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Fine-grained epidemiological modeling of the spread of SARS-CoV-2—capturing who is in-
fected at which locations—can aid the development of policy responses that account for het-
erogeneous risks of different locations as well as the disparities in infections among different
demographic groups. Here, we develop a metapopulation SEIR disease model that uses dy-
namic mobility networks, derived from US cell phone data, to capture the hourly movements
of millions of people from local neighborhoods (census block groups, or CBGs) to points of
interest (POIs) such as restaurants, grocery stores, or religious establishments. We simulate
the spread of SARS-CoV-2 from March 1–May 2, 2020 among a population of 98 million
people in 10 of the largest US metropolitan statistical areas. We show that by integrating
these mobility networks, which connect 57k CBGs to 553k POIs with a total of 5.4 billion
hourly edges, even a relatively simple epidemiological model can accurately capture the case
trajectory despite dramatic changes in population behavior due to the virus. Furthermore,
by modeling detailed information about each POI, like visitor density and visit length, we
can estimate the impacts of fine-grained reopening plans: we predict that a small minor-
ity of “superspreader” POIs account for a large majority of infections, that reopening some
POI categories (like full-service restaurants) poses especially large risks, and that strategies
restricting maximum occupancy at each POI are more effective than uniformly reducing
mobility. Our models also predict higher infection rates among disadvantaged racial and so-
cioeconomic groups solely from differences in mobility: disadvantaged groups have not been
able to reduce mobility as sharply, and the POIs they visit (even within the same category)
tend to be smaller, more crowded, and therefore more dangerous. By modeling who is in-
fected at which locations, our model supports fine-grained analyses that can inform more
effective and equitable policy responses to SARS-CoV-2.
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Figure 1: Model description and fit. (a) The mobility network captures hourly visits from each census block group
(CBG) to each point of interest (POI). The vertical lines indicate that most visits are between nearby POIs and CBGs.
Visits dropped dramatically from March (top) to April (bottom), as indicated by the lower density of grey lines. (b) We
overlaid an SEIR disease model on the mobility network, with each CBG having its own set of SEIR compartments.
New infections occur at both POIs and CBGs. The model for each MSA has three free parameters, which remain
fixed over time, scaling transmission rates at POIs; transmission rates at CBGs; and the initial fraction of infected
individuals. To determine the transmission rate at a given time at each POI we use the mobility network, which
captures population movements as well as visit duration and the POI physical area, to estimate the density of visitors
at each POI. (c) Left: To test out-of-sample prediction, we calibrated the model on data before April 15, 2020 (vertical
black line). Even though its parameters remain fixed over time, the model accurately predicts the case trajectory after
April 15 by using mobility data. Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and
stochastic realizations. Right: Model fit further improved when we calibrated the model on the full range of data. (d)
We fit separate models to 10 of the largest US metropolitan statistical areas (MSAs), modeling a total population of 98
million people; here, we show full model fits, as in (c)-Right. While we use the Chicago MSA as a running example
throughout the paper, we include results for all other MSAs in the SI.
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Figure 2: Assessing mobility reduction and reopening policies. (a) Counterfactual simulations (left) of the mobility
reduction in March 2020—scaling its magnitude down, or shifting the timeline earlier or later—illustrate that the
magnitude of mobility reduction (middle) was at least as important as its timing (right). Shaded regions denote
2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. (b) Most infections at POIs occur
at a small fraction of “super-spreader” POIs: 10% of POIs account for more than 80% of the total infections that
occurred at POIs in the Chicago MSA (results for other MSAs in Extended Data Figure 3). (c) Left: We simulated
partial reopening by capping hourly visits if they exceeded a fraction of each POI’s maximum occupancy. We plot
cumulative infections at the end of one month of reopening against the fraction of visits lost by partial instead of full
reopening; the annotations within the plot show the fraction of maximum occupancy used as the cap. Full reopening
leads to an additional 32% of the population becoming infected by the end of the month, but capping at 20% maximum
occupancy cuts down new infections by more than 80%, while only losing 42% of overall visits. Right: Compared
to partially reopening by uniformly reducing visits, the reduced occupancy strategy—which disproportionately targets
high-risk POIs with sustained high occupancy—always results in a smaller increase in infections for the same number
of visits. The y-axis plots the relative difference between the increase in cumulative infections (from May 1 to May
31) under the reduced occupancy strategy as compared to the uniform reduction strategy. (d) We simulated reopening
each POI category while keeping reduced mobility levels at all other POIs. Boxes indicate the interquartile range
across parameter sets and stochastic realizations. Reopening full-service restaurants has the largest predicted impact
on infections, due to the large number of restaurants as well as their high visit densities and long dwell times.
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Figure 3: Mobility patterns give rise to socioeconomic and racial disparities in infections. (a) Across all MSAs, our
model predicts that people in lower-income census block groups (CBGs) are more likely to be infected, even though
they start with equal probabilities of being infected. Disparities are especially prominent in Philadelphia, which we
discuss in SI Section S2. Boxes indicate the interquartile range across parameter sets and stochastic realizations. (b)
Racial disparities are similar: people in non-white CBGs are typically more likely to be infected, although results
are more variable across MSAs. (c-e) illustrate how mobility patterns give rise to socioeconomic disparities; similar
mechanisms underlie racial disparities (Extended Data Figure 6, Table S5). (c) The overall disparity is driven by a
few POI categories like full-service restaurants. Shaded regions denote 2.5th and 97.5th percentiles across sampled
parameters and stochastic realizations. (d) One reason for the disparities is that higher-income CBGs were able to
reduce their overall mobility levels below those of lower-income CBGs. (e) Within each category, people from lower-
income CBGs tend to visit POIs that are smaller and more crowded and therefore have higher transmission rates. Thus,
even if a lower-income and a higher-income person went out equally often and went to the same types of places, the
lower-income person would still have a greater risk of infection. The size of each dot indicates the total number of
visits to that category. (f) We predict the effect of reopening (at different levels of reduced occupancy) on different
demographic groups. Reopening leads to more infections in lower-income CBGs (purple) than the overall population
(blue), underscoring the need to account for disadvantaged subpopulations when assessing reopening plans.
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Introduction1

In response to the SARS-CoV-2 crisis, numerous stay-at-home orders were enacted across the2

United States in order to reduce contact between individuals and slow the spread of the virus.13

As of May 2020, these orders are being relaxed, businesses are beginning to reopen, and mobility4

is increasing, causing concern among public officials about the potential resurgence of cases.25

Epidemiological models that can capture the effects of changes in mobility on virus spread are6

a powerful tool for evaluating the effectiveness and equity of various strategies for reopening or7

responding to a resurgence. In particular, findings of SARS-CoV-2 “super-spreader” events3–7
8

motivate models that can reflect the heterogeneous risks of visiting different locations, while well-9

reported racial and socioeconomic disparities in infection rates8–14 require models that can explain10

the disproportionate impact of the virus on disadvantaged demographic groups.11

To address these needs, we construct a fine-grained dynamic mobility network using US cell12

phone geolocation data from March 1–May 2, 2020. This network maps the hourly movements of13

millions of people from different census block groups (CBGs), which are geographical units that14

typically contain 600–3,000 people, to more than half a million specific points of interest (POIs),15

which are non-home locations that people visit such as restaurants, grocery stores, and religious16

establishments. (Table S1 provides the 50 POI categories accounting for the largest fraction of17

visits in this data.) On top of this dynamic bipartite network, we overlay a metapopulation SEIR18

disease model with only three free parameters that accurately tracks the infection trajectories of19

each CBG over time as well as the POIs at which these infections are likely to have occurred.20

The key idea is that combining even a relatively simple epidemiological model with our fine-21

grained, dynamic mobility network allows us to not only accurately model the case trajectory,22

but also identify the most risky POIs; the most at-risk populations; and the impacts of different23

reopening policies. This builds upon prior work that models disease spread using mobility data,24

which has used aggregate15–21, historical22–24, or synthetic25–27 mobility data; separately, other work25

has directly analyzed mobility data and the effects of mobility reductions in the context of SARS-26

CoV-2, but without an underlying epidemiological model of disease spread.28–33
27

We use our model to simulate the spread of SARS-CoV-2 within 10 of the largest metropoli-28

tan statistical areas (MSAs) in the US, starting from a low, homogeneous prevalence of SARS-29

CoV-2 across CBGs. For each MSA, we examine the infection risks at individual POIs, the effects30

of past stay-at-home policies, and the effects of reopening strategies that target specific types of31

POIs. We also analyze disparities in infection rates across racial and socioeconomic groups, assess32
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the disparate impacts of reopening policies on these groups, and identify mobility-related mech-33

anisms driving these disparities. We find that people from lower-income CBGs have not reduced34

mobility as sharply, and tend to visit POIs which, even within the same category, are smaller, more35

crowded, and therefore more dangerous.36

Results37

Mobility network modeling38

Mobility network. We use geolocation data from SafeGraph, a data company that aggregates39

anonymized location data from mobile applications, to study mobility patterns from March 1–May40

2, 2020 among a population of 98 million people in 10 of the largest US metropolitan statistical41

areas (MSAs). For each MSA, we represent the movement of individuals between census block42

groups (CBGs) and points of interest (POIs, defined as specific point locations that people visit43

such as restaurants, hotels, parks, and stores) as a bipartite network with time-varying edges, where44

the weight of an edge between a CBG and POI is the number of visitors from that CBG to that POI45

at a given hour (Figure 1a). SafeGraph also provides the area in square feet of each individual POI,46

as well as its North American Industry Classification System (NAICS) category (e.g., fitness center47

or full-service restaurant). We validated the SafeGraph data by comparing to Google mobility data48

