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Abstract 

Recent genome-wide association studies (GWASs) of severe malaria have identified several 

association variants. However, much about the underlying biological functions are yet to be 

discovered. Here, we systematically predicted plausible candidate genes and pathways from 

functional analysis of severe malaria resistance GWAS summary statistics(N=17,000) meta-

analyzed across eleven populations in malaria endemic regions. We applied positional mapping, 

expression quantitative trait locus (eQTL), chromatin interaction mapping and gene-based 

association analyses to identify candidate severe malaria resistance genes. We performed network 

and pathway analyses to investigate their shared biological functions. We further applied rare 

variant analysis to raw GWAS datasets (N=11,000) of three malaria endemic populations including 

Kenya, Malawi and Gambia and performed various population genetic structures of the identified 

genes in the three populations and global populations. 

Our functional mapping analysis identified 57 genes located in the known malaria genomic loci 

while our gene-based GWAS analysis identified additional 125 genes across the genome. The 

identified genes were significantly enriched in malaria pathogenic pathways including multiple 

overlapping pathways in erythrocyte-related functions, blood coagulations, ion channels, adhesion 

molecules, membrane signaling elements and neuronal systems. Our population genetic analysis 

revealed that the minor allele frequencies (MAF) of the single nucleotide polymorphisms (SNPs) 
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residing in the identified genes are generally higher in the three malaria endemic populations 

compared to global populations. Overall, our results suggest that severe malaria resistance trait is 

attributed to multiple genes; highlighting the possibility of harnessing new malaria therapeutics 

that can simultaneously target multiple malaria protective host molecular pathways. 

Introduction 

Malaria is still one of the global health problems with approximately 228 million cases and 405, 

000 deaths in 2018 (1). African countries disproportionately carry the global burden of malaria 

accounting for 93% and 94% of cases and deaths, respectively (1). P. falciparum malaria is still 

one of the leading causes of child mortality in endemic regions, particularly in sub-Saharan Africa. 

According to the World Health Organization (WHO), malaria killed about 285,000 under five 

children in 2016 (2). About 10-20% of children who recover from severe malaria develop 

neurological sequalae and sub-optimal neuronal development (3). Severe malaria (SM) is defined 

as demonstration of asexual forms of the malaria parasites in the blood of a patient with a 

potentially fatal manifestation or complication of malaria in whom other diagnosis have been 

excluded (4). The  SM complications include rapid progression to severe malarial anaemia (SMA), 

hypoglycaemia, cerebral malaria(CM), acidosis and death (4). 

The global malaria eradication program, accelerated by the WHO led Roll Back Malaria (RBM) 

partnership, is largely focusing on scaling up the coverage of the available intervention strategies 

such as the distribution of long-lasting insecticide treated nets (LLINS), indoor residual insecticide 

spraying, intermittent treatment for pregnant women in high transmission settings and rapid 

diagnosis and effective treatments using artemisinin-based combination therapies (ACTs) (5). This 

led to the significant decline of malaria burden in many parts of the endemic regions. Despite the 

successes gained in reducing the global burden of malaria, the progress towards global malaria 

elimination is challenged by wide arrays of problems including decreased funding, lack of political 

commitments in some countries, emergence of drug resistant parasites and insecticide resistant 

mosquitoes and lack of effective vaccine among others (6).  

P. falciparum has a complex life cycle alternate between vertebrate and female Anopheles 

mosquito. During its blood meal, the infected mosquitoes inoculates the transmissive form the 

parasite, the sporozoites, in to human skin. From the skin the sporozoites enter in to the blood 
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circulation or up-taken by the lymphatic system and invade liver (7). After maturation, the parasite 

buds off the hepatocytes and released in to the circulation in the form of merozomes containing 

hundreds of thousands of merozoites that infect erythrocytes (7). The erythrocyte stage also called 

blood stage lifecycle is complex multi-step process that involve repeated invasion, growth, 

replication and egress events (8). To create favourable environment for its survival and growth, 

the parasite remodels the infected erythrocyte (IE). The remodelling events include creation of a 

parasitophorous vacuolar membrane (PVM) that surrounds the parasite and modification of 

antigenic and structural properties of the IE by transporting a protein called  P. falciparum 

erythrocyte membrane protein 1 (PfEMP1) to the surface (8). The clinical symptoms of the SM  

have been linked to the blood stage life cycle (8). 

Even though SM is one of the commonest reasons for admission to hospital and is a major cause 

of hospital death in children aged 1-5 years in endemic areas, it constitutes  only a small subset (1-

2%)  of the infected children as the majority of malaria infections is mild (9). It has been shown  

that  such clinical variations is partly attributable to human genetic factors (10, 11). Thus, a 

comprehensive understanding of the human genetic causes of variation in malaria clinical outcome 

may potentially provide clues to design new intervention strategies such as therapeutics and 

vaccines which can facilitate the global malaria eradication program (12, 13). 

Aiming at shedding more light to the genetic basis of severe P. falciparum malaria,  several 

genome-wide association studies (GWASs) have been conducted in diverse malaria endemic 

populations over the last decade (14–18). The GWASs have replicated some of the well-known 

malaria susceptibility genomic risk loci including sickle cell  (HBB) and ABO blood group loci 

and identified new variants in ATP2B4 and Glycophorin regions (14–18). Due to the single-marker 

testing approach commonly used, single SNP-based GWASs may miss candidate variants with 

weak genetic effects and therefore, combining all effects from multiple variants within a gene and 

deconvoluting the interactions between genes underlying the malaria resistance trait  may  provide 

important insights in to underlying genetics (19). Today, a number of gene-based and pathway-

level statistical analytic methods have recently been developed and successfully implemented in 

complex disease studies (20–23). These methods integrate functional information from advanced 

biological databases including the Genotype-Tissue Expression (GTEx)(24), Encyclopedia of 

DNA Elements (ENCODE) (25), Roadmap Epigenomics Project (26) and chromatin interaction 
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information (27). Owing to the fact that direct functional follow-up of several candidate causal 

variants and genes is expensive, application of such computational method to prioritize genes and 

their respective biological pathways are proven to be useful in complex diseases studies (20). 

Furthermore, gene and gene-set analysis can  improve the study power  by aggregating the joint 

effects of weakly associated markers, a common challenge in a polygenic trait studies (28). 

Here, we implement several gene-set, pathway and network analytic methods on summary 

statistics of severe malaria GWAS from 17,000 individuals meta-analysed across eleven 

populations and systematically predicted plausible genes and pathways. We further performed rare 

variant analysis on raw GWAS dataset (N = ~11,000) of Kenya, Gambia and Malawi populations. 

Finally, we performed population genetic structure analysis of the identified genes in the three 

malaria endemic countries and across global populations. Established over the course of long co-

evolution time, blood stage life cycle of the parasite constitutes the most extensive interplay 

between host and parasite genomes which leads to the clinical symptoms of SM. Therefore, our 

results suggest that severe malaria resistance is polygenic and attributed to multiple genes 

aggregated in pathogenic pathways linked to the erythrocyte stage lifecycle of P. falciparum. 

