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Abstract 19 

Rationale: Large retrospective case-control studies have reported an association between 20 

COPD, reduced lung function and an increased risk of Alzheimer’s disease. However, it 21 

remains unclear if these diseases are causally linked, or due to shared risk factors. 22 

Conventional observational epidemiology suffers from unmeasured confounding and reverse 23 

causation. Additional analyses addressing causality are required.  24 

Objectives: To examine a causal relationship between COPD, lung function and Alzheimer’s 25 

disease. 26 

Methods: Using two-sample Mendelian randomization, we utilised single nucleotide 27 

polymorphisms (SNPs) identified in a genome wide association study (GWAS) for lung 28 

function as instrumental variables (exposure). Additionally, we used SNPs discovered in a 29 

GWAS for COPD in those with moderate to very severe obstruction.  The effect of these 30 

SNPs on Alzheimer’s disease (outcome) were taken from a GWAS based on a sample of 31 

24,807 patients and 55,058 controls.  32 

Results: We found minimal evidence for an effect of either lung function (odds ratio 33 

[OR]:1.02 per SD; 95% confidence interval [CI]: 0.91-1.13; p-value 0.68). or liability for 34 

COPD on Alzheimer’s disease (OR: 0.97 per SD; 95% CI: 0.92 – 1.03; p-value 0.40).  35 

Conclusion: Neither reduced lung function nor liability COPD are likely to be causally 36 

associated with an increased risk of Alzheimer’s, any observed association is likely due to 37 

unmeasured confounding. Scientific attention and health prevention policy may be better 38 

focused on overlapping risk factors, rather than attempts to reduce risk of Alzheimer’s 39 

disease by targeting impaired lung function or COPD directly.      40 
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Introduction 41 

Chronic Obstructive Pulmonary Disease (COPD) is a disease of multi-morbidity(1).  In COPD 42 

the presence of multi-morbidity is associated with higher mortality, worse quality of life and 43 

increased healthcare utilisation (2, 3). Impaired lung function measures such as Forced 44 

Expiratory Volume in one second (FEV1) and Forced Expiratory Volume (FVC) have been 45 

found to be strongly associated with multi-morbidity.(4) However, it remains unclear if these 46 

multi-morbidities are causally linked to lung function and disease, for example through a 47 

proposed inflammatory overspill, or if they are due to shared risk factors, such as smoking (5). 48 

Therapeutic targets may be identified if specific causal mechanisms could be established.  49 

 50 

Cognitive impairment is a common co-morbidity in COPD, with reported prevalence ranging 51 

from 10-61% and around 25% of older adults with dementia also have COPD(6). Cognitive 52 

impairment in COPD is associated with greater disability(7), poorer medication compliance,(8) 53 

and risk of exacerbation and mortality(7). Poor pulmonary function in early life has been 54 

associated with increased odds of dementia later in life, even after adjustment for smoking.(9)  55 

 56 

Alzheimer’s disease (AD) is the most common type of dementia(10), its association with 57 

COPD is less well defined than general cognitive ability, but reports of a potential link 58 

between COPD and AD was first described nearly 30 years ago(11). Large retrospective 59 

observational case-control cohorts have reported increased risk of AD in patients with both 60 

COPD and reduced lung function(12, 13).  For example, Lutsey et al reviewed hospitalisation 61 

codes(13) in the Atherosclerosis Risk In Communities Study for AD-related outcomes and 62 

reported that an Odds Ratio of 1.24 for AD-type dementia or mild cognitive impairment 63 

(MCI) in patients with COPD and OR 1.79 for those with a restrictive impairment compared 64 
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to controls. If the lung function and COPD have a causal effect on risk of Alzheimer’s 65 

disease, then they could be modifiable risk factors. 66 

 67 

Mendelian Randomization (MR) is an established genetic epidemiological method which can 68 

overcome problems of unmeasured confounders and reverse causation, typical of 69 

conventional observational epidemiology(14). MR allows causal inference through the use of 70 

genetic variants as proxies for non-genetic (modifiable) risk factors or health outcomes(14). 71 

MR uses genetic data, e.g. single nucleotide polymorphisms (SNPs) that are associated with 72 

an exposure (in this case diagnosis of COPD or lung function), and uses them as instrumental 73 

variables (IV) to assess the causal effect of the exposure on the outcome of interest (in this 74 

case Alzheimer’s disease)(15).  75 

MR has multiple advantages. Genetic variants are randomly allocated at birth which can be 76 

exploited to simulate randomisation(15). They are not influenced by behavioural or 77 

environmental factors minimizing reverse causality (where the outcome, or early stages of the 78 

disease process that leads to the outcome, influences the exposure) (20). Additionally, the 79 

effects are equivalent to lifetime differences, reducing issues relating to transient fluctuations. 80 

