXCL10 was the most accurate identifier of SARS-CoV-2-RNA viremia in plasma (area under the curve (AUC), [CI95%], p) = 0.85 [0.80 – 0.89], <0.001), suggesting its potential role as a surrogate biomarker of viremia. The cytokine IL-15 most accurately differentiated clinical ward patients from ICU patients (AUC: 0.82 [0.76 – 0.88], <0.001).
Conclusions: systemic dissemination of genomic material of SARS-CoV-2 is associated with a sepsis-like biological response and critical illness in patients with COVID-19. RNA viremia could represent an important link between SARS-CoV-2 infection, host response dysfunction and the transition from moderate illness to severe, sepsis-like COVID-19 disease.

Key words: SARS-CoV-2, cytokine, sepsis, COVID-19, plasma, viremia, ICU
Background

With well over 26 million cases and 863,516 deaths globally, Coronavirus disease 2019 (COVID-19) has become the top economic and health priority worldwide [1]. Among hospitalized patients, around 10–20% are admitted to the intensive care unit (ICU), 3–10% require intubation and 2–5% die [2]. Severe COVID-19 is characterized by clinical and biological manifestations typically observed in sepsis or septic shock, including cold extremities and weak peripheral pulse, even in the absence of overt hypotension [3].

Patients with severe COVID-19 show marked signs of dysregulated host response(s) to infection, which are also observed in sepsis: this includes elevation of acute phase reactants and cytokines, transaminases, and ferritin, the activation of the coagulation pathways, the presence of lymphopenia and low platelet counts, the elevation of biomarkers of endothelial dysfunction, and the emergence of signs of profound immunological alteration [4] [5] [6]. It is not surprising that severe COVID-19 has been proposed as a “viral sepsis” [3] [7].

SARS-CoV-2 RNA is commonly detected in nasopharyngeal swabs; however viral RNA can be found in sputum, lung samples, peripheral blood, serum, stool samples, and to a limited extent urine [8] [9] [10] [11]. While the lungs are most often affected, severe COVID-19 can also induce inflammatory cell infiltration, haemorrhage, and degeneration or necrosis in extra-pulmonary organs (spleen, lymph nodes, kidney, liver, central nervous system) [3]. Whether systemic distribution of the virus or viral components plays a role in the pathogenesis of the “sepsis-like” clinical presentation [3] or in the dysregulated response to the infection observed in severe COVID-19 is currently unknown.

In this study, by using an integrative approach, we evaluated the impact of SARS-CoV-2 RNA viremia on a number of biological parameters altered both in COVID-19 and sepsis.
We also studied the association between the presence of SARS-CoV-2 RNA in peripheral blood plasma and disease severity.
Methods

Study design: 250 adult patients with a positive nasopharyngeal swab polymerase chain reaction (PCR) test for SARS-CoV-2 administered at participating hospitals were recruited during the first pandemic wave in Spain from March 16th to the 15th of April 2020. The patients recruited were of three different categories. The first corresponded to patients examined at an emergency room and discharged within the first 24 hours (outpatients group, n=50). The second group were patients hospitalized to pneumology, infectious diseases or internal medicine wards (wards group, n=100). Patients who required critical care or died during hospitalization were excluded from this group, in order to have a group of clear moderate severity. The third group corresponded to patients admitted to the ICU (n=100). Patients recruited by participating hospital are detailed in the additional file 1.

This is a preliminary report on the biomarkers’ sub-study of the CIBERES-UCI-COVID study registered at Clinicaltrials.gov with the identification NCT04457505.

Blood samples: Plasma from blood collected in EDTA tubes samples was obtained from the three groups of patients in the first 24 hours following admission to the emergency room, to the ward, or to the ICU, at a median collection day since disease onset of 7, 8 and 10 respectively, and also from 20 blood donors (10 men and 10 women).