(SI Section S1), and used iterative proportional fitting34 to derive hourly POI-CBG networks from49

the raw SafeGraph data. Overall, these networks comprise 5.4 billion hourly edges between 56,94550

CBGs and 552,758 POIs (Extended Data Table 1).51

Model. We overlay a SEIR disease model on each mobility network,15, 22 where each CBG main-52

tains its own susceptible (S), exposed (E), infectious (I), and removed (R) states (Figure 1b). New53

infections occur at both POIs and CBGs, with the mobility network governing how subpopulations54

from different CBGs interact as they visit POIs. We use the inferred density of infectious individu-55

als at each POI to determine its transmission rate. The model has only three free parameters, which56

scale (1) transmission rates at POIs, (2) transmission rates at CBGs, and (3) the initial proportion57

of infected individuals. All three parameters remain constant over time. We calibrate a separate58

model for each MSA using confirmed case counts from the The New York Times.35
59

Model validation. Our models accurately fit observed daily incident case counts in all 10 MSAs60

from March 8–May 9, 2020 (Figure 1c,d). Additionally, models only calibrated on case counts61
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from March 8–April 14 could predict case counts reasonably well on the held-out time period62

from April 15–May 9, 2020 (Figure 1c and Extended Data Figure 1a). Our key technical result63

is that the fine-grained mobility network allows even this relatively simple SEIR model to fit real64

case trajectories with just three free parameters which remain fixed over time, despite changing65

social distancing policies and behaviors during that period.66

To assess the importance of the detailed mobility network, we tested two alternate models:67

an aggregate mobility model that uses the total number of POI visits in each hour without taking68

into account the type of POI or the CBGs from which visitors originate; and a baseline model that69

does not use mobility data at all. Our network model substantially outperformed both the aggre-70

gate mobility model and the baseline model on out-of-sample prediction (Extended Data Figure 1).71

Furthermore, both alternate models predict very similar rates of infection across all CBGs, which72

does not concord with previous work showing substantial heterogeneity in infection rates across73

neighborhoods.8–14 This includes higher rates of infection among disadvantaged racial and socioe-74

conomic groups, which our model captures but the alternate models fail to reflect; we discuss this75

later in Figure 3. These results demonstrate that our network model can better recapitulate ob-76

served trends than an aggregate mobility model or a model that does not use mobility data, while77

also allowing us to assess fine-grained questions like the effects of POI-specific reopening policies.78

Evaluating mobility reduction and reopening policies79

We can estimate the impact of a wide range of mobility reduction and reopening policies by apply-80

ing our model to a modified mobility network that reflects the expected effects of a hypothetical81

policy. We start by studying the effect of the magnitude and timing of mobility reduction poli-82

cies from March 2020. We then assess several fine-grained reopening plans, such as placing a83

maximum occupancy cap or only reopening certain categories of POIs, by leveraging the detailed84

information that the mobility network contains on each POI, like its average visit length and visitor85

density at each hour.86

The magnitude of mobility reduction is as important as its timing. US population mobility87

dropped sharply in March 2020 in response to SARS-CoV-2; for example, overall mobility in the88

Chicago MSA fell by 54.8% between the first week of March and the first week of April 2020.89

We constructed counterfactual mobility networks by scaling the magnitude of mobility reduction90

down and by shifting the timeline of this mobility reduction earlier and later (Figure 2a), and used91
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our model to simulate the resulting infection trajectories. As expected, shifting the onset of mo-92

bility reduction earlier decreased the predicted number of infections incurred, and shifting it later93

or reducing the magnitude of reduction both increased predicted infections. What was notable was94

that reducing the magnitude of reduction resulted in far larger increases in predicted infections95

than shifting the timeline later (Figure 2a). For example, if only a quarter of mobility reduction96

had occurred in the Chicago MSA, the predicted number of infections would have increased by97

3.3× (95% CI, 2.8-3.8), compared to a 1.5× (95% CI, 1.4-1.6) increase had people begun reduc-98

ing their mobility one full week later. We observe similar trends across other MSAs (Tables S299

and S3). Our results concord with earlier findings that mobility reductions can dramatically reduce100

infections.21, 36
101

A minority of POIs account for a majority of infections. Since overall mobility reduction re-102

duces infections, we next investigated if how we reduce mobility—i.e., to which POIs—matters.103

Using the observed mobility networks to simulate the infection trajectory from March 1–May 2,104

2020, we computed the number of expected infections that occurred at each POI and found that a105

majority of predicted infections occurred at a small fraction of “superspreader” POIs; e.g., in the106

Chicago MSA, 10% of POIs accounted for 85% (95% CI, 83%-87%) of the predicted infections107

at POIs (Figure 2b; Extended Data Figure 3 shows similar results across MSAs; across the 10108

MSAs, the top 10% of POIs accounted for between 75% and 96% of infections at POIs). These109

“superspreader” POIs are smaller and more densely occupied, and their occupants stay longer, sug-110

gesting that it is especially important to reduce transmission at these high-risk POIs. For example,111

in the Chicago MSA, the median number of hourly visitors per square foot was 3.2× higher for the112

riskiest 10% of POIs than for the remaining POIs (0.0041 versus 0.0012 visitors/foot2); the me-113

dian dwell time was 3.5× higher (81 versus 23 minutes). Note that infections at POIs represent a114

majority, but not all, of the total predicted infections, since we also model infections within CBGs;115

across MSAs, the median proportion of total predicted infections that occur at POIs is 70%.116

Reducing mobility by capping maximum occupancy. We simulated the effects of two reopen-117

ing strategies, implemented beginning on May 1, on the increase in infections by the end of May.118

First, we evaluated a reduced occupancy reopening strategy, in which hourly visits to each POI re-119

turn to those in the first week of March (prior to widespread adoption of stay-at-home measures),120

but are capped if they exceed a fraction of the POI’s maximum occupancy,37 which we estimated121
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as the maximum hourly number of visitors ever recorded at that POI. A full return to early March122

mobility levels without reducing maximum occupancy produces a spike in predicted infections:123

in the Chicago MSA, we project that an additional 32% (95% CI, 25%-35%) of the population124

will be infected within a month (Figure 2c). However, capping maximum occupancy substantially125

reduces risk without sharply reducing overall mobility: capping at 20% maximum occupancy in126

the Chicago MSA cuts down new infections by more than 80% but only loses 42% of overall vis-127

its, and we observe similar trends across other MSAs (Extended Data Figure 4). This highlights128

the non-linearity of infections as a function of visits: one can achieve a disproportionately large129

reduction in infections with a small reduction in visits.130

We also compared the reduced occupancy strategy to a baseline that uniformly reduces visits131

to each POI from their levels in early March. Reduced occupancy always results in fewer infec-132

tions for the same total number of visits: e.g., capping at 20% maximum occupancy reduces new133

infections by 23% (95% CI, 18%-30%), compared to the uniform baseline for the same total num-134

ber of visits in the Chicago MSA (Figure 2c). This is because reduced occupancy takes advantage135

of the heterogeneous risks across POIs, disproportionately reducing visits at high-risk POIs with136

sustained high occupancy, but allowing lower-risk POIs to return fully to prior mobility levels.137

Relative risk of reopening different categories of POIs. We assessed the relative risk of re-138

opening different categories of POIs by reopening each category in turn on May 1 (and returning139

its mobility patterns to early March levels) while keeping mobility patterns at all other POIs at140

their reduced, stay-at-home levels (Figure 2d). Following prior work,30 we excluded several cat-141

egories of POIs from this analysis, including schools and hospitals, because of concerns that the142

cell phone mobility dataset might not contain all POIs in the category or capture all relevant risk143

factors; see Methods M6. We find a large variation in reopening risks: on average across the 10144

MSAs (Extended Data Figure 5), full-service restaurants, gyms, hotels, cafes, religious organiza-145

tions, and limited-service restaurants produce the largest increases in infections when reopened.146

Reopening full-service restaurants is particularly risky: in the Chicago MSA, we predict an addi-147

tional 596k (95% CI, 434k-686k) infections by the end of May, more than triple the next riskiest148

POI category. These risks are the total risks summed over all POIs in the category, but the relative149

risks after normalizing by the number of POIs are broadly similar, with restaurants, gyms, hotels,150

cafes, and religious establishments predicted to be the most dangerous on average per individual151

POI (Extended Data Figure 5). These categories are more dangerous because their POIs tend to152

9

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2020. ; https://doi.org/10.1101/2020.06.15.20131979doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131979
http://creativecommons.org/licenses/by/4.0/


have higher visit densities and/or visitors stay there longer (Figures S10–S19).153

Infection disparities between socioeconomic and racial groups154

We characterize the differential spread of SARS-CoV-2 along demographic lines by using US Cen-155

sus data to annotate each CBG with its racial composition and median income, then tracking how156

infection disparities arise across groups. We use this approach to study the mobility mechanisms157

behind disparities and to quantify how different reopening strategies impact disadvantaged groups.158