Results 

Functional mapping and annotations 

 
We applied three functional mapping strategies to the severe malaria GWAS summary statistics 

(N=17,000 samples, ~17 million SNPs) meta-analysed across 11 malaria endemic populations in 

Africa, Asia and Oceania (see Material and Methods).  We identified 19 lead SNPs out of 69 

significant SNPs across 6 genomic loci (Supplementary Data 1-3). The genomic locus was 

defined as the region that contain independent lead SNPs and nominally significant SNPs (p<0.05) 

in linkage dis-equilibrium (LD) block with lead SNPs. An independent significant SNP was 

defined as a genome-wide significant SNP (P-value < 5e-8) within the genomic boundary of LD 

threshold of r2 > 0.6. Lead SNPs were selected from independent significant SNPs at LD threshold 

of r2 > 0.1. SNPs in close proximity (< 250 kb) were considered as a single locus and thus, each 

genomic locus can contain multiple independent significant SNPs and lead SNPs. These SNPs 
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were significantly enriched in ncRNA-intronic, intronic, intergenic and ncRNA-exonic regions 

(Fig1.A). 

 Our functional mapping strategies yielded a total of 57 protein-coding genes (Table 1, 

Supplementary Data 4). These include 29, 23 and 14 genes identified by eQTL mapping, 

chromatin interaction mapping and positional mapping, respectively (Fig1.B). Two genes 

including ATP2B4 and HBD were identified by all the three gene mapping strategies while five 

genes including GYPB, HBG2, TRIM6-TRIM34, OR51F2 and TRIM68 were predicted by two of 

the three mapping strategies (Supplementary Data 4).  

The identified genes were enriched in five cytogenic positions including  11p15 (p=2.65e-18), 

chr9q34 (p=4.63e-9) , chr4p31(p= 4.6e-8), chr1q32 (p=2.6e-7), chr3q26 (p=7.97e-4) (S1 Table).  

We noted that the majority (33%) of the identified genes were clustered on 11p15 (Fig 2). These 

include beta globin gene cluster: HBB, HBD, HBG1, HBG2 and HBE1; Tripartite motif-containing 

(TRIM) family genes including TRIM68, TRIM21; and genes involved in olfactory receptors and 

G protein-coupled signalling (GPCR) such as: CCKR OR51F2 and OR51L (Supplementary 

Table 1). About two third (13/19) of the genes in this locus are in eQTL and chromatin interactions 

(Supplementary Data 4 and Supplementary Fig 1).   

All the implicated genes in chr9q34 locus are located outside the genomic risk locus and were 

identified by eQTL mapping (Supplementary Data 4, Supplementary Fig 2). These include 

surfeit gene cluster such as: SURF2, SURF4, MED22 and SURF6; a metalloprotease gene, 

ADAMTS13; and a gene encoding ORS blood group system coding gene (GBGT1). In the 

remaining enriched cytogenic positions, the known genes including ATP2B4 (chr1q32); FREM3, 

GYPE and GYPB (chr4p31) were replicated. Other notable genes include BTG2 a tumour 

suppressor gene on chr1q32 and B3GALNT1 on chr3q26 (Supplementary Data 4). 
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Fig.1. A) Proportion of malaria resistance GWAS SNPs in different genomic annotation 

categories. B) The number of genes identified by each of the three functional mapping strategies 

including positional mapping, eQTL and chromatin interactions. The intersection sections of the 

circles depict the number overlapped genes between the respective mapping strategies. 
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Fig. 2. Regional plot of severe malaria susceptibility GWAS locus on chromosome 11. Non-

GWAS-tagged SNPs are shown at the top of the plot as rectangles since they do not have a P-value 

from the GWAS. Prioritized genes are highlighted in red. eQTLs are plotted per gene and coloured 

based on tissue types. CADD score, RegulomeDB score and eQTLs, SNPs which are not mapped 

to any gene are coloured grey. 
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Table 1. Fifty-seven severe malaria resistance candidate genes identified by eQTL mapping, 

chromatin interaction mapping and positional mapping strategies implemented in FUMA 
Genes -Ensg Symbols Chr Cytoband Start End Biotype Independent significant SNPs 

ENSG00000160323 ADAMTS13 9 q34.2 136279478 136324508 protein coding rs8176751; rs687621 

ENSG00000197859 ADAMTSL2 9 q34.2 136397286 136440641 protein coding rs8176751 

ENSG00000179674 ARL14 3 q25.33 160394948 160396233 protein coding rs116423146 

ENSG00000058668 ATP2B4 1 q32.1 203595689 203713209 protein coding rs4951370 

ENSG00000169255 B3GALNT1 3 q26.1 160801671 160823172 protein coding rs116423146 

ENSG00000159388 BTG2 1 q32.1 203274619 203278730 protein coding rs4951370 

ENSG00000110148 CCKBR 11 p15.4 6280966 6293357 protein coding rs113892119:rs28576676 

ENSG00000133063 CHIT1 1 q32.1 203181955 203242769 protein coding rs4951370 

ENSG00000113758 DBN1 5 q35.3 176883609 176901402 protein coding rs687621 

ENSG00000122176 FMOD 1 q32.1 203309756 203320617 protein coding rs4951370 

ENSG00000183090 FREM3 4 q31.21 144498455 144621828 protein coding rs201510180 

ENSG00000109458 GAB1 4 q31.21 144257915 144395721 protein coding rs111374053 

ENSG00000148288 GBGT1 9 q34.2 136028340 136039332 protein coding rs687621 

ENSG00000250361 GYPB 4 q31.21 144917257 145061844 protein coding rs201510180 

ENSG00000197465 GYPE 4 q31.21 144792020 144826716 protein coding rs34330779 

ENSG00000244734 HBB 11 p15.4 5246694 5250625 protein coding rs334 

ENSG00000223609 HBD 11 p15.4 5253908 5256600 protein coding rs334; rs4290259; rs79681613; 
rs113892119:rs28576676 

ENSG00000213931 HBE1 11 p15.4 5289582 5526847 protein coding rs145843585 

ENSG00000213934 HBG1 11 p15.4 5269313 5271122 protein coding rs7927066 

ENSG00000196565 HBG2 11 p15.4 5274420 5667019 protein coding rs145843585; rs183322782; 
rs148179286;rs7927066;rs11037724 

ENSG00000203813 HIST1H3H 6 p22 27777842 27778314 protein coding rs8176751 

ENSG00000122188 LAX1 1 q32.1 203734304 203745361 protein coding rs4951370 

ENSG00000148297 MED22 9 q34.2 136205160 136214986 protein coding rs8176751; rs687621 

ENSG00000108960 MMD 17 q22 53469974 53499353 protein coding rs8176751 

ENSG00000167346 MMP26 11 p15.4 4726157 5013659 protein coding rs141862673; rs145429724 

ENSG00000169251 NMD3 3 q26.1 160822484 160971320 protein coding rs116423146 

ENSG00000184881 OR51B2 11 p15.4 5344541 5345582 protein coding rs145843585 

ENSG00000176925 OR51F2 11 p15.4 4842551 4843686 protein coding rs141862673; rs145429724; 
rs113892119:rs28576676 

ENSG00000176798 OR51L1 11 p15.4 5020213 5021160 protein coding rs113892119:rs28576676 

ENSG00000182070 OR52A1 11 p15.4 5172239 5207612 protein coding rs116780407 

ENSG00000228474 OST4 2 p23.3 27293340 27294641 protein coding rs8176751 

ENSG00000142657 PGD 1 p36.22 10458649 10480201 protein coding rs687621 

ENSG00000143850 PLEKHA6 1 q32.1 204187979 204346793 protein coding rs4951370 

ENSG00000163590 PPM1L 3 q25.33 160473390 160796695 protein coding rs116423146 

ENSG00000188783 PRELP 1 q32.1 203444956 203460480 protein coding rs4951370 

ENSG00000170955 PRKCDBP 11 p15.4 6340176 6341877 protein coding rs28576676 

ENSG00000160271 RALGDS 9 q34.2 135973107 136039301 protein coding rs8176751; rs687621 
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ENSG00000148300 REXO4 9 q34.2 136271186 136283164 protein coding rs8176751 