Laboratory works: Immunological mediators were profiled in plasma using the Ella-SimplePlex™ (San Jose, California, U.S.A) immunoassay. RNA was extracted from 150 µl of plasma using an automated system, eMAG® from bioMérieux® (Marcy l'Etoile, France). Detection of SARS-CoV-2 RNA was performed in five µl of the eluted solution using the CLART® COVID-19 platform from Genomica® (Madrid, Spain). IgG specific for the Nucleocapsid Protein of SARS–CoV-2 was detected in 150 µl of plasma using the Abbott Architect SARS-CoV-2 IgG Assay (Illinois, U.S.A).
Statistical analysis: Statistical analysis was performed by using Statistical Package for the Social Science (SPSS) 20.0 (SPSS INC, Chicago, IL, U.S.A), Stata 15.0 (StataCorp, Texas, U.S.A) and Minitab 19.2 software. For the demographic and clinical characteristics of the patients, the differences between groups were assessed using the Chi-square test for categorical variables. Differences for continuous variables were assessed by using the Kruskal-Wallis test with post hoc tests adjusting for multiple comparisons. Statistical association analysis was performed using different regression models to assess the relationship between viremia and outcome variables. An ordinal logistic regression (OLR) model was used considering the outcome variable as ordinal (outpatients, wards, and ICU), providing an odds ratio (OR). Generalized Linear Models (GLM) with binomial distribution were used when the outcome variable was dichotomous (outpatients vs. wards, and wards vs. ICU), also providing an odds ratio (OR). GLM with a gamma distribution (log-link) was used when the outcome variable was continuous, providing arithmetic mean ratios (AMR). In all cases, the analysis was performed first without adjustment and was later adjusted for the most relevant covariates in our study. P-values were corrected using the false discovery rate (FDR) with the Benjamini and Hochberg (q-values) procedure.
Results

Clinical characteristics of the patients (Table 1): Patients diagnosed with SARS-CoV-2 infection based on a positive nasopharyngeal test and requiring hospitalization (either general ward or ICU) were older (median 64 years of age for ward and 66 years for ICU) than those patients discharged to their home from the ER (median age 48 years of age). There were no significant differences regarding age between ward and ICU hospitalised patients. Critically ill patients (ICU admitted) were more frequently male than those in the other groups. Comorbidities of obesity, hypertension, dyslipidemia and type II diabetes were more commonly found in patients requiring hospitalization, with no significant differences found in the comorbidities profile between critically ill and non-critically ill hospitalized patients. ICU patients showed significantly lower levels of O₂ saturation at the time of admission to the ICU compared to other patients admitted to the ER or the ward. 100% of ICU patients presented with pulmonary infiltrates of whom 93 % also had bilateral pneumonia, these findings were significantly higher than the incidence of pulmonary infiltrates and bilateral pneumonia found in the other two groups. Glucose levels were higher in the group of critically ill patients, who also showed higher values of INR, D-dimers, LDH, GPT, ferritin, C-reactive protein and lower hematocrit. ICU patients showed pronounced lymphopenia and lower monocyte counts; however, neutrophil counts were increased. ICU patients more frequently received experimental treatments during their hospitalization period, including hydroxicloroquine, corticoids, remdesivir, tocilizumab, lopinavir/ritonavir or beta-interferon. ICU patients stayed longer in the hospital, with 48 % fatalities reported in this group. The number of missing values for the variables registered in this study are reported in the additional file 2.
Impact of SARS-CoV-2-RNA viremia on laboratory parameters:

Multivariate GLM analysis showed that SARS-CoV-2-RNA viremia was an independent marker of high levels of ferritin, LDH and high levels of chemokines (CXCL10, CCL-2), cytokines (IL-15, IL-10, IL-1ra) and GCS-F (Figure 1 and additional file 3). In contrast, viremia was independently associated to low lymphocyte, monocyte and platelet counts and low levels of IL-4 in plasma (Figure 1 and additional file 3). Patients requiring hospitalization in the ward showed significantly increased levels of IL-10, CXCL0, IL-1ra, IL-6 and TNF-α compared to outpatients. Critically ill patients showed significantly higher levels of GM-CSF, CXCL10, CCL2, IL-10, IL-6 and IL-15 compared to ward patients and outpatients (figure 2 and additional file 4).

Prevalence of SARS-CoV-2-RNA viremia and specific SARS-CoV-2 IgG. To assess the possible systemic nature of SARS-CoV-2 infections in hospitalized patients we determined the presence of SARS-CoV-2 RNA in plasma. As depicted in table 1 and figure 3, the frequency of SARS-CoV-2-RNA viremia was higher the critically ill patients (82%) compared to ward patients (36%) and outpatients (22%) (p<0.001). No statistical differences were found in plasma viral RNA between the outpatients and the patients in the ward (p = 0.081). Critically ill patients also had a higher frequency of specific SARS-CoV-2 IgG responses than the other groups (70% in ICU compared to 52% and 49% in the outpatients and ward groups, p < 0.05, table 1 and figure 3). No significant differences were found between the group of outpatients and those admitted to the ward.