Mobility patterns contribute to disparities in infection rates. Despite only having access to159

mobility data and no other demographic information, our models correctly predicted higher risks of160

infection among disadvantaged racial and socioeconomic groups.8–14 Across all MSAs, individuals161

from CBGs in the bottom decile for income were substantially likelier to have been infected by the162

end of the simulation, even though all individuals began with equal likelihoods of infection in our163

simulation (Figure 3a). This overall disparity was driven primarily by a few POI categories (e.g.,164

full-service restaurants), which infected far larger proportions of lower-income CBGs than higher-165

income CBGs (Figure 3c; similar trends hold across all MSAs in Figure S1). We similarly found166

that CBGs with fewer white residents had higher relative risks of infection, although results were167

more variable across MSAs (Figure 3b). Our models also recapitulated known associations be-168

tween population density and infection risk38 (median Spearman correlation between CBG density169

and cumulative incidence proportion, 0.39 across MSAs), despite not being given any information170

on population density. In SI Section S2, we confirm that the magnitude of the disparities our model171

predicts are generally consistent with real-world disparities and further explore the large predicted172

disparities in Philadelphia, which stem from substantial differences in visit densities at the POIs173

that are frequented by visitors from different socioeconomic and racial groups. In the analysis be-174

low, we focus on the mechanisms producing higher relative risks of infection among lower-income175

CBGs, and we show in Extended Data Figure 6 and Table S5 that similar results hold for racial176

disparities as well.177

Lower-income CBGs saw smaller reductions in mobility. Across all MSAs, we found that178

lower-income CBGs did not reduce their mobility as sharply in the first few weeks of March 2020,179

and had higher mobility than higher-income CBGs for most of March through May (Figure 3d, Ex-180

tended Data Figure 6). For example, over the month of April, lower-income CBGs in the Chicago181
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MSA had 27% more POI visits per capita than higher-income CBGs. Differences in mobility182

patterns within categories partially explained the within-category infection disparities: e.g., lower-183

income CBGs made substantially more visits per capita to grocery stores than did higher-income184

CBGs, and consequently experienced more infections at that category (Extended Data Figure 7).185

POIs visited by lower-income CBGs tend to have higher transmission rates. Differences in186

the number of visits per capita between lower- and higher-income CBGs do not fully explain the187

infection disparities: for example, Cafes & Snack Bars were visited more frequently by people188

from higher-income CBGs in every MSA (Extended Data Figure 7), but they caused more pre-189

dicted infections among people from lower-income CBGs in the majority of MSAs (Figure S1).190

We found that even within a POI category, the transmission rate at POIs frequented by people from191

lower-income CBGs tended to be higher than the corresponding rate for higher-income CBGs (Fig-192

ure 3e; Table S4), because these POIs tended to be smaller and more crowded. It follows that, even193

if a lower-income and higher-income person had the same mobility patterns and went to the same194

types of places, the lower-income person would still have a greater risk of infection.195

As a case study, we examine grocery stores in further detail. In 8 of the 10 MSAs, visitors196

from lower-income CBGs encountered higher transmission rates at grocery stores than those from197

higher-income CBGs (median transmission rate ratio of 2.19, Table S4). Why was one visit to the198

grocery store twice as dangerous for a lower-income individual? Taking medians across MSAs,199

we found that the average grocery store visited by lower-income individuals had 59% more hourly200

visitors per square foot, and their visitors stayed 17% longer on average. These findings highlight201

how fine-grained differences in mobility patterns—how often people go out, which categories of202

places they go to, which POIs they choose within those categories—can ultimately contribute to203

dramatic disparities in infection outcomes.204

Reopening plans must account for disparate impact. Because disadvantaged groups suffer a205

larger burden of infection, it is critical to not just consider the overall impact of reopening plans206

but also their disparate impact on disadvantaged groups specifically. For example, our model207

predicted that full reopening in the Chicago MSA would result in an additional 39% (95% CI,208

31%-42%) of the population of CBGs in the bottom income decile being infected within a month,209

compared to 32% (95% CI, 25%-35%) of the overall population (Figure 3f; results for all MSAs210

in Extended Data Figure 4). Similarly, Extended Data Figure 8 illustrates that reopening individual211
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POI categories tends to have a larger impact on the bottom income decile. More conservative212

reopening plans produce smaller absolute disparities in infections—e.g., we predict that reopening213

at 20% of maximum occupancy would result in infections among an additional 6% (95% CI, 4%-214

8%) of the overall population and 10% (95% CI, 7%-13%) of the population in CBGs in the bottom215

income decile (Figure 3f)—though the relative disparity remains.216

Discussion217

We model the spread of SARS-CoV-2 using a dynamic mobility network that encodes the hourly218

movements of millions of people between 57k neighborhoods (census block groups, or CBGs)219

and 553k points of interest (POIs). Because our data contains detailed information on each POI,220

like visit length and visitor density, we can estimate the impacts of fine-grained reopening plans—221

predicting that a small minority of “superspreader” POIs account for a large majority of infections,222

that reopening some POI categories (like full-service restaurants) poses especially large risks, and223

that strategies that restrict the maximum occupancy at each POI are more effective than uniformly224

reducing mobility. Because we model infections in each CBG, we can infer the approximate de-225

mographics of the infected population, and thereby assess the disparate socioeconomic and racial226

impacts of SARS-CoV-2. Our model correctly predicts that disadvantaged groups are more likely227

to become infected, and also illuminates two mechanisms that drive these disparities: (1) dis-228

advantaged groups have not been able to reduce their mobility as dramatically (consistent with229

previously-reported data, and likely in part because lower-income individuals are more likely to230

have to leave their homes to work10) and (2) when they go out, they visit POIs which, even within231

the same category, are smaller, more crowded, and therefore more dangerous.232

The cell phone mobility dataset we use has limitations: it does not cover all populations233

(e.g., prisoners, children under 13, or adults without smartphones), does not contain all POIs (e.g.,234

nursing homes are undercovered, and we exclude schools and hospitals from our analysis of POI235

category risks), and cannot capture sub-CBG heterogeneity in demographics. Individuals may also236

be double-counted in the dataset if they carry multiple cell phones. These limitations notwithstand-237

ing, cell phone mobility data in general and SafeGraph data in particular have been instrumental238

and widely used in modeling SARS-CoV-2 spread.15–17, 28–32, 39 Our model itself is parsimonious,239

and does not include such relevant features as asymptomatic transmission; variation in house-240

hold size; travel and seeding between MSAs; differentials in susceptibility due to pre-existing241

conditions or access to care; age-related variation in mortality rates or susceptibility (e.g., for242
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modeling transmission at elementary and secondary schools); various time-varying transmission-243

reducing behaviors (e.g., hand-washing, mask-wearing); and some POI-specific risk factors (e.g.,244

ventilation). Although our model recovers case trajectories and known infection disparities even245

without incorporating these features, we caution that this predictive accuracy does not mean that246

our predictions should be interpreted in a narrow causal sense. Because certain types of POIs or247

subpopulations may disproportionately select for certain types of omitted processes, our findings248

on the relative risks of different POIs should be interpreted with due caution. However, the pre-249

dictive accuracy of our model suggests that it broadly captures the relationship between mobility250

and transmission, and we thus expect our broad conclusions—e.g., that people from lower-income251

CBGs have higher infection rates in part because because they tend to visit smaller, denser POIs252

and because they have not been able to reduce mobility by as much (likely in part because they253

cannot as easily work from home10)—to hold robustly.254

Our results can guide policymakers seeking to assess competing approaches to reopening255

and tamping down post-reopening resurgence. Despite growing concern about racial and socioe-256

conomic disparities in infections and deaths, it has been difficult for policymakers to act on those257

concerns; they are currently operating without much evidence on the disparate impacts of reopen-258

ing policies, prompting calls for research which both identifies the causes of observed disparities259

and suggests policy approaches to mitigate them.11, 14, 40, 41 Our fine-grained mobility modeling ad-260

dresses both these needs. Our results suggest that infection disparities are not the unavoidable261

consequence of factors that are difficult to address in the short term, like disparities in preexisting262

conditions; on the contrary, short-term policy decisions substantially affect infection disparities263

by altering the overall amount of mobility allowed, the types of POIs reopened, and the extent to264

which POI occupancies are clipped. Considering the disparate impact of reopening plans may lead265

policymakers to, e.g., (1) favor more conservative reopening plans, (2) increase testing in disad-266

vantaged neighborhoods predicted to be high risk (especially given known disparities in access to267

tests8), and (3) prioritize distributing masks and other personal protective equipment to disadvan-268

taged populations who have not reduced their mobility as much and frequent riskier POIs.269

As society reopens and we face the possibility of a resurgence in cases, it is critical to build270

models which allow for fine-grained assessments of the effects of reopening policies. We hope271

that our approach, by capturing heterogeneity across POIs, demographic groups, and cities, helps272

address this need.273
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Methods274

The Methods section is structured as follows. We describe the datasets we use in Methods M1275

and the mobility network that we derive from these datasets in Methods M2. In Methods M3, we276

discuss the SEIR model we overlay on the mobility network; in Methods M4, we describe how277

we calibrate this model and quantify uncertainty in its predictions; in Methods M5, we introduce278

a series of sensitivity analyses and robustness checks that we performed to further validate our279

model. In Methods M6, we provide details on the experimental procedures used for our analysis of280

physical distancing, reopening, and demographic disparities. Finally, in Methods M7, we elaborate281

on how we estimate the mobility network from the raw mobility data.282

M1 Datasets283

SafeGraph. We use geolocation data provided by SafeGraph, a data company that aggregates284

anonymized location data from numerous mobile applications. We obtained IRB exemption for285