Our objective was to use MR to investigate if there is any evidence of a causal effect between 81 

the exposures, lung function and liability to COPD and the outcome, Alzheimer’s disease. 82 
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Methods 83 

Lung Function 84 

We used data from Shrine et al. the largest currently available lung function GWAS, 85 

n=400,102 (16) which reported 279 genome wide significant SNPs (p<5×10−9). Lung function 86 

measurements used were Forced Expiratory Volume in 1 second (FEV1), Forced Vital 87 

Capacity (FVC), FEV1/FVC ratio and Peak Expiratory Flow (PEF). A weighted risk score, 88 

was associated with risk of COPD (p= 6.64x10-63), with an Odds ratio of 1.55 for each 89 

standard deviation of the risk score (16, 17). Further details of the study population can be found 90 

in the supplementary information and the reference (16). 91 

COPD 92 

We used 82 SNPs associated with COPD, as identified in Sarkonsakaplat et al. case control 93 

GWAS(18), n = 35,735 cases and 222,076 controls discovered in meta-analysis of 25 studies. 94 

COPD was defined by Global Initiative for Chronic Obstructive Lung Disease criteria; 95 

FEV1/FVC <0.7 and FEV1 <80% predicted. Further details of study population can be found 96 

in the supplementary information and the reference.(18) 97 

80% and 77% of the Shrine et al and Sarkonsakaplat et al GWAS sample respectively were 98 

from the UKBiobank (19). In brief the UK Biobank is a large prospective cohort study where 99 

>500,000 participants were recruited from 2006 – 2010 in the United Kingdom (54% female). 100 

Pre-bronchodilation lung function testing was performed by trained healthcare staff.  101 

Alzheimer’s disease  102 

We used data from a meta-analysis of the International Genomics of Alzheimer’s disease 103 

(IGAP) consortium(20), Alzheimer’s Disease Sequencing Project (ADSP) (21), and Psychiatric 104 

Genomics Consortium (PGC) (22) totalling 24,807 Alzheimer’s disease  cases and 55,058 105 

controls (23). All cases had clinical diagnoses of Alzheimer’s disease. Some participants of the 106 

ADSP cohort were previously also included in IGAP, so ADSP individuals that were 107 
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duplicates based on the comparison of individual level genetic data between IGAP and ADSP 108 

were excluded.  109 

There was no sample overlap between the exposure and outcome samples. All participants 110 

were of European ancestry. 111 

Statistical Analysis 112 

Statistical analysis was done using R Studio version 3.5.1. and the MRCIEU/TwoSampleMR 113 

R package (24).  114 

 115 

For exposure traits r2 was estimated for each genetic instrument and used to determine the 116 

Cragg-Donald overall F-statistic.(25) The higher the F-statistic the lower the chance of weak 117 

instrument bias.(25) For all exposures SNPs LD-clumping was performed using European 118 

reference population (kb = 10000, r2 0.001). Palindromic SNPs (i.e. A/T and C/G SNPs) with 119 

intermediate allele frequencies were excluded. The remaining SNPs were harmonised(26). 120 

Steiger filtering(27) was performed to remove variants that caused more variance of the 121 

outcome than the exposure, see online supplement for more details.  122 

Main Mendelian Randomization Analysis 123 

Inverse Variance Weighting (IVW) was used for main effect estimate. This is a weighted 124 

regression of SNP-outcome on SNP-exposure associations combined where the y intercept is 125 

constrained to zero.  126 

Assumption and Sensitivity Analysis 127 

MR assumptions and further details of tests used, are detailed in the online appendix. To 128 

account for the possibility of horizontal pleiotropy (IVs influence exposure and outcome 129 

through independent pathways), we performed MR Egger. To minimise the effect of 130 

unbalanced instruments on an overall estimate of the mean, weighted median and mode MR 131 

methods were performed. To assess for horizontal pleiotropy a funnel plot was made by 132 
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plotting the effect against its precision (beta against standard error). To ensure the results 133 

were not due to outliers with a large effect, a leave-one-out analysis was performed by re-134 

estimating the total effect after sequentially excluding one SNP at a time and a single-SNP 135 

analysis, where the effect of each SNP was individually assessed via IVW analysis and 136 

represented in a forest plot. 137 

Heterogeneity (the variability in causal estimates obtained for each SNP) is an indication of 138 

potential violation of assumptions. This was calculated and assessed with a Q statistic. 139 
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Results 140 