ENSG00000080345 RIF1 2 q23.3 152266397 152364527 protein coding rs8176751 

ENSG00000170153 RNF150 4 q31.21 141780961 142134031 protein coding rs111374053 

ENSG00000136193 SCRN1 7 p14.3 29959719 30029905 protein coding rs687621 

ENSG00000160326 SLC2A6 9 q34.2 136336217 136344259 protein coding rs8176719; rs687621 

ENSG00000196542 SPTSSB 3 q26.1 161062580 161090668 protein coding rs116423146 

ENSG00000148290 SURF1 9 q34.2 136218610 136223552 protein coding rs8176751; rs687621 

ENSG00000148291 SURF2 9 q34.2 136223428 136228045 protein coding rs8176751 

ENSG00000148248 SURF4 9 q34.2 136228325 136242970 protein coding rs8176751 

ENSG00000148296 SURF6 9 q34.2 136197552 136203235 protein coding rs8176751; rs687621 

ENSG00000196628 TCF4 18 q21.2 52889562 53332018 protein coding rs687621 

ENSG00000132109 TRIM21 11 p15.4 4406127 4414926 protein coding rs28576676 

ENSG00000132274 TRIM22 11 p15.4 5710919 5758319 protein coding rs28576676 

ENSG00000258659 TRIM34 11 p15.4 5640994 5665628 protein coding rs183322782; rs148179286 

ENSG00000213186 TRIM59 3 q25.33 160150233 160203561 protein coding rs116423146 

ENSG00000121236 TRIM6 11 p15.4 5617339 5634188 protein coding rs28576676 

ENSG00000258588 TRIM6-
TRIM34 

11 p15.4 5617955 5665628 protein coding rs183322782; rs148179286; rs28576676 

ENSG00000167333 TRIM68 11 p15.4 4619902 4629489 protein coding rs10837488; 
rs4290259:rs113892119:rs28576676 

ENSG00000175518 UBQLNL 11 p15.4 5535623 5537935 protein coding rs11037724 

ENSG00000109445 ZNF330 4 q31.21 142142041 142155851 protein coding rs111374053 

 

 

 

Candidate genes identified by gene-based GWAS analysis 

 

Taking the polygenic nature of severe malaria resistance trait in to consideration (11), we applied 

a pathway scoring algorithm(Pascal) (22) method that aggregates  all SNPs within a gene and 

capture polygenic effects at the gene level (see Material and Methods). The Pascal analysis 

replicated 13 genes that were identified by our functional annotation methods in malaria genomic 

risk loci (Supplementary Table 2) and identified 125 additional genes across the genome 

(Supplementary Data 5). The genes with top scores outside genomic risk loci include CSMD1 

(p=1.58e-12) on chr8p23.2 and RBFOX1 (p=9.76e-11) on chr16p13.3. CSMD1 is an important 

regulator of complement activation and inflammation (29, 30) while RBFOX1 encodes for an 

mRNA-splicing factor linked to autism spectrum disorders (31). A previous study in Tanzanian 

population reported association of variants in  RBFOX   gene with  SM (17).  
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Other important genes identified by gene-based GWASs include neural adhesion molecules 

including CNTN4 (p=3.88e-9) on chr3p26.3-p26.2; PCSK5(p=2.88e-11) on chr9q21.13; CDH13 

(p=4.19e-8) on chr16q23.3) and TMEM132 (p=2.18e-8) on chr17q12 (Supplementary Data 5). 

These genes were reported to be linked  to autism spectrum disorders and other 

neurodevelopmental conditions (32). Furthermore, protein kinases including FLT4 (p=9.96e-8) on 

5q35.3; and PTPRT (p=4.92e-7) on chr20q12-q13 and PRKG1 ((p=1.2e-6) on 10q11.2-q21.1 were 

among the genes with top scores (Supplementary Data 5). PTPRT is a tyrosine phosphatase 

receptor involved in STAT3 pathway and was recently reported to be associated with mild malaria 

susceptibility in Benin populations (33). PRKG1 is a cyclic guanosine monophosphate (GMP) 

dependent protein kinase which plays important roles in relaxation of vascular smooth muscle and 

inhibition of platelet aggregation (34). FLT4 acts as a cell-surface receptor for vascular endothelial 

growth factor C (VEGFC) and vascular endothelial growth factor D (VEGFD), and plays an 

essential role  in the development of the vascular network (35). It has been shown that VEGF and  

its receptor-related molecules are expressed in the brain tissues and reported to play protective 

during CM  (36).  
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Gene-based rare variant association 

 

Because rare variants are known to play role in the variation of most complex traits, we applied 

optimal unified sequence kernel association test (SKAT-O), which combines burden and variance-

component analyses (37) to the raw genotype GWAS dataset of Gambia, Kenya and Malawi 

populations (see Material and Methods). The SKAT-O analysis identified a total of six and nine 

nominally significant genes in Gambia and Malawi populations, respectively. These include nine 

long intergenic non-protein coding RNAs (LincRNAs), MIR4282, GLYR1, NDNF, EPB41L2, 

ATP8A1 and WASF3 (Supplementary Table 3). However, none of these genes were significant 

after correction for multiple testing.   

 

Functional networks and subnetworks of severe malaria resistance candidate genes 

 
To investigate the functional interaction between all the candidate malaria resistance candidate 

genes identified in this study, we implemented network analysis (see Materials and Methods). 

Our global network generated 351 functional interactions between 268 genes. Topology analysis 

identified ABO, HBB, HBD, HBE1, ATP2B4 as highly influential connector hub genes influencing 

at least two subnetworks/communities while TRIM21 and OR5F2 constituted independent 

communities. MED22 and OR551B6 constituted provincial hub genes (Fig 3). 
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Fig. 3. Network generated from predominant severe malaria protective candidate genes, 

comprising of 351 interactions between 268 nodes. Topology analysis identified ABO, HBB, HBD, 

HBE1, ATP2B4 as highly influential connector hub genes influencing at least two 

subnetworks/communities while TRIM21 and OR5F2 constituted independent communities. 

MED22 and OR551B6 constituted provincial hub genes.  
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Molecular functions and pathways of candidate severe malaria resistance genes  
 

To test whether the genes predicted  by the three functional mapping strategies overlapped in 

functional gene sets and pathways, we conducted gene enrichment analysis  implemented in 

FUMA (20) using MsigDBc5 (38) gensets as background  (see Material and Methods). The gene 

enrichment analysis identified several shared biological functions linked to erythrocyte-related 

pathways including three gene ontology (GO) cellular components, eight GO molecular functions 

and fourteen GO biological processes (Table 2).  The implicated cellular components include 

haptoglobin-haemoglobin complex (p=7.6e-8), haemoglobin-complex(p=7.63e-8) and cytosolic-

part (p= 6.73e-3). The enriched molecular functions include haptoglobin binding (p=4.87e-8), 

oxygen carrier activity(3.8e-7), oxygen binding (p=4.87e-5) and other activities related to 

haemoglobin functions. The shared biological activities include oxygen transport (p=4.22e-6), gas 

transport (p=4.87e-6), hydrogen peroxide catabolism (p=9.08e-5), protein hetero-oligomerization 

(p=2.86e-3), protein complex-oligomerization (p=4.23e-3), interferon gamma mediated signalling 

pathways (p=3.09e-2) and blood coagulation (p=3.09e-2). 