SafeGraph data from the Northwestern University IRB office. SafeGraph data captures the move-286

ment of people between census block groups (CBGs), which are geographical units that typically287

contain a population of between 600 and 3,000 people, and points of interest (POIs) like restau-288

rants, grocery stores, or religious establishments. Specifically, we use the following SafeGraph289

datasets:290

1. Places Patterns44 and Weekly Patterns (v1)45. These datasets contain, for each POI, hourly291

counts of the number of visitors, estimates of median visit duration in minutes (the “dwell292

time”), and aggregated weekly and monthly estimates of visitors’ home CBGs. We use293

visitor home CBG data from the Places Patterns dataset, as described below: for privacy294

reasons, SafeGraph excludes a home CBG from this dataset if fewer than 5 devices were295

recorded at the POI from that CBG over the course of the month. For each POI, SafeGraph296

also provides their North American Industry Classification System (NAICS) category, and an297

estimate of their physical area in square feet. (Area is computed using the footprint polygon298

SafeGraph assigns to the POI.46, 47) We analyze Places Patterns data from January 1, 2019 to299

February 29, 2020 and Weekly Patterns data from March 1, 2020 to May 2, 2020.300

2. Social Distancing Metrics,48 which contains hourly estimates of the proportion of people301

staying home in each CBG. We analyze Social Distancing Metrics data from March 1, 2020302

to May 2, 2020.303

17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2020. ; https://doi.org/10.1101/2020.06.15.20131979doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131979
http://creativecommons.org/licenses/by/4.0/


We focus on 10 of the largest metropolitan statistical areas (MSAs) in the US (Extended Data304

Table 1). We chose these MSAs by taking a random subset of the SafeGraph Patterns data and305

picking the 10 MSAs with the most POIs in the data. Our methods in this paper can be straightfor-306

wardly applied, in principle, to the other MSAs in the original SafeGraph data. For each MSA, we307

include all POIs that meet all of the following requirements: (1) the POI is located in the MSA; (2)308

SafeGraph has visit data for this POI for every hour that we model, from 12am on March 1, 2020309

to 11pm on May 2, 2020; (3) SafeGraph has recorded the home CBGs of this POI’s visitors for at310

least one month from January 2019 to February 2020; (4) the POI is not a “parent” POI. “Parent”311

POIs comprise a small fraction of POIs in the dataset which overlap and include the visits from312

their “child” POIs: for example, many malls in the dataset are parent POIs which include the visits313

from stores which are their child POIs. To avoid double-counting visits, we remove all parent POIs314

from the dataset.315

After applying these POI filters, we include all CBGs that have at least 1 recorded visit to316

at least 10 of the remaining POIs; this means that CBGs from outside the MSA may be included317

if they visit this MSA frequently enough. Summary statistics of the post-processed data are in318

Extended Data Table 1. Overall, we analyze 57k CBGs from the 10 MSAs, and over 310M visits319

from these CBGs to over 552k POIs.320

SafeGraph data has been used to study consumer preferences49 and political polarization.50
321

More recently, it has been used as one of the primary sources of mobility data in the US for tracking322

the effects of the SARS-CoV-2 pandemic.28, 30,51–53 In SI Section S1, we show that aggregate trends323

in SafeGraph mobility data broadly match up to aggregate trends in Google mobility data in the324

US,54 before and after the imposition of stay-at-home measures. Previous analyses of SafeGraph325

data have shown that it is geographically representative: for example, it does not systematically326

over-represent individuals from CBGs in different counties or with different racial compositions,327

income levels, or educational levels.55, 56
328

US Census. Our data on the demographics of census block groups (CBGs) comes from the US329

Census Bureau’s American Community Survey (ACS).57 We use the 5-year ACS (2013-2017)330

to extract the median household income, proportion of white residents, and proportion of black331

residents of each CBG. For the total population of each CBG, we use the most recent one-year332

estimates (2018); one-year estimates are noisier but we wish to minimize systematic downward333

bias in our total population counts (due to population growth) by making them as recent as possible.334
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New York Times. We calibrate our models using the SARS-CoV-2 dataset published by the The335

New York Times.35 Their dataset consists of cumulative counts of cases and deaths in the United336

States over time, at the state and county level. For each MSA that we model, we sum over the337

county-level counts to produce overall counts for the entire MSA. We convert the cumulative case338

and death counts to daily case and death counts for the purposes of model calibration, as described339

below.340

M2 Mobility network341

We consider a complete undirected bipartite graph G = (V , E) with time-varying edges. The342

vertices V are partitioned into two disjoint sets C = {c1, . . . , cm}, representing m census block343

groups (CBGs), and P = {p1, . . . , pn}, representing n points of interest (POIs). The weight w(t)
ij344

on an edge (ci, pj) at time t represents our estimate of the number of individuals from CBG ci345

visiting POI pj at the t-th hour of simulation. We record the number of edges (with non-zero346

weights) in each MSA and over all hours from March 1, 2020 to May 2, 2020 in Extended Data347

Table 1. Across all 10 MSAs, we study 5.4 billion edges between 56,945 CBGs and 552,758 POIs.348

From US Census data, each CBG ci is labeled with its population Nci , income distribution,349

and racial and age demographics. From SafeGraph data, each POI pj is similarly labeled with its350

category (e.g., restaurant, grocery store, or religious organization), its physical size in square feet351

apj , and the median dwell time dpj of visitors to pj .352

The central technical challenge in constructing this network is estimating the network weights353

W (t) = {w(t)
ij } from SafeGraph data, since this visit matrix is not directly available from the data.354

Because the estimation procedure is involved, we defer describing it in detail until Methods M7;355

in Methods M3–M6, we will assume that we already have the network weights.356

M3 Model dynamics357

To model the spread of SARS-CoV-2, we overlay a metapopulation disease transmission model on358

the mobility network defined in Methods M2. The transmission model structure follows prior work359

on epidemiological models of SARS-CoV-215, 22 but incorporates a fine-grained mobility network360

into the calculations of the transmission rate (Methods M3.1). We construct separate mobility361

networks and models for each metropolitan statistical area (MSA).362

We use a SEIR model with susceptible (S), exposed (E), infectious (I), and removed (R)363

compartments. Susceptible individuals have never been infected, but can acquire the virus through364
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contact with infectious individuals, which may happen at POIs or in their home CBG. They then365

enter the exposed state, during which they have been infected but are not infectious yet. Individuals366

transition from exposed to infectious at a rate inversely proportional to the mean latency period.367

Finally, they transition into the removed state at a rate inversely proportional to the mean infectious368

period. The removed state represents individuals who cannot infect others, because they have369

recovered, self-isolated, or died.370

Each CBG ci maintains its own SEIR instantiation, with S(t)
ci , E

(t)
ci , I

(t)
ci , and R(t)

ci representing371

how many individuals in CBG ci are in each disease state at hour t, and Nci = S
(t)
ci +E

(t)
ci + I

(t)
ci +372

R
(t)
ci . At each hour t, we sample the transitions between states as follows:373

N
(t)
Sci→Eci

∼ Pois

(
S

(t)
ci

Nci

n∑
j=1

λ(t)
pj
w

(t)
ij

)
+ Binom

(
S(t)
ci
, λ(t)

ci

)
(1)

N
(t)
Eci→Ici

∼ Binom
(
E(t)
ci
, 1/δE

)
(2)

N
(t)
Ici→Rci

∼ Binom
(
I(t)
ci
, 1/δI

)
, (3)

where λ(t)
pj is the rate of infection at POI pj at time t; w(t)

ij , the ij-th entry of the visit matrix from374

the mobility network (Methods M2), is the number of visitors from CBG ci to POI pj at time t;375

λ
(t)
ci is the base rate of infection that is independent of visiting POIs; δE is the mean latency period;376

and δI is the mean infectious period.377

We then update each state to reflect these transitions. Let ∆S
(t)
ci := S

(t+1)
ci −S(t)

ci , and likewise378

for ∆E
(t)
ci ,∆I

(t)
ci , and ∆R

(t)
ci . Then,379

∆S(t)
ci

:= −N (t)
Sci→Eci

(4)

∆E(t)
ci

:= N
(t)
Sci→Eci

−N (t)
Eci→Ici

(5)

∆I(t)
ci

:= N
(t)
Eci→Ici

−N (t)
Ici→Rci

(6)

∆R(t)
ci

:= N
(t)
Ici→Rci

. (7)

M3.1 The number of new exposures N (t)
Sci
→Eci

380

We separate the number of new exposures N (t)
Sci→Eci

in CBG ci at time t into two parts: cases381

from visiting POIs, which are sampled from Pois
(∑n

j=1 λ
(t)
pj w

(t)
ij

)
, and other cases not captured by382

visiting POIs, which are sampled from Binom
(
S

(t)
ci , λ

(t)
ci

)
.383
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New exposures from visiting POIs. We assume that any susceptible visitor to POI pj at time t384

has the same independent probability λ(t)
pj of being infected and transitioning from the susceptible385

(S) to the exposed (E) state. Since there are w(t)
ij visitors from CBG ci to POI pj at time t, and386

we assume that a S(t)
ci /Nci fraction of them are susceptible, the number of new exposures among387

these visitors is distributed as Binom(w
(t)
ij S

(t)
ci /Nci , λ

(t)
pj ) ≈ Pois(λ(t)

pj w
(t)
ij S

(t)
ci /Nci). The number of388

new exposures among all outgoing visitors from CBG ci is therefore distributed as the sum of the389

above expression over all POIs, Pois
(
(S

(t)
ci /Nci)