F-statistic for lung function GWAS(16) exposures were; All traits=111, FEV1=69, FVC=70, 141 

FEV1/FVC=148, making weak instrument bias unlikely. After clumping, extracting SNPs 142 

from outcome GWAS, Steiger filtering and removal of palindromic SNPs, 131 SNPs were 143 

available for analysis. See flow charts in supplementary information for detailed analysis 144 

pathway. 145 

 146 

We found minimal evidence for a causal effect of lung function (all traits) on Alzheimer’s 147 

disease, (IVW odds ratio [OR]:1.02 per SD; 95% CI: 0.91-1.13; p-value 0.68). This result 148 

was further confirmed in a sensitivity analysis using both weighted median (OR:1.01 per SD; 149 

95% CI:0.86-1.19, p value = 0.81), and weighted mode MR (OR 0.99 per SD;95% CI 0.78-150 

1.19), p-value = 0.81). risk of AD. The MR-Egger causal estimation produced similar results 151 

with an OR 1.05 per SD (95% CI 0.79-1.34; p-value 0.71). The confidence interval of the 152 

MR-Egger is wider than that of IVW, consistent with the lower statistical power of this test.   153 

 154 

Figure 1 plots each individual SNP-exposure effect against SNP-outcome with the coloured 155 

lines representing each statistical test. Increasing lung function (exposure) does not have a 156 

consistent effect on Alzheimer’s disease (outcome).   157 

 158 

Table 1 shows that these results were consistent when analysing lung function traits FEV1, 159 

FVC, and FEV1/FVC individually with little evidence of a causal association on Alzheimer’s 160 

disease with confidence intervals crossing 1 for all statistical tests.  161 

 162 

 163 
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Table 1. Two-sample MR results of lung function traits(16) on Alzheimer’s disease(23)  164 

 165 

  Lung Function Trait (Exposure)  

    
FEV1, FVC, 

FEV1/FVC, PEF 
FEV1 FVC FEV1/FVC 

No. 

SNPs 

used 

  131 42  46 73 

IVW 

OR per SD  1.02  1.04  1.08  0.99  

(95% CI) (0.91 – 1.13) (0.82 – 1.32) (0.85 – 1.37) (0.88 – 1.13) 

p-Value 0.68 0.73 0.51 0.97 

Q_p-value* 0.26 0.30  0.19 0.71 

Weighted 

Median 

 OR per SD  1.01  1.15   1.14  0.95  

(95% CI) (0.86 – 1.19) (0.82 – 1.61) (0.83 – 1.58) (0.79 – 1.15) 

p-Value 0.81 0.39  0.39 0.62 

Weighted 

Mode  

OR per SD  0.99  1.07   1.04  0.97  

(95% CI) (0.78 – 1.26) (0.60 - 1.90) (0.61 – 1.78) (0.74 – 1.26) 

p-Value 0.97 0.80 0.86  0.84 

MR-

Egger  

OR per SD  1.05  1.22 0.97  0.95 

(95% CI) (0.79 – 1.34) (0.57 - 2.59) (0.36 – 2.62) (0.69 – 1.31) 

p-Value 0.71 0.59  0.96 0.77 

 166 

*A test for heterogenity. If this was <0.05 it would suggest heterogenity 167 

OR – Odd ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting  168 

 169 

We used single-SNP analyses to determine the effect of each lung function SNP on the odds 170 

of Alzheimer’s disease (Figure 2). The SNP rs2070600, may be an outlier due to its 171 

comparatively large effect on both lung function and AD. Polymorphisms in this SNP have 172 

been described as having a weak effect on Alzheimer’s disease risk.(28) However, despite 173 

excluding this SNP from the analysis the results were similar (e.g. see leave-one-out analysis 174 

in Figure 3). 175 

 176 

Each SNP beta was plotted against its inverse standard error (Figure 4) producing a funnel 177 

shape indicating no heterogeneity. In addition to these visual tests, we found little evidence of 178 

heterogeneity using a Q statistic when lung function traits were combined or assessed 179 
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individually (Table 1. Q_p value >0.51). MR-Egger intercept was <0.001, visually displayed 180 

in Figure 1, indicating there was no unbalanced horizontal pleiotropy.  181 

 182 

Using the COPD GWAS(18) gave an F-statistic of 52. After clumping, extracting SNPs 183 

from outcome GWAS, Steiger filtering and removal of palindromic SNPs, 53 SNPs for 184 

liability to COPD were available for analysis in the Alzheimer’s outcome GWAS. Please 185 

see flow chart in supplementary information for details. Results are displayed in Table 2. 186 