In addition to genes within severe malaria genomic risk loci, we performed functional analysis and 

pathway analysis for the genes identified by the gene-based GWAS using Database for Annotation, 

Visualization and Integrated Discovery (DAVID) method (39) and Pascal (22), respectively(see 

Material and Methods). The DAVID analysis yielded eight functional categories, the majority of 

which are linked to malaria pathogenesis (Table 3) including GPCR signalling, 

membrane/transmembrane proteins, Na+/K+ transporting ATPases, cell adhesions, haemoglobin 

related functions, calcium signalling and actin binding activities.  

Similarly, Pascal analysis implicated eleven significant pathways the majority of which are linked 

to malaria pathogenesis in RBCs, vasculatures and brain (Fig 4A). These include G protein-

coupled receptor signalling (p=7.88e-15), haemostasis (p=4.52e-10), neuronal system (p=1.25 e-

9), axon guidance (p=5.93e-8), calcium signalling (p=1.10e-7), chemical transmission across 

synapses (p=1.75 e-7), immune system (p=2.61e-6), signalling by Rho GTPase (p=1.45 e-5) and 
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tight junction (p=3.57 e-5). Furthermore, differential expression of genes implicated by Pascal 

method showed significant enrichment in blood vessels (Fig 4B).  

 

Table 2. Gene enrichment results of functionally annotated genes in malaria genomic risk 

loci identified by FUMA method 
GO terms 

 

GeneSet N. genes N. enriched 
genes 

P-value adjusted 
P-value 

Genes 

Cellular 
components 

Haptoglobin-
haemoglobin complex 

11 5 8.91e-11 7.63e-8 HBB, HBD, HBG1, HBG2, HBE1 

Haemoglobin complex 12 5 1.52e-10 7.63e-8 HBB, HBD, HBG1, HBG2, HBE1 

Cytosolic part 239 7 6.73e-6 2.25e-3 HBB, HBD, HBG1, HBG2, HBE1, DBN1, SURF6 

Biological 
functions 

Haptoglobin binding 10 5 4.87e-11 8.02e-8 HBB, HBD, HBG1, HBG2, HBE1 

Oxygen carrier activity 14 5 3.84e-10 3.16e-7 HBB, HBD, HBG1, HBG2, HBE1 

Oxygen binding 36 5 6.87e-8 3.77e-5 HBB, HBD, HBG1, HBG2, HBE1 

Molecular carrier 
activity 

41 5 1.35e-7 5.56e-5 HBB, HBD, HBG1, HBG2, HBE1 

Oxidoreductase activity 
acting on peroxide as 
acceptor 

56 5 6.66e-7 2.19e-4 HBB, HBD, HBG1, HBG2, HBE1 

Haemoglobin binding 7 3 8.69e-7 2.38e-4 HBB, HBD, HBE1 

Antioxidant activity 85 5 5.35e-6 1.26e-3 HBB, HBD, HBG1, HBG2, HBE1 

Tetrapyrrole binding 136 5 5.23e-5 1.08e-2 HBB, HBD, HBG1, HBG2, HBE1 

Biological 
Processes 

Oxygen transport 15 5 5.74e-10 4.22e-6 HBB, HBD, HBG1, HBG2, HBE1 

Gas transport 19 5 2.20e-9 8.10e-6 HBB, HBD, HBG1, HBG2, HBE1 

Hydrogen peroxide 
catabolic process 

32 5 3.71e-8 9.08e-5 HBB, HBD, HBG1, HBG2, HBE1 

Antibiotic catabolic 
process 

50 5 3.74e-7 6.88e-4 HBB, HBD, HBG1, HBG2, HBE1 

Drug catabolic process 108 6 8.05e-7 1.18e-3 CHIT1, HBB, HBD, HBG1, HBG2, HBE1 

Cofactor catabolic 
process 

66 5 1.52e-6 1.87e-3 HBB, HBD, HBG1, HBG2, HBE1 

Protein hetero-
oligomerization 

133 6 2.73e-6 2.86e-3 HBB, HBD, HBG1, HBG2, HBE1, HIST1H3H 

Protein complex 
oligomerization 

551 10 4.60e-6 4.23e-3 TRIM21, HBB, HBD, HBG1, HBG2, HBE1, TRIM6, 
TRIM34, TRIM22, HIST1H3H 

Antibiotic metabolic 
process 

91 5 7.49e-6 6.11e-3 HBB, HBD, HBG1, HBG2, HBE1 

Cellular detoxification 107 5 1.65e-5 1.21e-2 HBB, HBD, HBG1, HBG2, HBE1 

Protein trimerization 54 4 2.00e-5 1.34e-2 TRIM21, TRIM6, TRIM34, TRIM22 

Detoxification 122 5 3.11e-5 1.91e-2 HBB, HBD, HBG1, HBG2, HBE1 

Interferon gamma 
mediated signalling 
pathway 

70 4 5.60e-5 3.09e-2 TRIM21, TRIM68, TRIM34, TRIM22 

Coagulation 335 7 5.89e-5 3.09e-2 HBB, HBD, HBG1, HBG2, HBE1, HIST1H3H, ADAMTS13 

Oxygen transport 15 5 5.74e-10 4.22e-6 HBB, HBD, HBG1, HBG2, HBE1 
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Table 3: Functional categories of genes identified by gene-based GWAS analysis grouped 
using DAVID method 

Functional group Genes Enrichment Score 
GPCR signalling pathways and 
olfactory receptions 

OR51B6, FZD10, TMEM132C, OR51V1, OR51B2, OR52K2, SORCS2, OR56A1, OR52B4, 
TMEM132D, OR51E2, OR51T1, OR51B4, OR51B5, VSTM1, OR51F2, THSD7B 

3.15 

  
Transmembrane protein and, 
Na+/K+ transporting ATPase 

TSPAN11, VSTM1, TMEM132D, SURF4, NKAIN2, TMEM132C, EVC, SLC35F3 3.07 

Tyrosine phosphatase, tyrosine 
kinase, cell adhesion molecule-
like 

OPCML, PTPRD, PTPRT, CNTN5, FLT4, NTM, CNTN4, PTPRN2, VSTM1, PTPRS 2.51 

Haemoglobin related activities HBG2, HBE1, HBB, HBD 2.42 

Sodium leak and Potassium 
channel interacting protein 

KCNIP1, NALCN, KCNIP4, KCTD1 1.14 

zinc finger protein SMYD3, TSHZ2, ZNF385B, ZNF385D 0.61 

Actin binding LIM protein family 
and RAR-related orphan receptor 
A 

RORA, THRB, GLIS3, ABLIM2 0.45 

Calcium/calmodulin-dependent 
protein kinase, cGMP-dependent 
kinase and fms-related tyrosine 
kinase 

PRKG1, CAMK1D, FLT4, VRK1 0.44 
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Fig. 4. A) Pathway scores obtained from pascal analysis. Significant Pathways at Bonferroni 

corrected P-value ≤ 0.05 are coloured in red. B) Tissue specific gene expression and shared 

biological functions of genes identified by pascal in GTEx v8 30 general tissue types. Input genes 

were tested against each of the precomputed differentially expressed sets using the hypergeometric 

test. Significant enrichment at Bonferroni corrected P-value ≤ 0.05 are coloured in red. 