∑n
j=1 λ

(t)
pj w

(t)
ij

)
.390

We model the infection rate at POI pj at time t, λ(t)
pj := β

(t)
pj · I

(t)
pj /V

(t)
pj , as the product of its391

transmission rate β(t)
pj and proportion of infectious individuals I(t)

pj /V
(t)
pj , where V (t)

pj :=
∑m

i=1 w
(t)
ij392

is the total number of visitors to pj at time t,393

We model the transmission rate at POI pj at time t as394

β(t)
pj

:= ψ · d2
pj
·
V

(t)
pj

apj
, (8)

where apj is the physical area of pj , and ψ is a transmission constant (shared across all POIs) that395

we fit to data. The inverse scaling of transmission rate with area apj is a standard simplifying396

assumption.42 The dwell time fraction dpj ∈ [0, 1] is what fraction of an hour an average visitor to397

pj at any hour will spend there (Methods M7.1); it has a quadratic effect on the POI transmission398

rate β(t)
pj because it reduces both (1) the time that a susceptible visitor spends at pj and (2) the399

density of visitors at pj .400

With this expression for the transmission rate β(t)
pj , we can calculate the infection rate at POI401

pj at time t as402

λ(t)
pj

= β(t)
pj
·
I

(t)
pj

V
(t)
pj

= ψ · d2
pj
·
I

(t)
pj

apj
. (9)

For sufficiently large values of ψ and a sufficiently large proportion of infected individuals, the403

expression above can sometimes exceed 1. To address this, we simply clip the infection rate to 1.404

However, this occurs very rarely for the parameter settings and simulation duration that we use.405

Finally, to compute the number of infectious individuals at pj at time t, I(t)
pj , we assume that406

the proportion of infectious individuals among the w(t)
kj visitors to pj from a CBG ck mirrors the407
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overall density of infections I(t)
ck /Nck in that CBG, although we note that the scaling factor ψ can408

account for differences in the ratio of infectious individuals who visit POIs. This gives409

I(t)
pj

:=
m∑
k=1

I
(t)
ck

Nck

w
(t)
kj . (10)

Base rate of new exposures not captured by visiting POIs. In addition to the new exposures410

from infections at POIs, we model a CBG-specific base rate of new exposures that is independent of411

POI visit activity. This captures other sources of infections, e.g., household infections or infections412

at POIs that are absent from the SafeGraph data. We assume that at each hour, every susceptible413

individual in CBG ci has a λ(t)
ci probability of becoming infected and transitioning to the exposed414

state, where415

λ(t)
ci

:= βbase ·
I

(t)
ci

Nci

(11)

is proportional to the infection density at CBG ci, and βbase is a constant that we fit to data.416

Overall number of new exposures. Putting all of the above together yields the expression for417

the distribution of new exposures in CBG ci at time t,418

N
(t)
Sci→Eci

∼ Pois

(
S

(t)
ci

Nci

n∑
j=1

λ(t)
pj
w

(t)
ij

)
+ Binom

(
S(t)
ci
, λ(t)

ci

)
= Pois

(
ψ · S

(t)
ci

Nci

·
n∑
j=1

d2
pj

apj

(
m∑
k=1

I
(t)
ck

Nck

w
(t)
kj

)
w

(t)
ij

)
︸ ︷︷ ︸

new infections from visiting POIs

+ Binom

(
S(t)
ci
, βbase ·

I
(t)
ci

Nci

)
︸ ︷︷ ︸

base rate of new CBG infections

. (12)

M3.2 The number of new infectious and removed cases419

We model exposed individuals as becoming infectious at a rate inversely proportional to the mean420

latency period δE . At each time step t, we assume that each exposed individual has a constant,421

time-independent probability of becoming infectious, with422

N
(t)
Eci→Ici

∼ Binom
(
E(t)
ci
, 1/δE

)
. (13)
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Similarly, we model infectious individuals as transitioning to the removed state at a rate inversely423

proportional to the mean infectious period δI , with424

N
(t)
Ici→Rci

∼ Binom
(
I(t)
ci
, 1/δI

)
, (14)

We estimate both δE and δI from prior literature; see Methods M4.425

M3.3 Model initialization426

In our experiments, t = 0 is the first hour of March 1, 2020. We approximate the infectious I and427

removed R compartments at t = 0 as initially empty, with all infected individuals in the exposed428

E compartment. We further assume the same expected initial prevalence p0 in every CBG ci. At429

t = 0, every individual in the MSA has the same independent probability p0 of being exposed E430

instead of susceptible S. We thus initialize the model state by setting431

S(0)
ci

= Nci − E(0)
ci

(15)

E(0)
ci
∼ Binom(Nci , p0) (16)

I(0)
ci

= 0 (17)

R(0)
ci

= 0. (18)

M4 Model calibration and validation432

Most of our model parameters can either be estimated from SafeGraph and US Census data, or433

taken from prior work (see Extended Data Table 2 for a summary). This leaves 3 model parameters434

that do not have direct analogues in the literature, and that we therefore need to calibrate with data:435

1. The transmission constant in POIs, ψ (Equation (9))436

2. The base transmission rate, βbase (Equation (11))437

3. The initial proportion of exposed individuals at time t = 0, p0 (Equation (16)).438

In this section, we describe how we fit these parameters to published numbers of confirmed cases,439

as reported by The New York Times. We fit models for each MSA separately. In Methods M4.4,440

we show that the resulting models can accurately predict the number of confirmed cases in out-of-441

sample data that was not used for model fitting.442
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M4.1 Selecting parameter ranges443

Transmission rate factors ψ and βbase. We select parameter ranges for the transmission rate fac-444

tors ψ and βbase by checking if the model outputs match plausible ranges of the basic reproduction445

number R0 pre-lockdown, since R0 has been the study of substantial prior work on SARS-CoV-446

2.58 Under our model, we can decompose R0 = Rbase + RPOI, where RPOI describes transmission447

due to POIs andRbase describes the remaining transmission (as in Equation (12)). We first establish448

plausible ranges for Rbase and RPOI before translating these into plausible ranges for βbase and ψ.449

We assume that Rbase ranges from 0.1–2. Rbase models transmission that is not correlated450

with activity at POIs in the SafeGraph dataset, including within-household transmission and trans-451

mission at POI categories (like subways or nursing homes) which are not well-captured in the452

SafeGraph dataset. We chose the lower limit of 0.1 because beyond that point, base transmis-453

sion would only contribute minimally to overall R, whereas previous work suggests that within-454

household transmission is a substantial contributor to overall transmission.59–61 Household trans-455

mission alone is not estimated to be sufficient to tip overall R0 above 1; for example, a single456

infected individual has been estimated to cause an average of 0.32 (0.22, 0.42) secondary within-457

household infections.59. However, because Rbase may also capture transmission at POIs not cap-458

tured in the SafeGraph dataset, to be conservative, we chose an upper limit of Rbase = 2; as we459

describe below, the best-fit models for all 10 MSAs have Rbase < 2, and 9 out of 10 have Rbase < 1.460

We allow RPOI to range from 1–3, which corresponds to allowing R0 = RPOI +Rbase to range from461

1.1–5. This is a conservatively wide range, since prior work estimates a pre-lockdown R0 of 2–3.58
462

To determine the values of Rbase and RPOI that a given pair of βbase and ψ imply, we seeded a463

fraction of index cases and then ran the model on looped mobility data from the first week of March464

to capture pre-lockdown conditions. We initialized the model by setting p0, the initial proportion465

of exposed individuals at time t = 0, to p0 = 10−4, and then sampling in accordance with Equation466

(16). Let N0 be the number of initial exposed individuals sampled. We computed the number of467

individuals that these N0 index cases went on to infect through base transmission, Nbase, and POI468

transmission, NPOI, which gives469

RPOI =
NPOI

N0

(19)

Rbase =
Nbase

N0

. (20)
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We averaged these quantities over stochastic realizations for each MSA. Figure S2 shows that, as470

expected, Rbase is linear in βbase and RPOI is linear in ψ. Rbase lies in the plausible range when471

βbase ranges from 0.0012–0.024, and RPOI lies in the plausible range (for at least one MSA) when472

ψ ranges from 515–4,886, so these are the parameter ranges we consider when fitting the model.473

As described in Methods M4.2, we verified that case count data for all MSAs can be fit using474

parameter settings for βbase and ψ within these ranges.475

Initial prevalence of exposures, p0. The extent to which SARS-CoV-2 infections had spread in476

the U.S. by the start of our simulation (March 1, 2020) is currently unclear.62 To account for this477

uncertainty, we allow p0 to vary across a large range between 10−5 and 10−2. As described in478

Methods M4.2, we verified that case count data for all MSAs can be fit using parameter settings479

for p0 within this range.480

M4.2 Fitting to the number of confirmed cases481

Using the parameter ranges above, we grid searched over ψ, βbase, and p0 to find the models that482

best fit the number of confirmed cases reported by The New York Times (NYT).35 For each of the 10483

MSAs studied, we tested 1,500 different combinations of ψ, βbase, and p0 in the parameter ranges484

specified above, with parameters linearly spaced for ψ and βbase and logarithmically spread for p0.485

In Methods M3, we directly model the number of infections but not the number of confirmed486

cases. To estimate the number of confirmed cases, we assume that an rc = 0.1 proportion of487

infections will be confirmed, and moreover that they will confirmed exactly δc = 168 hours (7488

days) after becoming infectious; these parameters are estimated from prior work (Extended Data489