Table 2. Two-sample MR results of COPD(18) on Alzheimer’s disease(29)  187 

  COPD 
 

No. SNPs 

used 
  53 

IVW 

OR per SD (95% CI) 0.97 (0.92 – 1.03) 

p-Value 0.40 

Q_p-value 0.57 

Weighted 

Median 

 OR per SD (95% CI) 0.97 (0.90 – 1.05) 

p-Value 0.52 

Weighted 

Mode  

OR per SD (95% CI) 0.96 (0.86 – 1.08) 

p-Value 0.56 

MR-Egger  
OR per SD (95% CI) 1.10 (0.93 – 1.31) 

p-Value 0.23 

 188 

OR – Odd ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting 189 

 190 

We found minimal evidence for an effect of liability to COPD on risk of Alzheimer’s disease 191 

(IVW OR: 0.97 per SD; 95% CI: 0.92 – 1.03; p-value 0.40). This result was further 192 

confirmed in our sensitivity analysis using both weighted median (OR: 0.97 per SD; 95% CI: 193 

0.90-1.05; p-value = 0.52), and weighted mode MR (OR: 0.96 per SD; 95% CI: 0.86-1.08; p-194 

value = 0.56). The MR-Egger causal estimation produced an OR 1.11 per SD (95% CI: 0.93-195 

1.31; p-value 0.2), the only test to show a direction of effect of increasing COPD causing 196 
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increased risk of Alzheimer’s disease. Figures 5-8 are available in supplementary 197 

information, demonstrating that results were not driven by an individual SNP. There was no 198 

evidence of heterogeneity, with a Q-pvalue 0.57.  199 

 200 
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Discussion 201 

Evidence before this study 202 

Our results indicate that there is minimal evidence of a causal association between lung 203 

function or liability to COPD and risk of Alzheimer’s disease. This is in contrast to two large 204 

observational studies(12, 13), which do report an association between COPD and Alzheimer’s 205 

disease. The observed associations may be due to unmeasured confounding by risk factors 206 

common to both COPD and Alzheimer’s disease such as smoking, physical inactivity, social 207 

deprivation and lower educational attainment(30). The observational studies may have 208 

inadvertently included other forms of dementia other than Alzheimer’s disease, for example 209 

vascular dementia resulting from cerebrovascular or neurological damage. Apolipoprotein e4 210 

allele is the biggest risk factor for Alzheimer’s disease whereas it is thought that COPD 211 

affects cognition via vascular effects. There is evidence that COPD and reduced lung function 212 

is associated with micro and macrovascular damage that could mediate the relationship.(31-33) 213 

It is possible that vascular dementia is causally linked to COPD and lung function, but this 214 

outcome was not included in our analysis which was restricted to Alzheimer’s disease only. 215 

Cognitive dysfunction and Mild Cognitive Impairment are well described in COPD (6). It may 216 

be that this association is causal, but that patients do not progress to Alzheimer’s disease due 217 

to their lung disease. Survivor bias (where selection is conditional upon survival to 218 

recruitment(34)) can be of concern in studies involving potentially fatal diseases of later life. 219 

Potentially, patients with COPD would be less likely to be recruited to a GWAS, biasing the 220 

MR towards a null. Observational studies performed by analysing health records may be less 221 

likely to be affected by this.  222 

Impact of this study 223 

This analysis uses two-sample MR and multivariable MR to explore a causal association 224 

between lung function, COPD and Alzheimer’s disease. The increasing incidence of 225 
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Alzheimer’s disease in Western society has been described as an epidemic (35). COPD is 226 

responsible for 5% of global disability-adjusted life years and 5% of total deaths (36). 227 