Population genetic structure of   malaria resistance candidate genes 

 

We noted that the minor allele frequencies (MAF) of the SNPs residing in the identified genes are 

generally higher in the three malaria populations compared to 20 ethnic groups (Supplementary 

Fig 1 and 2). We further observed that the proportion of pathogenic SNPs in a total of eighteen 

genes is much higher in the three malaria endemic populations compared to other populations 

(Supplementary Data 6 and 7). These include TRIM family genes such as TRIM21, TRIM22, 

TRIM68, TRIM6-TRIM34 and TRIM34 in which the pathogenic SNP proportion ranges from 13.3-

25%; olfactory receptors genes such as: OR51B4, OR51B6, OR51B2, OR56A1, OR51L1, OR52K2 

and OR51E2 in which the pathogenic SNP proportion ranges from (27.3 -100%).  
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The principal component analysis based on the SNPs residing in the identified genes effectively 

clustered all the populations according their ancestry (Fig 5). 

 

 
 

Fig .5. A)  We clustered the merged malaria GWAS dataset containing only SNPs residing in the 

identified malaria resistance candidate genes (N= 10578 samples, 15,675 SNPs) using smartpca 

software.  The three populations and their case/control status were indicated by different colours 

and symbols. B). We clustered the AGVP dataset containing only SNPs residing in the identified 

malaria resistance candidate genes (N=4932 samples, 93,5549 SNPs) in to sub-regions/populations 

using smartpca software. The populations were indicated by different colours and symbols. 
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Discussions 
 

In this study, we applied statistical functional analytic method to the largest ever severe malaria 

susceptibility GWAS dataset and identified the well-known malaria resistance loci and a number 

of novel genes that can guide future functional experiments. We noted that severe malaria 

resistance is attributed to multiple genes and pathways linked to malaria pathogenesis during blood 

stage life cycle of the parasite including merozoite invasion, parasite growth, cytoadherence, and 

signal transduction. The genes that were identified by our three mapping strategies might have 

equal importance; genes that were identified by positional mapping may act at protein level 

through structural changes while the genes identified by eQTL and chromatin interactions exert 

their influences  through quantitative changes at gene expression levels (20). 

The fact that the functionally mapped genes are clustered on chromosome 11p15 is consistent with 

our recent work in which we reported the disproportionate concentration of   SNP-heritability on 

chromosome eleven. This might reinforce the need for targeting this chromosome in the future  

severe malaria susceptibility studies (11). We noted that in addition to the sickle trait gene (HBB), 

our mapping strategies identified other members of beta globin gene cluster that cause various 

forms of beta-thalassemia (HBE1, HBD, HBG and HBG2). 

Our network analysis showed that all these genes constituted hub with which several other genes 

are connected; which reaffirm the importance of homeopathies in resistance against severe malaria. 

Beta-thalassemia and other hemoglobinopathies are thought to confer protection against severe 

malaria by suppressing the parasite growth and by mitigating associated pathogenic effects (40).  

The proposed protective mechanisms of hemoglobinopathies against severe malaria has been 

extensively  reviewed elsewhere (40, 41). In addition to the beta globin gene cluster, the Tripartite 

motif (TRM) containing gene family (TRIM68 and TRIM21) identified in this locus are known to 

play critical role in down regulating Toll-like receptors(TLR)- and Rig-like receptors (RLR)-

induced responses and protect from autoimmune and inflammations (42, 43). Mal-adapted 

inflammatory reactions is one of the hall mark pathogenic pathways in severe malaria (44, 45).  

The olfactory receptors super-family genes (CCKR, OR51F2 and OR51L) identified in this locus 

might involve  in G protein-coupled receptors(GPCR) signalling activities which is important in 

blood stage life cycle of P. falciparum (46). However, it is also possible that these genes were 
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detected because of their abundance and close proximity to with globin gene cluster(47). We also 

be noted that the genes in the TRM family and olfactory receptors super-family contain higher 

proportion of pathogenic SNPs in the three-malaria endemic population compared to the global 

populations. The majority of the well-known malaria protective genes have deleterious variants 

and were evolved under balancing selections [42].  

 Our eQTL mapping identified ADAMTS13 gene on chr9q34 outside the malaria genomic risk 

locus which would not have been identified by the conventional SNP mapping approach (20). 

ADAMTS13 is a zinc-containing metalloprotease enzyme that cleaves, von Willebrand factor vWF, 

a large protein derived from endothelial surface and megakaryocytes which plays a crucial role in 

basic haemostasis (48, 49). Following activation of endothelial cells, vWF is directly released in 

to plasma and basement membrane or is stored in Weibel–Palade bodies (WPBs) from where it is 

released by regulated secretion to promote adhesion of platelets at the sites of vascular injury and 

facilitate vascular healing (49). However, abnormal accumulations of vWF caused by  deficiency 

of plasma ADAMTS13 trigger intravascular platelet aggregation and micro thrombosis leading to 

a vascular disease, Thrombotic Thrombocytopenic Purpura (TTP) (48). Indeed, recent works have 

linked the platelet-mediated clumping of infected erythrocytes in microvasculature  during cerebral 

malaria with increased level of VWF in plasma caused by mutations in ADAMTS13 genes (50–

52). 

 In the same genomic locus, our eQTL functional mapping identified surfeit gene cluster, 

metalloprotease genes linked to epithelial adhesions and blood coagulations.  SURF4 gene  has 

been implicated in epithelial cell adhesion trait (53), MED22 gene is  linked to VWF factor/factor 

VIII level measurement (54)  and SURF6 has been implicated in epithelial ovarian cancer (55). 

Our network analysis showed that MED22 forms a central hub to which the rest of surfeit gene 

cluster are connected. This may suggest that the greater importance of MED22 gene compared 

with the other members of the cluster. However, further comprehensive studies are needed to better 

understand the association of these genes with SM resistance. In the remaining genomic risk loci, 

the well-known genes including ATP2B4 (chr1q32), FREM3, GYPE and GYPB (chr4p31) were 

replicated and few additional genes were identified. The glycophorin gene cluster, GYPA and 

GYPB encode the MNS blood group system and are host-erythrocyte receptors for P. falciparum; 

suggesting that polymorphisms in these genes play protective role by interfering with the invasion 
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processes [55]. ATP2B4 variants may impair the parasite lifecycle in erythrocyte by affecting  

intracellular Calcium homeostasis (18, 56).  

Novel genes identified in the loci include BTG2 on chr1q32 and B3GALNT1 on chr3q26. BTG2 is 

a tumour suppressor gene known to be  linked to RBC related traits including MCHC level, RBC 

distribution and reticulocyte count (57). B3GALNT1 encodes globoside blood group system which 

is determined by P antigen (58). Globoside/P antigen is the most abundant neutral glycolipid in 

the erythrocyte membrane and has been recognized as a cellular receptor for parvo-B19 virus (59). 

Individuals lacking this receptor are resistant to parvo-B19 virus and uro-pathogenic E.coli 

infections (59, 60).  Further investigations are needed to establish the link between these genes and 

SM resistance.  