Table 2). From these assumptions, we can calculate the predicted number of newly confirmed490

cases across all CBGs in the MSA on day d,491

N (day d)
cases = rc ·

m∑
i=1

24d−δc∑
τ=24(d−1)+1−δc

N
(τ)
Eci→Ici

, (21)

where m indicates the total number of CBGs in the MSA and for convenience we define N (τ)
Eci→Ici

,492

the number of newly infectious people at hour τ , to be 0 when τ < 1.493

From NYT data, we have the reported number of new cases N̂ (day d)
cases for each day d, summed494

over each county in the MSA. We compare the reported number of cases and the number of cases495

that our model predicts by computing the root-mean-squared-error (RMSE) between each of the496
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D = bT/24c days of our simulations,497

RMSE =

√√√√ 1

D

D∑
d=1

(
N

(day d)
cases − N̂ (day d)

cases

)2

. (22)

For each combination of model parameters and for each MSA, we quantify model fit with the498

NYT data by running 30 stochastic realizations and averaging their RMSE. Note that we measure499

model fit based on the daily number of new reported cases (as opposed to the cumulative number500

of reported cases).63
501

Our simulation spans March 1 to May 2, 2020, and we use mobility data from that period.502

However, because we assume that cases will be confirmed δc = 7 days after individuals become503

infectious (Extended Data Table 2), we predict the number of cases with a 7 day offset, from March504

8 to May 9, 2020.505

M4.3 Parameter selection and uncertainty quantification506

Throughout this paper, we report aggregate predictions from different parameter sets of ψ, βbase,507

and p0 and multiple stochastic realizations. For each MSA, we:508

1. Find the best-fit parameter set, i.e., with the lowest average RMSE over stochastic realiza-509

tions.510

2. Select all parameter sets that achieve an RMSE (averaged over stochastic realizations) within511

20% of the RMSE of the best-fit parameter set.512

3. Pool together all predictions across those parameter sets and all of their stochastic realiza-513

tions, and report their mean and 2.5th/97.5th percentiles.514

On average, each MSA has 9.7 parameter sets that achieve an RMSE within 20% of the best-fitting515

parameter set (Table S8). For each parameter set, we have results for 30 stochastic realizations. All516

uncertainty intervals in our results show the 2.5th/97.5th percentiles across these pooled results.517

This procedure corresponds to rejection sampling in an Approximate Bayesian Computation518

framework,15 where we assume an error model that is Gaussian with constant variance; we pick an519

acceptance threshold based on what the best-fit model achieves; and we use a uniform parameter520

grid instead of sampling from a uniform prior. It quantifies uncertainty from two sources. First, the521

multiple realizations capture stochastic variability between model runs with the same parameters.522
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Second, simulating with all parameter sets that are within 20% of the RMSE of the best fit captures523

uncertainty in the model parameters ψ, βbase, and p0. The latter is equivalent to assuming that the524

posterior probability over the true parameters is uniformly spread among all parameter sets within525

the 20% threshold.526

M4.4 Model validation on out-of-sample cases527

We validate our models by showing that they predict the number of confirmed cases on out-of-528

sample data when we have access to corresponding mobility data. For each MSA, we split the529

available NYT dataset into a training set (spanning March 8, 2020 to April 14, 2020) and a test530

set (spanning April 15, 2020 to May 9, 2020). We fit the model parameters ψ, βbase, and p0,531

as described in Methods M4.2, but only using the training set. We then evaluate the predictive532

accuracy of the resulting model on the test set. When running our models on the test set, we533

still use mobility data from the test period. Thus, this is an evaluation of whether the models can534

accurately predict the number of cases, given mobility data, in a time period that was not used535

for model calibration. Extended Data Figure 1a shows that the models fit the out-of-sample case536

data fairly well, demonstrating that they can extrapolate beyond the training set to future time537

periods. Note that we only use this train/test split to evaluate out-of-sample model accuracy. All538

other results are generated using parameter sets that best fit the entire dataset, as described in539

Methods M4.2.540

M5 Sensitivity analyses and robustness checks541

M5.1 Aggregate mobility and no-mobility baseline models542

Comparison to aggregate mobility model. Our model uses a detailed mobility network to sim-543

ulate disease spread. To test if this detailed model is necessary, or if our model is simply making544

use of aggregate mobility patterns, we tested an alternate SEIR model that uses the aggregate num-545

ber of visits made to any POI in the MSA in each hour, but not the breakdown of visits between546

specific CBGs to specific POIs. Like our model, the aggregate mobility model also captures trans-547

mission due to POI visits and mixing within CBGs; thus, the two models have the same three free548

parameters (ψ, scaling transmission rates at POIs; βbase, scaling transmission rates at CBGs; and549

p0, the initial fraction of infected individuals).550

As in our network model, transmission under the aggregate mobility model happens at POIs551

and at CBGs. For POI transmission, we take the probability that a susceptible person (from any552
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CBG) will become infected due to a POI visit at time t as equal to553

λ
(t)
POI = ψ ·

∑m
i=1

∑n
j=1w

(t)
ij

nm︸ ︷︷ ︸
average mobility at time t

·I
(t)

N
, (23)

where m is the number of CBGs, n is the number of POIs, I(t) is the total number of infectious554

individuals at time t, and N is the total population size of the MSA. For CBG transmission, we555

assume the same process as in our network model: the probability λ(t)
ci that a susceptible person in556

CBG ci will become infected in their CBG in time t is equal to βbase times the current infectious557

fraction of ci (Equation 11). Putting it together, the aggregate mobility model defines the number558

of new exposures in CBG ci at time t as559

N
(t)
Sci→Eci

∼ Binom
(
S(t)
ci
, λ

(t)
POI

)
︸ ︷︷ ︸

new infections from visiting POIs

+ Binom
(
S(t)
ci
, λ(t)

ci

)
.︸ ︷︷ ︸

base rate of new CBG infections

(24)

All other dynamics are the same between the aggregate mobility model and our network model, as560

described in Methods M3. We determined parameter ranges and calibrated the aggregate mobility561

model in the exact same way as we did for our network model, as described in Methods M4.562

As discussed in the main text, we found that our network model substantially outperformed the563

aggregate mobility model in out-of-sample cases prediction (Extended Data Figure 1).564

Comparison to baseline that does not use mobility data. To determine the extent to which565

mobility data might aid in modeling the case trajectory, we also compared our model to a baseline566

SEIR model that does not use mobility data and simply assumes that all individuals within an MSA567

mix uniformly. In this no-mobility baseline, an individual’s risk of being infected and transitioning568

to the exposed state at time t is569

λ(t) := βbase ·
I(t)

N
, (25)

where I(t) is the total number of infectious individuals at time t, and N is the total population570

size of the MSA. As above, the other model dynamics are identical, and for model calibration we571

performed a similar grid search over βbase and p0. As expected, we found both the network and572

aggregate mobility models outperformed the no-mobility model on out-of-sample case predictions573
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(Extended Data Figure 1).574

M5.2 Modifying the parametric form for POI transmission rates575

Recall from Methods M3, Equation (8), that in our model, the transmission rate at a POI pj at an576

hour t,577

β(t)
pj

:= ψ · d2
pj
·
V

(t)
pj

apj
, (26)

depends on two key ingredients: d2
pj

, which reflects how much time visitors spend there, and578

V
(t)
pj /apj , which reflects the density (number of visitors per sq ft) of the POI in that hour. These579

assumptions are based on prior expectations that a visit is more dangerous for a susceptible indi-580

vidual if they spend more time there and/or if the place is more crowded. To assess empirically the581

role that each of these two terms play, we compared our transmission rate formula to two perturbed582

versions of it: one that removed the dwell time term, and another that removed the density term.583

For each of these formulas, we computed the risk of visiting a POI category as the average trans-584

mission rate of the category, with the rate of each POI weighted by the proportion of category visits585

that went to that POI. Then, we evaluated whether the relative risks predicted by each formula con-586

corded with the rankings of POI categories proposed by independent epidemiological experts.64, 65
587

In our evaluations, we included all of the categories that we analyzed (i.e., the 20 categories with588

the most visits in SafeGraph data; see Section M6) that overlapped with categories described in589

the external rankings. To compare against Emanuel et al.64, we also converted their categorical590

groupings into numerical score, i.e., “Low” → 1, “Low/Medium” → 2, etc., up to “High” → 5.591

Sims et al.65 already provided numerical ratings so we did not have to perform a conversion.592

As shown in Figure S5, we find that the predicted relative risks match external sources best593

when we use our original parametric form that accounts for both dwell time and density: restau-594

rants, cafes, religious organizations, and gyms are among the most dangerous, while grocery stores595

and retail (e.g., clothing stores) are less dangerous. However, when we assume only dwell time596

matters and remove the density term, we see unrealistic changes in the ranking: e.g., restaurants597

drop close to grocery stores, despite both sets of experts deeming them far apart in terms of risk.598

When we assume only density matters and remove dwell time, we also see unrealistic changes:599

e.g., limited-service restaurants are predicted to be far riskier than full-service restaurants, and600

gyms and religious organizations are no longer predicted as risky, which contradicts both of our601
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sources. These findings demonstrate that both factors — the dwell time and density — are impor-602

tant toward faithfully modeling transmission at POIs, since the predictions become less realistic603

when either factor is taken out.604

M5.3 Parameter identifiability605

We assess the identifiability of the fitted model parameters ψ, βbase, and p0 as follows. First, we606

verify that the model-fitting procedure is able to recover the true parameters when fit on simulated607

data for which the true parameters are known. For each MSA, we simulate daily case counts using608

the best-fit parameters for that MSA (i.e., those with the minimum RMSE to daily case counts, as609

reported in Table S8). We then run our grid search fitting procedure on the simulated case counts.610