SARS-CoV-2-RNA viremia and disease severity. When the association between viremia and clinical status was evaluated, multivariate ordinal logistic regression analysis revealed that SARS-CoV-2-RNA viremia was a predictor of severity across the three categories considered in our study [OR= 8.24, p < 0.001, (CI 95% = 4.71; 14.41)] (see additional file 5). When we compared outpatients with admitted ward patients, multivariate GLM
analysis showed that viremia was not significantly associated with either group (Table 2).

In contrast, when the group of ward patients was compared to ICU patients, multivariate GLM analysis showed that viremia was strongly associated with patient severity requiring critical care [OR = 8.3, \(p < 0.001 \), (CI 95% = 4.21-16.34)] (Table 2). In the patients admitted to the ICU, no significant difference in the prevalence of SARS-CoV-2-RNA was found between survivors and non survivors: 42 out of 48 of non survivors had viremia (87.5%), while 40 out of 52 survivors (76.9%) had viremia, \(p = 0.169 \).
Discussion

Our study demonstrates that the presence of SARS-CoV-2 RNA in the plasma of patients with COVID-19 is associated to a number of biological alterations typically found in sepsis. Viremia was an independent predictor of high levels of chemokines (CXCL10, CCL2) and cytokines (IL-10, IL-1ra, IL-15, G-CSF). These chemokines and cytokines have also been reported to be elevated in sepsis [12] [13] [14] [15]. Recognition of viral RNA by endosomal receptors such as toll like receptor 7 (TLR7) in human plasmacytoid dendritic cells and B cells, or TLR8 in myeloid cells, activate intracellular signalling pathways enhancing cytokine production [16]. In fact, it has recently been demonstrated that SARS-CoV-2 genome has more single-stranded RNA fragments that could be recognized by TLR7/8 than the SARS-CoV-1 genome, which suggests the potential of SARS-CoV-2 to induce hyperactivation of innate immunity [17]. In our study, CXCL10 was the most accurate identifier of viremia in plasma (area under the curve (AUC), [CI95%], \(p \) = 0.85 [0.80 – 0.89], <0.001), supporting its potential role as a surrogate biomarker of SARS-CoV RNA viremia. Signalling via the CXCL10 cognate receptor, CXCR3, mediates immunopathology during other highly pathogenic respiratory virus infections such as H5N1 influenza virus [18]. CCL2 is one of the key chemokines that regulate migration and infiltration of monocytes/macrophages [19]. We had already demonstrated that SARS patients had increased levels of CXCL10 and CCL2 in serum during the early onset of symptoms [20]. IL-10 and IL-1ra are major immunomodulatory cytokines inducing immunosuppression. Zhao Y et al reported IL-10 and IL-1ra to be associated with the severity of COVID-19 [21]. Whether elevation of IL-10 and IL-1RA represents a mechanism of viral evasion or an attempt of the immune system to control an exuberant inflammatory response remains to be elucidated [22] [23]. The association between SARS-CoV-2-RNA viremia and IL-15 is also especially intriguing, since IL-15
was the cytokine which most accurately differentiated clinical ward patients from ICU

patients (AUC: 0.82 [0.76 – 0.88], <0.001). Previously, we identified IL-15 as a signature

development of critical illness in the H1N1 2009 influenza pandemics [24]. IL-15 is a pleiotropic

cytokine that induces T-cell proliferation and enhances natural killer (NK) cell cytotoxicity

[25]. It may also play an essential role in T cell or NK cell mediated tissue destruction

[26]. During Hantavirus infection, IL-15 drives a massive NK cell response with high

levels of IL-15 associated with severe disease and fatal outcome [27]. Recently, it was

reported that circulating NK cells were elevated in COVID-19 severe patients [28]

illustrating the potentially important role of IL-15 in regulating NK function during

COVID-19 pathogenesis. The role of G-CSF in COVID-19 is currently under discussion.

In patients with cancer and COVID-19, administration of G-CSF was associated with an

increased need for high oxygen supplementation and death [29]. It has been proposed that

G-CSF could worsen lung function by causing neutrophil infiltration [30]. During the 2009

influenza pandemics, we demonstrated that, in critically patients, high levels of G-CSF in

plasma translated into diminished survival [31].