We noted that the mapped genes share cellular components including haptoglobin binding, 

haemoglobin complex and cytosolic part and several overlapped molecular functions and 

biological processes linked with the blood stage life cycle of the parasite. P. falciparum spends 

most of its lifecycle within RBCs, where it undergoes multiple rounds of invasion, growth, 

replication and egress; causing  the signs and symptoms of malaria (44, 61). The majority of the 

classical haemoglobin variants confer protection against severe malaria by restricting invasion 

process and intraerythrocytic growth of the parasite (40). Haptoglobin is an acute phase 

glycoprotein present in human plasma. It forms stable complexes with extracellular haemoglobin 

that is released from lysed RBCs and thereby curtail the haemoglobin-induced oxidative tissue 

damage (62). 

 P. falciparum ingest the host cell cytosol to obtain nutrients and space for growth in the RBCs 

(63). A recent study showed that the host cytosol uptake process is mediated by parasite’s protein 

called VPS45 (64). The fact that the identified candidate genes in this study were enriched in the 

cytosol part of the cellular component might suggest that these genes might arrest the nutrient up-

take of the parasites and thereby confer protection against their pathogenic effects. In addition to 

haemoglobin related functions, some of the candidate genes were enriched in other pathways 

linked to  malaria pathogenesis including  blood coagulation related processes malaria (65, 66) and  

interferon gamma mediated signalling pathways (67, 68). This may suggest that the host genetic 

factors might interfere with parasite development and its pathogenic outcomes at multiple levels 

to confer protection the life-threatening form of malaria.  
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Our gene-based GWAS analysis replicated the well-known malaria resistance candidate genes in 

the genomic risk loci and identified several genes across the genome. Genes with top scores encode 

for different malaria relevant functions such as: regulation of inflammation (CSMD1), neural 

adhesion (CNTN4, PCSK5, CDH13, TMEM132), vascular epithelial development (FLT4) and 

protein kinases (PTPRT, PRKG1). Furthermore, functional analysis of the candidate genes yielded 

functional categories linked with the blood stage lifecycle of the parasite and associated 

pathologies. The top enriched functions include GPCR signalling, membrane/transmembrane 

proteins, [Na+/K+] transporting ATPases, Sodium leak and Potassium channel interacting 

proteins, cell adhesions molecules and Calcium/Calmodulin-dependent protein kinases (CDPKs). 

CDPKs have crucial functions in calcium signalling at various stages of the parasite’s life cycle 

and is proposed to be one of the  potential drug targets against malaria (69). It has been shown that 

P. falciparum infection activates host signalling pathway involving protein kinase C (PKC) (70).  

Similarly, host GPCR signalling pathways have been shown to play vital roles in invasion, intra-

erythrocyte parasite development  and egress processes  (71, 72); suggesting the existence of 

substantial interactions between host membrane/transmembrane signalling and parasite signalling 

elements which might mediate the disease severity. Further studies are needed to decouple the 

host-parasite interface of signal transduction and explore the potential target for new therapeutics. 

Sodium leak and Potassium channel interacting proteins, [Na+/K+] transporting ATPases play 

critical role in maintaining electrochemical equilibrium in normal erythrocytes. However, upon 

invasion by trophoblast stage of the parasite, the ion pump-leak balance is perturbed; with  

increased leak rate and decreased pump rate resulting in a remarkable increase in [Na+] and 

decrease in [K+] in the erythrocyte cytosol (73, 74). This results in formation of a new permeability 

pathway (NPP) in the erythrocyte membrane which allow the transport of nutrients and waste 

products necessary for the parasite. The composition and physiological role of NPP has been 

reviewed elsewhere (75, 76).  Studies have shown that both parasites driven proteins encoded by 

clag3.1 and clag3.2 (77, 78) and host benzodiazepine receptor mediate the formation of NPP (79, 

80).  Our result may suggest the existence of multiple host genes that are involved in mediating 

this process. Given that TPP can be a potential target for new therapeutics, further studies are 

needed to investigate the role of host and parasites genetics in mediating the channel and its 

pathophysiology.  
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 In addition to the well-known pathways such as: haemostasis and immune system that play role 

in malaria resistance (13), our analysis identified novel pathways including cell adhesion 

molecules, Rho GTPase activities, tight junction, neuronal system and axon guidance. One of the 

key virulence factors of P. falciparum is  its capacity to  modify  iRBCs  to adhere to the 

endothelium of the vasculature and, thereby, sequester in capillaries and postcapillary venules in 

vital organs leading to severe disease manifestations (61). Adhesion phenotype is mediated by 

expression of P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the iRBCs (81, 82). 

The binding of iRBCs with endothelium involve various adhesion molecules including CD36, 

ICAM-1, E-selectin and chondroitin sulfate A (CSA) that are variably expressed in different 

organs (83–85). The neural adhesion molecules identified in the current study might involve in 

receptor activities and their polymorphisms might play protective roles against SM.  Furthermore, 

adhesion events have been shown to activate Rho kinase signalling pathway which is strongly 

implicated in various vascular diseases (86). The genes that are enriched in these pathways might 

provide protection against severe malaria by weakening the cytoadherence interactions and 

associated pathologies. Other genes that are enriched in neuronal system, axon guidance and tight 

junction might be linked with intra cerebral pathogenesis of SM (87). Furthermore, the candidate 

malaria resistance genes identified by gene-based GWAS were differential expressed in blood 

vessels; suggesting that the majority of the identified genes are likely  counteract P. falciparum 

induced endothelial disfunctions in microvasculature and capillaries (44). 

In conclusion, our functional mapping analysis identified 57 genes located in the known malaria 

genomic loci while our gene-based GWAS analysis identified additional 125 genes across the 

genome which can potentially guide future experimental studies. The identified genes were 

significantly enriched in malaria pathogenic pathways including multiple overlapping pathways in 

erythrocyte-related functions, blood coagulations, ion channels, adhesion molecules, membrane 

signaling elements and neuronal systems. Overall, our results suggest that severe malaria 

resistance trait is attributed to multiple genes that are enriched in overlapping pathways linked to 

severe malaria pathogenesis; highlighting, the possibility of harnessing new malaria therapeutics 

that can simultaneously target multiple malaria protective host molecular pathways. Further 

experimental studies are needed to validate the findings in the current study. 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 17, 2020. ; https://doi.org/10.1101/2020.08.15.20175471doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.15.20175471


 23 

Materials and Methods 
 

Description of the study datasets  

We accessed a previous severe malaria GWAS datasets (16)  (N = ~11,000) of three African 

populations including Kenya, Gambia and Malawi from European Phenome Genome Archive 

(EGA) following the standard data access protocols outlined in (88, 89). Children with severe 

malaria cases were recruited on admission to hospital using definitions as per WHO guidelines for 

cerebral malaria (Blantyre coma score < 3 in children or Glasgow coma score < 11 in adults), 

severe malarial anaemia (haemoglobin < 5 g/100 mL or haematocrit < 15%) and other malaria-

related symptoms (90). Control samples  were obtained from representative of the ethnic groups 

of the cases or in some study sites from the local population (89). The samples were genotyped on 

Illumina Omni 2.5Marray and QC filtered as described in (14). In addition to the genotype dataset, 

we obtained a set of  severe malaria susceptibility GWAS summary statistics (N=17,000)  meta-

analysed across eleven population in Africa, Oceania and Asia from (18). The dataset contained 

information on GWASs of individual study populations and their meta-analysis. We additionally 

accessed a merged data set from 1000 Genomes Project and African Genome Variation Project 

(AGVP)(91) of which 20 world-wide ethnic groups (Supplementary Table 4) have been grouped 

following ethno-linguistic information (92).  