For all 10 MSAs, as Figure S8 illustrates, the parameters in our grid search that obtain the lowest611

RMSE on the simulated data are always the true parameters that were used to generate that data.612

This demonstrates that our model and fitting procedure can correctly recover the true parameters613

on simulated data.614

As a further assessment of model identifiability, in Figure S9 we plot RMSE on true (not615

simulated) daily case counts (that is, the metric used to perform model calibration) as a function616

of model parameters βbase and ψ. (We take the minimum RMSE over values of p0 so the plots can617

be visualized in two dimensions.) As these plots illustrate, βbase and ψ are correlated, which is un-618

surprising because they scale the growth of infections at CBGs and POIs respectively. We account619

for the uncertainty caused by this correlation throughout the analysis, by aggregating results from620

all parameter settings which achieve an RMSE within 20% of the best-fit model for each MSA, as621

described in Section M4.3.622

M5.4 Stochastic sampling of cases623

Instead of assuming that a fixed proportion of infections are confirmed after a fixed confirmation624

delay, we also tried stochastically sampling the number of confirmed cases and the confirmation625

delay. For each day d, we first computed N (d)
Eci→Ici

, the number of people who became infectious626

on this day; we then sampled from Binom
(
N

(d)
Eci→Ici

, rc
)

to get the number of confirmed cases that627

would result from this group of infections. For each case that was to be confirmed, we drew its628

confirmation delay – i.e., delay from becoming infectious to being confirmed – from distributions629

fitted on empirical line-list data: either Gamma(1.85, 3.57)22 or Exp(6.1).43
630

We found that our model predictions barely changed when we sampled case trajectories631
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stochastically using either delay distribution, as opposed to assuming a fixed confirmation rate and632

delay (Figure S4). However, an advantage of our fixed method is that it allows us to predict con-633

firmed cases up to δc (i.e., 7) days after the last day of simulation, whereas we cannot do the same634

when we sample confirmed cases and delays stochastically. This is because, if delays are stochas-635

tic, predicting the number of confirmed cases on, for example, the 5th day after the simulation ends636

depends on the number of newly infectious individuals every day before and including that day,637

but since the simulation ended days before, the model would not have sufficient information to638

make the prediction. On the other hand, the fixed method simply translates and scales the newly639

infectious curve, so we can predict the number of confirmed cases 5 days after the simulation640

ends, since it only depends on the number of newly infectious individuals 2 days before the end of641

simulation. Due to this advantage, we opted to use the fixed method, as described in Methods M4.642

M5.5 Model calibration metrics643

Finally, we tested three alternative model calibration procedures using different metrics for mea-644

suring when to accept or reject a model parameter setting. For each procedure, we recomputed our645

downstream analyses and verified that our key results on superspreader POIs (Extended Data Fig-646

ure 3), the effects of reopening (Figure S6), and group disparities (Figure 3) all remained similar.647

Poisson likelihood model. Our model calibration procedure, which uses RMSE to assess fit,648

implicitly assumes that error in the number of observed cases is drawn from a normal (Gaussian)649

distribution. As a sensitivity analysis, we tested a Poisson error model instead, using negative650

log-likelihood as a measure of fit, and using the same 20% threshold for model calibration as in651

Methods M4. We note that the homoscedastic Gaussian model will likely prioritize fitting parts652

of the case trajectory that have higher case counts, whereas a Poisson model will comparatively653

prioritize fitting parts of the case trajectory with lower case counts. We found that ranking models654

via Poisson likelihood was consistent with ranking models using RMSE (both computed on daily655

incident cases, as described above): the median Spearman correlation over MSAs between models656

ranked by Poisson likelihood vs. RMSE was 0.97.657

Model acceptance threshold. As described in Methods M4, we set the acceptance threshold for658

model calibration (i.e., the threshold for rejection sampling in the Approximate Bayesian Compu-659

tation framework) to 20% of the RMSE of the best-fit model. We selected this threshold because660
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beyond that point, model fit qualitatively deteriorated based on inspection of the case trajectories.661

As a sensitivity analysis, we selected a different threshold (10%), corresponding to selecting a662

subset of the models that had a better fit, and verified that the key results remained similar.663

Fitting to deaths. In addition to the number of confirmed cases, the NYT data also contains the664

daily reported number of deaths due to COVID-19 by county. As an additional sensitivity analysis,665

we calibrated our models to fit this death data instead of case data. To estimate the number of666

deaths Ndeaths, we use a similar process as for the number of cases Ncases, except that we replace rc667

with rd = 0.66%, the estimated infection fatality rate for COVID-19,66 and δc with δd = 432 hours668

(18 days), the number of days between becoming infectious and dying66 (Extended Data Table 2669

provides references for all parameters). This gives670

N
(d)
deaths = rd ·

m∑
i=1

24d−δd∑
τ=24(d−1)+1−δd

N
(τ)
Eci→Ici

. (27)

Because we assume that deaths occur δd = 18 days after individuals become infectious, we com-671

pared with NYT death data starting on March 19, 2020 (18 days after our simulation begins).672

Extended Data Figure 2 shows that while the daily death data is noisy, the calibrated models can673

also fit the trends in the death counts well. Ranking models using RMSE on deaths was consistent674

with ranking models using RMSE on cases, with a median Spearman correlation over MSAs of675

0.99, and as with the above sensitivity analyses (changing the likelihood model and the acceptance676

threshold), we found that our key results remained similar.677

M6 Analysis details678

In this section, we include additional details about the experiments underlying the figures in the679

paper. We omit explanations for figures that are completely described in the main text.680

Comparing the magnitude vs. timing of mobility reduction (Figure 2a). To simulate what681

would have happened if we changed the magnitude or timing of mobility reduction, we modify the682

real mobility networks from March 1–May 2, 2020, and then run our models on the hypothetical683

data. In Figure 2a, we report the cumulative incidence proportion at the end of the simulation (May684

2, 2020), i.e., the total fraction of people in the exposed, infectious, and removed states at that time.685

To simulate a smaller magnitude of mobility reduction, we interpolate between the mobility686
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network from the first week of simulation (March 1–7, 2020), which we use to represent typical687

mobility levels (prior to mobility reduction measures), and the actual observed mobility network688

for each week. Let W (t) represent the observed visit matrix at the t-th hour of simulation, and let689

f(t) = t mod 168 map t to its corresponding hour in the first week of simulation, since there are690

168 hours in a week. To represent the scenario where people had committed to α ∈ [0, 1] times691

the actual observed reduction in mobility, we construct a visit matrix W̃
(t)
α that is an α-convex692

combination of W (t) and W f(t),693

W̃ (t)
α := αW (t) + (1− α)W f(t). (28)

If α is 1, then W̃ (t)
α = W (t), and we use the actual observed mobility network for the simulation.694

On the other hand, if α = 0, then W̃
(t)
α = W f(t), and we assume that people did not reduce695

their mobility levels at all by looping the visit matrix for the first week of March throughout the696

simulation. Any other α ∈ [0, 1] interpolates between these two extremes.697

To simulate changing the timing of mobility reduction, we shift the mobility network by698

d ∈ [−7, 7] days. Let T represent the last hour in our simulation (May 2, 2020, 11PM), let699

f(t) = t mod 168 map t to its corresponding hour in the first week of simulation as above, and700

similarly let g(t) map t to its corresponding hour in the last week of simulation (April 27–May 2,701

2020). We construct the time-shifted visit matrix W̃ (t)
d702

W̃
(t)
d :=


W (t−24d) if 0 ≤ t− 24d ≤ T,

W f(t−24d) if t− 24d < 0,

W g(t−24d) otherwise.

(29)

If d is positive, this corresponds to starting mobility reduction d days later; if we imagine time on703

a horizontal line, this shifts the time series to the right by 24d hours. However, doing so leaves704

the first 24d hours without visit data, so we fill it in by reusing visit data from the first week of705

simulation. Likewise, if d is negative, this corresponds to starting mobility reduction d days earlier,706

and we fill in the last 24d hours with visit data from the last week of simulation.707

A minority of POIs account for a majority of infections (Figure 2b and Extended Data Fig-708

ure 3). To evaluate the distribution of infections over POIs, we run our models on the observed709
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mobility data from March 1–May 2, 2020 and record the number of infections that occur at each710

POI. Specifically, for each hour t, we compute the number of expected infections that occur at each711

POI pj by taking the number of susceptible people who visit pj in that hour multiplied by the POI712

infection rate λ(t)
pj (Equation (9)). Then, we count the total expected number of infections per POI713

by summing over hours. In Figure 2b, we sort the POIs by their expected number of infections and714

report the proportion of all infections caused by the top x% of POIs.715

Reducing mobility by clipping maximum occupancy (Figure 2c, Extended Data Figure 4).716

We implemented two partial reopening strategies: one that uniformly reduced visits at POIs to a717

fraction of full activity, and the other that “clipped” each POI’s hourly visits to a fraction of the718

POI’s maximum occupancy. For each reopening strategy, we started the simulation at March 1,719