Viremia was also associated with higher levels of ferritin in COVID-19 patients in our

study. Ferritin is an acute-phase reactant, commonly triggered by inflammation and

infection. Sepsis patients frequently present with elevated serum ferritin, where it is related

to poor clinical outcome [32]. In a recent metanalysis, Khinda et al evidenced also the

association between ferritin and mortality in COVID-19 [33]. Viremia also correlated with

higher levels of LDH, a marker of necrosis and cellular injury. High levels of LDH are

increased in non survivors in sepsis [34] and also in COVID-19 [33]. The association of

viremia with high LDH levels and lower O2 saturation supports viral involvement in the

genesis of tissue damage and respiratory failure in patients with severe COVID-19.
Another shared hallmark of sepsis and COVID-19 is the presence of lymphopenia and monocytopenia [35] [36] [37] [4]. In COVID-19 patients, our study demonstrates that the presence of viremia was associated with lower lymphocyte and monocyte counts in peripheral blood. In sepsis, the presence of low platelet counts is assessed in the Sequential Organ failure score (SOFA) as a parameter indicating coagulation failure [38]. In our study, the presence of viremia in COVID-19 patients was associated to lower platelet counts. Even though platelet counts did not show significant variation across the three severity groups (Table 1), those patients with SARS-CoV-2-RNA viremia showed significantly lower platelet counts than the other patients (198,000 vs 230,000 cells/mm³, \(p = 0.003 \)). In turn, critically ill non survivors showed lower platelet counts than survivors (179,000 vs 221,000 cells/mm³, \(p = 0.001 \)).

Our work identifies a connection between viremia and severe clinical presentation of COVID-19. SARS-CoV-2 viral RNA is detected in the plasma of the vast majority of those COVID-19 patients admitted to the ICU (82%). In hospitalized COVID-19 patients, the presence of SARS-CoV-2-RNA viremia translates into an 8-fold increase in the risk of presenting critical illness, independently of age, sex and major comorbidities. In turn, critically ill COVID-19 patients were those showing the greatest alterations in cytokine, ferritin, LDH, lymphocyte and monocyte levels. These findings identify viremia as an important link between SARS-CoV-2 infection and the development of sepsis-like disease in COVID-19 patients, suggesting that the presence of viraemic SARS-CoV-2 RNA in the plasma could be playing a major role in the transition of moderate illness to severe COVID-19. The underlying mechanisms or processes leading to the viraemic state are not understood at this time, however, lymphopenia, hypercytokinemia, and increased expression of IL-10 and IL-1RA may represent dysfunctional host responses to the virus allowing for dissemination of viral components and perhaps the virus itself. The possibility
of systemic viral infections in multiple organs remains to be elucidated. From a clinical management point of view recognizing severe COVID-19 as a sepsis-like disease suggests that targeting the virus as an infectious agent causing sepsis would require early intervention with antiviral strategies (drugs or convalescent / hyperimmune sera, monoclonal antibodies), similar to treatment of bacterial sepsis with antibiotics. Furthermore, using CXCL-10 and IL-15 as surrogate markers for viremia and critical illness could facilitate indirect identification of the “septic-like” state, as proteins are easier to profile than viremic RNA.

Finally, most ICU patients with SARS-CoV-2-RNA viremia had already developed a specific IgG response against the virus (70.7 %), which would support the notion that continued viral replication is a persistent event during antibody responses.

As a limitation of our study is we did not determine if the findings of viral RNA in plasma reflects the presence of live virus in peripheral blood. However, the SARS-CoV-2 virus has been reported to be difficult to culture from blood. [9] Another limitation of our study is that we did not evaluate viral load. Our group is currently working in determining viral load quantification and viral growth from plasma.

Conclusions

Systemic dissemination of SARS-CoV-2 genomic material in patients with COVID-19 is strongly associated with biological responses typically observed in sepsis. RNA-viremia is a marker of critical illness in COVID-19 patients. Prompt identification of viremia could help to early detect those patients at risk of clinical deterioration. Early control of viremia could contribute to improve survival.
List of abbreviations

SARS-CoV-2: Severe acute Respiratory Syndrom-Coronavirus-2
LDH: Lactate dehydrogenase
G-CSF: Granulocyte colony-stimulating factor
TLR: toll like receptor

Declarations

Ethics approval and consent to participate: The study was approved by the Committee for Ethical Research of the coordinating institution, “Comite de Etica de la Investigacion con Medicamentos del Area de Salud de Salamanca”, code PI 2020 03 452. Informed consent was obtained orally when clinically possible. In the remaining cases, the informed consent waiver was authorized by the Ethics committee.