 
Functional mapping and annotations  

 

We used the meta-analyzed malaria GWAS summary statistics (N=17,000 samples, 17million 

SNPs) across eleven populations(18) for functional mapping and annotations. We implemented 

FUMA(20), a pipeline that determines genomic risk loci and  prioritize potential causal genes by 

incorporating information from multiple sources including GTEx (93), ENCODE (25), Roadmap 

Epigenomics Project (26) and chromatin interaction information (27). Briefly, a pre-calculated LD 

structure based on 1000 Genome version 3 of the African population was used to determine the 

risk loci and independent significant SNPS from the GWAS summary statistics data. Independent 

significant SNP was defined as a genome-wide significant SNP (P-value < 5e-8) within LD 

threshold of r2 >0.6.  Other nominally significant SNPs (p<0.05) that are in LD (r2 <0.6) with 
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independent significant SNPs were designated as candidate SNPs and included for annotation 

analysis. From identified independent significant SNPs, lead SNPs were selected at LD threshold 

of r2 >0.1. SNPs in close proximity (< 250 k) were considered as a single locus and thus, each 

genomic locus can contain multiple independent significant SNPs and lead SNPs. 

We then implemented three gene mapping strategies including positional mapping, expression 

Quantitative Trait Locus (eQTL) mapping, and chromatin interaction implemented in FUMA(20). 

Positional mapping was performed by ANNOVAR tool (94) using  Ensembl (build 85; 

http://www.ensembl.org/) dataset. A maximum distance of 10kb window size upstream and 

downstream was used to map SNPs to genes. SNPs filtering was carried out based on CADD 

score(95), RegulomeDB score (96) and 15-core chromatin state (97).  

eQTL mapping was performed for genes within 1 Mb of the most significant variant using   

datasets that contain eQTL information related to severe malaria such as brain and blood. These 

include:PsychENCODE(98), GTExv8 (93), BRAINEAC (99), DICE (100), eQTLGen (101) (and 

Blood eQTLbrowser (102) and scRNA_eQTLs(103). Chromatin interaction mapping was 

performed using dataset including Hi-C data of 21 tissues/cell types obtained from GSE87112. 

(104), Hi-C loops from Giusti-Rodriguez et al. 2019 (105) which contains pre-processed enhancer-

promoter and promoter-promoter interactions based on Hi-C data for adult and foetal human brain 

samples(105), Hi-C based data from PsychENCODE (98) which is composed of Enhancer-

Promoter links based on Hi-C and Promoter anchored Hi-C loops and Enhancer-Promoter 

correlations from FANTOM5 (106). We restricted our analysis to tissues related to severe malaria 

pathogenesis. Genes prioritized by any of these three strategies were considered as potential causal 

genes. To gain  insights in to the biological functions of prioritized genes, we performed gene 

enrichment analysis using  an hypergeometric test in which  gene-sets obtained from MsigDB (38) 

and WikiPathways (107) were used as background genes. We further tested differential gene 

expression values on 54 tissues obtained from the GTEx (93) as indicted FUMA (20).   
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Gene-based genome-wide association analysis  

Considering the polygenic nature of severe malaria susceptibility trait (11), we applied Pascal (22) 

, a gene-based GWAS analysis that can aggregate  all SNPs within a gene and thus, capture modest 

effects.  Briefly, Pascal sum of chi-squared statistics (SOCS) analysis was applied to nominally 

significant GWAS SNPs (p-value < 0.05) and to compute the corresponding gene scores (p-values) 

in 50kb upstream and downstream window. LD information for estimation of correlation structure  

was obtained from African dataset in  1000G phase 3 (108). We further categorized the prioritized 

genes in to different functional groups using DAVID tools (39). Significant genes were  subjected 

to differential gene expression analysis implemented in FUMA software using  54 tissues obtained 

from the GTEx (93). Pathway scores were computed by combining the scores of genes that belong 

to the same gene-set.  The analysis doesn’t require a gene score threshold and incorporates weakly 

associated genes for pathway enrichment.  Gene-fusion parameter was set to 1Mb so that all 

pathway-member genes within 1Mb apart were fused together. Genes in HLA-region and those 

containing more than 3000 SNPs were removed as outlined in Pascal documentations (22).  

 

Gene burden and rare-variants association tests 

 

Given that the GWAS assumption is based on common variant common disease hypothesis, 

GWAS approach always miss potential association signal from rare variants. To examine the 

contribution of rare variants, we applied optimal unified sequence kernel association test (SKAT-

O), which combines burden and variance-component analyses (37) to the  GWAS dataset of 

Gambia, Kenya and Malawi populations. Briefly, we aligned the VCF files including Gambia 

(N=4920 samples, 1.6 million SNPs), Malawi (N=2560 samples, 1.6 million SNPs) and Kenya 

(N=3143 samples, 1.6 million SNPs) to GWAS dataset to 1000 Genome v-3 reference haplotypes 

using Genotype Harmonizer (109) and removed  SNPs with position and strand mismatches and 

phased using SHAPEITv2 (110). We performed imputation using impute 2 (111) and obtained ~ 

20 million from each population. After removal SNPs with low genotype rate and imputation 

accuracy, we retained ~15,000 SNPs in each population. We then  applied SKAT-O test  to the 

quality filtered data following the procedure outlined in  SKAT package (37).   
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Network analysis 
 
We performed a network analysis to investigate the functional interaction between malaria 

resistance candidate genes. Briefly, we obtained functional interaction network from of the 

identified candidate malaria resistance genes using Multiple Association Network Integration 

Algorithm (geneMANIA) tool (112). Using this information, we computed network parameters 

including degree, betweenness and closeness centrality metrics to evaluate the topology of 

nodes(genes) and edges(interactions) in the network using networkX (113) and R igraph packages 

(114).  

Closeness measures the average distance from the node to all other nodes in the network, indicating 

which nodes represent a greater “risk” (maximally close with lowest sum of edge weights) for 

eliciting other nodes. Betweenness measures the number of times that a node lies on the shortest 

path between two other nodes, indicating which nodes serve as a “hub” between other nodes (114). 

The degree of a node is described as the number of direct connections it has with other nodes 

within the network. Low degree nodes usually connect to nodes within their local community 

whereas high degree nodes usually extend to the neighbouring community (114). Using the 

centrality scores, we quantified node centrality to identify hub genes by investigating the 

contribution of the edges and the weight of the edges towards node centrality. The hubs genes 

make strong contributions to the subnetwork and/or global network integrity. Connector hubs and 

provincial hubs refers to nodes that link other nodes across different communities and local 

communities, respectively. 

 

Population genetic structure of malaria-specific resistance candidate genes 

 

We performed the population genetic structure of the identified genes in malaria endemic 

populations (Kenya, Gambia and Malawi) and global populations of 20 ethnic groups obtained 

from African Genome Variation Project (AGVP) (91).  We mapped a total of 14,106,476 SNPs to 

the identified candidate genes using dbSNP database. We  merged the  quality filtered GWAS 

datasets of  the three malaria endemic populations using PLINK software (115) and retained 

dataset that contains the SNPs that are mapped to the identified genes (N= 10578 samples, 15,675 

SNPs).  We performed basic quality control, removed structural variants and ambiguous SNPs 
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using PLINK software (115) as described elsewhere (116).  We retained AGVP dataset containing 

only the SNPs that are mapped to the identified candidate genes (N=4932 samples, 93,5549 SNPs).  