Consequently, prevention and treatment of both COPD and Alzheimer’s disease is a global 228 

health priority.  Although there have been efforts to search for causal mechanisms linking the 229 

two diseases, our analysis using multiple means of assessing causation would suggest 230 

scientific attention and health prevention resources may be better focused on overlapping risk 231 

factors such as smoking, diet and physical activity (37, 38), rather than attempts to reduce risk 232 

of AD by improving lung function or reducing liability to COPD alone.  233 

 234 

Strengths and Limitations 235 

By using randomly assigned genetic variants as an exposure, two-sample MR methodology 236 

eliminates many confounders in observational epidemiology(14). We used a large number of 237 

robust lung function SNPs, which have been well validated in large samples.(16, 18)  238 

It is important to ensure that the assumptions of MR are met when dealing with SNPs for 239 

complex phenotypes like lung function and COPD. We adhered to proposed methodological 240 

guidelines of MR (STROBE)(39) which are designed to increase reliability of MR reporting. 241 

None of the sensitivity tests provided strong evidence for a violation of the MR assumptions.  242 

COPD is a binary trait, so our SNPs confer liability to COPD. As this is a Two Sample MR 243 

study, we do not know how many participants in the outcome population had COPD. COPD 244 

is a clinical diagnosis with set spirometric thresholds, whereas in the discovery GWAS a 245 

diagnosis of COPD was made based on spirometric criteria alone. This was done by 246 

dichotomising continuous traits. Dichotomization of continuous traits in MR studies can 247 

make interpretation of the causal estimate less reliable, but MR can still be a valid test of the 248 

causal null hypothesis for a binary exposure.(40) 249 
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As the SNPs were discovered in populations of those with European ancestry, the results may 250 

not be generalisable to other populations. However, we believe the findings of this study are 251 

likely to be generalisable to the non-European population as a genetic risk score of the lung 252 

function SNPs was validated in other ancestral populations, with slightly reduced effect (16).  253 

 254 

Conclusions 255 

Lung function and liability to COPD are not causally associated with an increased risk of 256 

Alzheimer’s disease. Previous observational studies showing and association between 257 

impaired lung function or COPD and Alzheimer’s disease are most likely due to unmeasured 258 

confounding. 259 
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Figure 1. Scatter plot of the SNP-effect on lung function trait and SNP-effect on 

Alzheimer’s disease 

Each point on the graph represents the SNP-outcome association plotted against the SNP-

exposure association. Bars indicate 95% confidence intervals. Coloured lines represent 

analysis method used. This shows no effect of lung function on Alzheimer’s disease . MR 

Egger intercept is close to zero indicating no unbalanced directional pleiotropy. 
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Figure 2. Single SNP analysis of lung function traits on Alzheimer’s disease 

Each point represents individual SNP calculated effect size for lung function on the odds of 

Alzheimer’s disease. Bars indicate 95% CI.  
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Figure 3. Leave-one-out analysis of lung function traits on Alzheimer’s disease 

Each point represents the IVW estimate if the SNP on the y axis was left out of total analysis. 

Bars indicate 95% confidence intervals, demostrating that no individual SNP is driving the 

causal effect estimate.
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Figure 4. Funnel plot of heterogeneity of causal effects of lung function traits on 

Alzheimer’s disease 

Each point is a SNP with its beta plotted against its inverse standard error. As the graph is 

funnel shaped, it indicates no heterogeneity. 
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Appendix 1. Figures for COPD SNPs 

Figure E1. Scatter Plot of IVW COPD and AD 

Each point on the graph represents the SNP-outcome association plotted against the SNP-

exposure association. Bars indicate 95% confidence intervals. Coloured lines represent 

analysis method used. This shows no signficant effect of COPD on Alzheimer’s disease . MR 

Egger intercept is close to zero indicating no unbalanced directional pleiotropy. 
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Figure E2. Single SNP Analysis of COPD and AD 

Each point represents individual SNP calculated effect size for COPD on odds of 

Alzheimer’s disease . Bars indicate 95% CI. 
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Figure E3. Leave one out analysis of COPD and AD 

Each point represents the IVW estimate if the SNP on the y axis was left out of total analysis. 

Bars indicate 95% confidence intervals. It demostrates that no individual SNP is driving the 

causal effect estimate. 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

Figure E4. Funnel Plot analysis of COPD and AD 

Each point is a SNP with its beta plotted against its inverse standard error. As the graph is 

funnel shaped, it indicates no heterogeneity. 
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Appendix 2 

Assumptions 

We assume that our IVs have a true association with the exposures. This has been rigorously 

statistically tested in the discovery GWAS and effect estimation (1, 2). F-statistic calculation 

shows that all exposure SNPs were unlikely to be weak instruments. In both GWAS papers 

SNPs discovered are related to specific genes, cell types and biological pathways for lung tissue 

development.  