Consent for publication: not applicable

Availability of data and materials: the datasets generated and/or analysed during the current study are not publicly available since they are still under elaboration for publication by the authors but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding

This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK),
Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the
“Subvenciones de concesión directa para proyectos y programas de investigación del virus
SARS-CoV2, causante del COVID-19”, FONDO - COVID19, Instituto de Salud Carlos
III (COV20/00110, CIBERES, 06/06/0028), (AT) and finally by the “Convocatoria
extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la
financiación de proyectos de investigación en enfermedad COVID-19” (GRS COVID
53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational
Vaccinology and Inflammation. The funding sources did not play any role neither in the
design of the study and collection, not in the analysis, in the interpretation of data or in
writing the manuscript.

Authors ‘contribution: JFBM, DJK, JB, RF, FB, AT and RM designed the study. JFBM
and DJK wrote the manuscript and interpreted the data. RA coordinated the clinical study
and drafted the figures. MGR, DM, PR, FPG, LT, RLI, EB, CA, JMG, JR, RM, MIF, GM,
MGE, DC, FDC, JFR, WT, PGJ, GR, IM, EG,IM, SP, SM, PGO, JAC, TRA, CP, JAB,
GR, RH, JB, PE, RC, JA, JGB, NM, NBL, LJV, BFC, MAM recruited the patients and /or
collected the clinical data. MDG, AO, RO, LMR and JME performed the assays for the
detection of SARS-CoV-2 IgG and viremia. CD and NJ profiled the immunological
mediators. SR and MMF developed the statistical analysis and drafted the figures. AAK,
ATO, AM and LF performed the literature search. All authors read and approved the final
manuscript.

Acknowledgements: we thank SEIMC-GESIDA Foundation for the scientific sponsoring of
this project. We thank also the “Centro de Hemoterapia y Hemodonación de Castilla y
León, CHEMCYL”, which provided the plasma simples used in the healthy control group.
1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Internet]. Available from: https://coronavirus.jhu.edu/map.html

Conflicts of interests: the authors declare no conflicts of interests regarding this submission.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Age [years, median (IQR)]</th>
<th>> 64 [19]</th>
<th>> 66 [19]</th>
<th>< 0.001</th>
<th>< 0.001</th>
<th>n.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male [% (n)]</td>
<td>46 (23)</td>
<td>50 (50)</td>
<td>64 (64)</td>
<td>n.s.</td>
<td>0.035</td>
<td>0.046</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>2 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Smoking</td>
<td>2 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Drug abuse</td>
<td>2 (1)</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic vascular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hepatic disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic inflammatory bowel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive mechanical ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-invasive mechanical ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remdesivir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocilizumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Interferon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital stay [days, median (IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral RNA in plasma [% (n)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-2 IgG [% (n)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital mortality [% (n)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C) [median (IQR)]</td>
<td>36.50 (1.0)</td>
<td>36.80 (1.4)</td>
<td>37.00 (1.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic Arterial Pressure (mmHg) [median (IQR)]</td>
<td>120 (29)</td>
<td>126 (25)</td>
<td>120 (26)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>0.013</td>
</tr>
<tr>
<td>Oxygen saturation (%) [median (IQR)]</td>
<td>96 (3)</td>
<td>94 (5)</td>
<td>92 (6)</td>
<td>0.002</td>
<td>< 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Pulmonary infiltrate [% (n)]</td>
<td>72 (36)</td>
<td>93 (93)</td>
<td>100 (100)</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>0.007</td>
</tr>
<tr>
<td>Bilateral pulmonary infiltrate [% (n)]</td>
<td>26 (13)</td>
<td>67 (67)</td>
<td>93 (93)</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Glucose (mg/dl) [median (IQR)]</td>
<td>99.5 (22)</td>
<td>112 (31)</td>
<td>160.50 (83)</td>
<td>0.004</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Creatinine (mg/dl) [median (IQR)]</td>
<td>0.84 (0.18)</td>
<td>0.91 (0.33)</td>
<td>0.88 (0.57)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na (mEq/L) [median (IQR)]</td>
<td>138 (4)</td>
<td>138 (5)</td>
<td>138.50 (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Clinical characteristics of the patients: continuous variables are represented as [median, (interquartile range, IQR)]; categorical variables are represented as [%, (n)].; INR, International Normalized Ratio; n.s., not significant; n.a., not applicable.