We then partitioned these datasets in to a total 23 different Ethnic groups (20 from AGVP and 3 

from malaria endemic populations) based on population or country labels information.  We 

clustered the merged malaria GWAS dataset and the AGVP dataset containing only SNPs residing 

in the identified genes in to sub-regions/populations using smartpca software (117). For each 

ethnic group, we computed various population genetics analysis including minor allele frequency 

(MAF) at various bins and gene-specific in SNPs MAF by aggregating MAF of all associated 

SNPs within gene from dbSNPs. We finally computed proportion of pathogenic SNPs within the 

candidate genes using ANNOVAR software (94) by computing the number of SNPs reported to 

be pathogenic over total numbers associated SNPs within gene from dbSNPs.  
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 Supplementary Figures and Tables 
 

 
 

Supplementary Fig 1 . Chromatin interactions and eQTLs of severe malaria resistance candidate 

genes on chr 11 risk locus. The most outer layer is the Manhattan plot displaying SNPs with P-

value < 0.05. Candidate SNPs are coloured based on the highest r2 to one of the independent 

significant loci (red: r2 > 0.8, orange: r2 > 0.6). Other SNPs are coloured in grey. The outer circle 

is the chromosome coordinate and genomic risk loci are highlighted in blue. Genes mapped by 

either Hi-C or eQTLs are shown on the inner circle. Genes identified by chromatin interaction and 

eQTLs are coloured orange and green respectively while genes mapped by both are coloured red. 
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Supplementary Fig2. Chromatin interactions and eQTLs of severe malaria resistance candidate 

genes on chr 9 risk locus. The most outer layer is the Manhattan plot displaying SNPs with P-value 

< 0.05. Candidate SNPs are coloured based on the highest r2 to one of the independent significant 

loci (red: r2 > 0.8, orange: r2 > 0.6). Other SNPs are coloured in grey. The outer circle is the 

chromosome coordinate and genomic risk loci are highlighted in blue. Genes mapped by either 

Hi-C or eQTLs are shown on the inner circle. Genes identified by chromatin interaction and eQTLs 

are coloured orange and green respectively while genes mapped by both are coloured red 
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Supplementary  Fig 3. Minor allele frequency bins of SNPs mapped to severe malaria 

resistance candidate genes in three malaria endemic populations (Gambia, Malawi, Kenya) and 

global populations of 20 ethnic groups. Y-axis represent allele frequency, X-axis represent 

different MAF bins. Populations were represented by different colors and symbols 
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Supplementary Fig 4. Gene specific MAF of SNPs mapped to severe malaria resistance 

candidate genes in three malaria endemic populations (Gambia, Malawi, Kenya) and global 

populations of 20 ethnic groups. Y-axis represent gene specific allele frequency, X-axis represent 

genes. Populations were represented by different colors and symbols 
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 Supplementary Table 1. Positional enrichment of genes identified by FUMA method using 

MsigDB genes as background 

 

 
Supplementary Table 2. Candidate malaria resistance genes identified by both functional 

mapping and gene-based GWAS analysis 
 

 

 

 

Ensg entrezID HUGO symbol chromosome Cytoband Start end Biotype 

ENSG00000058668 493 ATP2B4 ATP2B4 1 q32.1 203595689 203713209 Protein coding  

ENSG00000148296 6838 SURF6 SURF6 9 q34.2 136197552 136203235 Protein coding  

ENSG00000148297 6837 MED22 MED22 9 q34.2 136205160 136214986 Protein coding  

ENSG00000148290 6834 SURF1 SURF1 9 q34.2 136218610 136223552 Protein coding  

ENSG00000148291 6835 SURF2 SURF2 9 q34.2 136223428 136228045 Protein coding  

ENSG00000148248 6836 SURF4 SURF4 9 q34.2 136228325 136242970 Protein coding  

ENSG00000132109 6737 TRIM21 TRIM21 11 p15.4 4406127 4414926 Protein coding  

ENSG00000176925 119694 OR51F2 OR51F2 11 p15.4 4842551 4843686 Protein coding  

ENSG00000244734 3043 HBB HBB 11 p15.4 5246694 5250625 Protein coding  

ENSG00000223609 3045 HBD HBD 11 p15.4 5253908 5256600 Protein coding  

ENSG00000196565 3048 HBG2 HBG2 11 p15.4 5274420 5667019 Protein coding  

ENSG00000213931 3046 HBE1 HBE1 11 p15.4 5289582 5526847 Protein coding  

ENSG00000184881 79345 OR51B2 OR51B2 11 p15.4 5344541 5345582 Protein coding  

Position N N P-value adjusted P Genes 

chr11p15 297 19 8.86e-21 2.65e-18 TRIM21, TRIM68, MMP26, OR51F2, OR51L1, OR52A1, HBB, HBD, HBG1, HBG2, 

HBE1, OR51B2, UBQLNL, TRIM6, TRIM6-TRIM34, TRIM34, TRIM22, CCKBR, 

PRKCDBP 

chr9q34 214 11 3.10e-11 4.63e-9 RALGDS, GBGT1, SURF6, MED22, SURF1, SURF2, SURF4, REXO4, ADAMTS13, 

SLC2A6, ADAMTSL2 

chr4q31 67 6 4.61e-8 4.60e-6 RNF150, ZNF330, GAB1, FREM3, GYPE, GYPB 

chr1q32 147 7 2.62e-7 1.96e-5 CHIT1, BTG2, FMOD, PRELP, ATP2B4, LAX1, PLEKHA6 

chr3q26 61 3 7.97e-4 4.77e-2 B3GALNT1, NMD3, SPTSSB 
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Supplementary Table 3.  Nominally significant genes obtained from burden and rare variant 

analysis using SKAT package   

 

 

 

 

 

 

 
 
 
 
 
 
  

Populati
on  

Gene chro
moso
me 

Cytoban
d 

start end Biotype P.value N.Marker.Rare 

Gambia LOC105377246 4 q13.1 58,976,071 58,984,194 ncRNA 1.72e-4 29 

LOC100507464 8 q11.21 49,496,763 49,512,234 ncRNA 9.68e-05 36 

MIR4282 6 q13 72967687 72967753 lncRNA 4.83e-4 7 

GLYR1 16 P13.3 4803203 4847288 
Protein 
coding 3.72e-4 139 

LINC00520 14 q22.3 55781132 55796731 lncRNA 9.70e-05 19 

LOC105371381 - - - - - 1.84e-4 15 
Malawi 

ATP8A1 4 P13 42408373 42657105 
Protein 
coding 4.91e-4 244 

EPB41L2 6 q23.2 130839347 131063322 
Protein 
coding 3.91e-4 207 

LOC105376161 9 q22.32 95,764,922 95,776,282 ncRNA 1.51e-4 9 

LOC105377731 5 q35.1 173,269,431 173,280,929 ncRNA 3.13e-4 29 

NDNF 4 q27 121035613 121073021 
Protein 
coding 9.53e-05 28 

LINC00676 13 q13.34 109,728,274 109,730,034 lncRNA 3.40e-4 10 

LOC105370198 13 q14.2 48,108,123 48,166,377 ncRNA 4.87e-4 122 

LOC653786 - - - -  4.53e-4 29 

WASF3 13 q12.13 26557683 26688948 
Protein 
coding 2.54e-4 193 
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