We assume that our SNPs do not affect AD except via their effect on LF/COPD, and that the 

SNPs have no associations with any confounders that are also associated with AD. Although 

not possible to directly tests, our sensitivity and heterogeneity tests reduce the risk these 

assumptions were violated. To account for the possibility of horizontal pleiotropy (IVs affect 

multiple pathways) we performed MR Egger, weighted median and weighted mode tests. 

MR-Egger is similar to IVW except the y intercept is unconstrained. If the y intercept of the 

MR-Egger is not equal to zero then either there is unbalanced horizontal pleiotropy (the 

average pleiotropic effect differs from zero) or the pleiotropic effects are independent from 

the genetic association with the risk factor, or both (3).  Although power is lower compared to 

IVW, the gradient of the MR-Egger gives a causal estimate of the dose–response relationship 

between the genetic associations with the risk factor and those with the outcome, providing 

additional evidence for causal affect.  To help avoid the effect of unbalanced instruments on 

an overall estimate of the mean by the IVW method, weighted median and mode MR 

methods were performed. A weighted median MR gives a consistent estimate of the causal 

effect when at least 50% of the weight comes from valid IVs, giving a greater robustness with 

strongly outlying causal estimates (4). A weighted mode MR calculates an estimate based on 

the set of SNPs that form the largest homogenous cluster, which attempts to avoid the impact 

of invalid instruments (5).  
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There was no evidence of population stratification (when subgroups within a sample are of 

different genetic ancestry) as assessed by linkage disequilibrium score regression in the original 

GWAS. 

Steiger Filtering 

Steiger filtering estimates each SNP’s rsq.exposure and rsq.outcome in the outcome 

population.(6) Those SNPs that explain more variance in the outcome than exposure are 

excluded, as they could led to a reverse causal relationship. SNPs were removed if they 

explained more variance of the outcome than the exposure. SNPs were removed if they 

explained more variance of the outcome than the exposure. Necessary information to perform 

Steiger filtering includes knowing the case and control numbers for each SNP. In our main 

Alzheimer’s meta-analysis outcome population, we only know this for the PGC cohort. 

Therefore, we assumed that for the SNPs tested for in the ADSP and IGAP cohorts, every 

SNP had the same case and control number as the overall participant numbers. For ADSP 

4,343 cases and 3,165 controls, for IGAP 17,008 cases and 14,471 controls. A prevalence of 

the outcome as required for Steiger filtering, we stated that the prevalence of the outcome 

was 0.07. Similarly, we do not know the exact case and control number for each SNP in the 

COPD exposure. Therefore, we assumed that every SNP had the same case and control 

number as the total number of case (35,735) and control (222,076) participants in the study. 

We estimated the prevalence to be 0.1 as per the discovery GWAS. Lung function is a 

continuous trait, so does not require estimation of prevalence to perform Steiger filtering. 
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Appendix 3. Details of Sample Populations 

Table E1. Description of GWAS samples used 

Exposure Data source 

(PMID) 

Sample size (% 

cases) 

% European GWAS Adjustment 

Lung function UKBiobank & 

SpiroMeta 

400,102 100 age, age2, sex, height, smoking status  

COPD 25 studies* 257,811 (13.8%) 100 age, age2, sex, and height 

Outcome Data source 

(PMID) 

Sample size (% 

cases) 

% European GWAS Adjustment 

Alzheimer’s 

Disease 

IGAP, ADSP, PGC 79,865 (31%) 100 ADSP&PGC = gender, batch, 4 

principal components 

PGC = age 

 

*Please see supplementary table 1 of reference(2) for full table naming each study with 

description of respective: cases/controls number, smoking status, age, FEV1% and FEV1/FVC  

Appendix 4. Flow chart of analysis 

Study protocols were not pre-registered. 

Figure E5. Flow chart of analysis for all lung function trait SNPs(1) 
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Figure E6. Flow chart of analysis for FEV1 SNPs 

 

Figure E7. Flow Chart of analysis for FVC SNP’s 
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Figure E8. Flow Chart of analysis for effect FEV1/FVC SNPs 

 

Figure E9. Flow Chart of analysis for COPD liability SNPs(2) 
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Appendix 5 

Code available on request from corresponding author. 

Data used was summary data freely available in supplementary tables or from corresponding 

authors of GWAS. 
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