<table>
<thead>
<tr>
<th>Measurements at diagnosis</th>
<th>GLM (outpatients vs wards)</th>
<th>GLM (wards vs ICU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K (mEq/L) [median (IQR)]</td>
<td>3.90 (0.50)</td>
<td>4.10 (0.68)</td>
</tr>
<tr>
<td>Platelets (cell x 10^12/µl) [median (IQR)]</td>
<td>223 [97]</td>
<td>207 [113]</td>
</tr>
<tr>
<td>INR [median (IQR)]</td>
<td>1.04 (0.10)</td>
<td>1.11 (0.13)</td>
</tr>
<tr>
<td>D Dimer (pg/ml) [median (IQR)]</td>
<td>795278 [828234]</td>
<td>1597362.50 [2024704]</td>
</tr>
<tr>
<td>LDH (UI/L) [median (IQR)]</td>
<td>214 (73)</td>
<td>278 (138)</td>
</tr>
<tr>
<td>GPT (UI/L) [median (IQR)]</td>
<td>27 (43)</td>
<td>29 (29)</td>
</tr>
<tr>
<td>Ferritin (pg/ml) [median (IQR)]</td>
<td>359507 [458748]</td>
<td>523805 [534757]</td>
</tr>
<tr>
<td>CRP (mg/dl) [median (IQR)]</td>
<td>1.40 (3.50)</td>
<td>40.90 (89.18)</td>
</tr>
<tr>
<td>Haematocrit (%) [median (IQR)]</td>
<td>43.15 (4.72)</td>
<td>42.50 (6.50)</td>
</tr>
<tr>
<td>WBC (cells/mm3) [median (IQR)]</td>
<td>6450 (2815)</td>
<td>7005 (4115)</td>
</tr>
<tr>
<td>Lymphocytes (cells/mm3) [median]</td>
<td>1400 (805)</td>
<td>1000 (433)</td>
</tr>
<tr>
<td>Neutrophils (cells/mm3) [median (IQR)]</td>
<td>4260 (2625)</td>
<td>5250 (3918)</td>
</tr>
<tr>
<td>Monocytes (cells/mm3) [median (IQR)]</td>
<td>500 (300)</td>
<td>400 (300)</td>
</tr>
<tr>
<td>Eosinophils (cells/mm3) [median (IQR)]</td>
<td>0 (100)</td>
<td>0 (40)</td>
</tr>
<tr>
<td>Basophils (cells/mm3) [median (IQR)]</td>
<td>0 (0)</td>
<td>0 (20)</td>
</tr>
<tr>
<td>Condition</td>
<td>OR</td>
<td>p</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Viremia</td>
<td>2.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Age</td>
<td>1.06</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sex</td>
<td>1.06</td>
<td>0.88</td>
</tr>
<tr>
<td>Obesity</td>
<td>4.89</td>
<td>0.05</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.19</td>
<td>0.71</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>1.69</td>
<td>0.55</td>
</tr>
<tr>
<td>Asthma</td>
<td>1.02</td>
<td>0.98</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1.63</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Table 2: Multivariate generalized linear model with binomial distribution to assess the association between viremia and hospitalization at the wards in the comparison (outpatients vs wards) (left) and the association between viremia and hospitalization at the ICU in the comparison (wards vs ICU) (right).

Figure legends
Figure 1: Forest plot showing the result from the multivariate generalized linear model with a gamma distribution (log-link) to assess the association between viremia and laboratory and immunological parameters (AMR) adjusted by major comorbidities (Age, Sex, Obesity, Hypertension, Type II Diabetes, Cardiovascular disease, Asthma, Dyslipidemia) and disease severity category (outpatients, ward and ICU) are showed in the plot.

Figure 2: Box plots showing the immunological mediators’ levels across severity groups.

Figure 3: prevalence of SARS-CoV-2-RNA viremia and SARS-CoV-2 IgG antibodies in each severity group.