2020 and ran it until May 31, 2020, using the observed mobility network from March 1–April720

30, 2020, and then using a hypothetical post-reopening mobility network from May 1–31, 2020,721

corresponding to the projected impact of that reopening strategy. Because we only have observed722

mobility data from March 1–May 2, 2020, we impute the missing mobility data up to May 31,723

2020 by looping mobility data from the first week of March, as in the above analysis on the effect724

of past reductions in mobility. Let T represent the last hour for which we have observed mobility725

data (May 2, 2020, 11PM). To simplify notation, we define726

h(t) :=

t if t < T,

f(t) otherwise,
(30)

where, as above, f(t) = t mod 168. This function leaves t unchanged if there is observed mo-727

bility data at time t, and otherwise maps t to the corresponding hour in the first week of our728

simulation.729

To simulate a reopening strategy that uniformly reduced visits to an γ-fraction of their origi-730

nal level, where γ ∈ [0, 1], we constructed the visit matrix731

W̃ (t)
γ :=

W
h(t) if t < τ,

αW h(t) otherwise,
(31)

where τ represents the first hour of reopening (May 1, 2020, 12AM). In other words, we use the732
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actual observed mobility network up until hour τ , and then subsequently simulate an γ-fraction of733

full mobility levels.734

To simulate the clipping strategy, we first estimated the maximum occupancy Mpj of each735

POI pj as the maximum number of visits that it ever had in one hour, across all of March 1 to May736

2, 2020. As in previous sections, let w(t)
ij represent the i, j-th entry in the observed visit matrix737

W (t), i.e., the number of people from CBG ci who visited pj in hour t, and let V (t)
pj represent the738

total number of visitors to pj in that hour, i.e.,
∑

iw
(t)
ij . We simulated clipping at a β-fraction of739

maximum occupancy, where β ∈ [0, 1], by constructing the visit matrix W̃ (t)
β whose i, j-th entry is740

w̃
(t)
ijβ :=


w
h(t)
ij if t < τ or V (t)

pj ≤ βMpj ,

βMpj

V
(t)
pj

w
h(t)
ij otherwise.

(32)

This corresponds to the following procedure: for each POI pj and time t, we first check if t < τ741

(reopening has not started) or if V (t)
pj ≤ βMpj (the total number of visits to pj at time t is below the742

allowed maximum βMpj ). If so, we leave wh(t)
ij unchanged. Otherwise, we compute the scaling743

factor
βMpj

V
(t)
pj

that would reduce the total visits to pj at time t down to the allowed maximum βMpj ,744

and then scale down all visits from each CBG ci to pj proportionately.745

For both reopening strategies, we calculate the increase in cumulative incidence at the end of746

the reopening period (May 31, 2020), compared to the start of the reopening period (May 1, 2020).747

Relative risk of reopening different categories of POIs (Figure 2d, Extended Data Figures 5748

and 8, Figures S10-S19). We study separately reopening the 20 POI categories with the most749

visits in SafeGraph data. In this analysis, we exclude four categories, following prior work30:750

“Child Day Care Services” and “Elementary and Secondary Schools” (because children under 13751

are not well-tracked by SafeGraph); “Drinking Places (Alcoholic Beverages)” (because SafeGraph752

seems to undercount these locations) and “Nature Parks and Other Similar Institutions” (because753

boundaries and therefore areas are not well-defined by SafeGraph). We also exclude “General754

Medical and Surgical Hospitals” and “Other Airport Operations” (because hospitals and air travel755

both involve many additional risk factors our model is not designed to capture). We do not filter756

out these POIs during model fitting, because including them still increases the proportion of overall757

mobility our dataset captures; we simply do not analyze these categories specifically, because we758

wish to be conservative and only focus on categories where we are most confident we are fully759
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capturing transmission at the category. For the Drinking Places (Alcoholic Beverages) category,760

prior work reports that “SafeGraph staff suggest that part of the low count [of drinking places] is761

due to ambiguity in the division between restaurants and bars and pubs that serve food”,30 and some762

restaurants in the data are indeed described as establishments like bars, beer gardens, breweries,763

cocktail lounges, or Irish pubs. This suggests that some drinking places that also serve food are764

already accounted for in our model under restaurants.765

This reopening analysis is similar to the above analysis on clipping vs. uniform reopening.766

As above, we set the reopening time τ to May 1, 2020, 12AM. To simulate reopening a POI767

category, we take the set of POIs in that category, V , and set their activity levels after reopening to768

that of the first week of March. For POIs not in the category V , we keep their activity levels after769

reopening the same, i.e., we simply repeat the activity levels of the last week of our data (April770

27–May 2, 2020): This gives us the visit matrix W̃ (t) with entries771

w̃
(t)
ij :=


w

(t)
ij if t < τ,

w
f(t)
ij if t ≥ τ, pj ∈ V

w
g(t)
ij if t ≥ τ, pj /∈ V .

(33)

As in the above reopening analysis, f(t) maps t to the corresponding hour in the first week of772

March, and g(t) maps t to the corresponding hour in the last week of our data. For each category,773

we calculate the difference between (1) the cumulative fraction of people who have been infected774

by the end of the reopening period (May 31, 2020) and (2) the cumulative fraction of people775

infected by May 31 had we not reopened the POI category (i.e., if we simply repeated the activity776

levels of the last week of our data). This seeks to model the increase in cumulative incidence by777

end of May from reopening the POI category. In Extended Data Figure 5 and Figures S10-S19, the778

bottom right panel shows the increase for the category as a whole, and the bottom left panel shows779

the increase per POI (i.e., the total increase divided by the number of POIs in the category).780

Per-capita mobility (Figure 3d, Extended Data Figures 6 and 7). Each group of CBGs (e.g.,781

the bottom income decile) comprises a set U of CBGs that fit the corresponding criteria. In Ex-782

tended Data 6, we show the daily per-capita mobilities of different pairs of groups (broken down783

by income and by race). To measure the per-capita mobility of a group on day d, we take the total784

number of visits made from those CBGs to any POI,
∑

ci∈U
∑

pj∈P
∑24d+23

t=24d w
(t)
ij , and divide it by785
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the total population of the CBGs in the group,
∑

ci∈U Nci . In Extended Data Figure 7, we show the786

total number of visits made by each group to each POI category, accumulated over the entire data787

period (March 1–May 2, 2020) and then divided by the total population of the group.788

Average transmission rate of a POI category (Figure 3e). We compute the average hourly789

transmission rate experienced by a group of CBGs U at a POI category V as790

β̄UV :=

∑
ci∈U

∑
pj∈V

∑T
t=1 w

(t)
ij β

(t)
pj∑

ci∈U
∑

pj∈V
∑T

t=1 w
(t)
ij

, (34)

where, as above, β(t)
pj is the transmission rate at POI pj in hour t (Equation (8)), w(t)

ij is the number791

of visitors from CBG ci at POI pj in hour t, and T is the last hour in our simulation. This represents792

the expected transmission rate encountered during a visit by someone from a CBG in group U to a793

POI in category V .794

M7 Estimating the mobility network from SafeGraph data795

Finally, we describe how we estimate the dwell time dpj (Methods M7.1) and visit matrix W (t)
796

(Methods M7.2) from SafeGraph data.797

Quantities from SafeGraph data. We use the following quantities from SafeGraph data:798

• The estimated visit matrix Ŵ (r) aggregated for the month r, where we use r instead of t to799

denote time periods longer than an hour. This is taken from the Patterns dataset, and is ag-800

gregated at a monthly level. To account for non-uniform sampling from different CBGs, we801

weight the number of SafeGraph visitors from each CBG by the ratio of the CBG population802

and the number of SafeGraph devices with homes in that CBG.67
803

• V̂ (t)
pj : The number of visitors recorded in POI pj at hour t. This is taken from the Weekly804

Patterns v1 dataset.805

• ĥ(t)
ci : The estimated fraction of people in CBG ci who left their home in day bt/24c. This is806

derived by taking 1 − (completely home device count/device count). These807

are daily (instead of hourly) metrics in the Social Distancing Metrics dataset.808

• δ̂pj : The median length of a visit to a POI pj . We estimate this by averaging over the weekly809
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values in the median dwell field in the Patterns datasets in March and April 2020. δ̂pj is810

measured to minute-level resolution and expressed in units of hours, e.g., δ̂pj = 1.5 means a811

median visit time of 1.5 hours = 90 minutes.812

M7.1 Data preprocessing and dwell time computation813

Hourly visits. The raw SafeGraph data records the number of visitors that newly arrive at each814

POI pj at each hour. However, V̂ (t)
pj above represents the number of visitors that are present at a815

POI in an hour t; these visitors may have arrived prior to t. The aggregate visit matrix Ŵ (r), as816

well as the visit matrix W (t) used in our model, are defined similarly. To compute these quantities817

from the raw data, we make two assumptions: first, that every visitor to pj stays for exactly δ̂pj818

hours, where δ̂pj is the median length of a visit to pj , and second, that a visitor who newly arrives819

in an hour t is equally likely to arrive at any time from [t, t + 1). With these assumptions, we can820

convert the number of visitor arrivals in each hour into the expected number of visitors present at821

each hour: for example, if δ̂pj = 1.5 hours, then we assume that a visitor who arrives sometime822

during an hour t will also be present in hour t + 1 and be present half the time, on expectation, in823

hour t+ 2. Note that under our definition, visits are still counted even if a visitor does not stay for824

the entire hour. For example, a visitor that arrives at 9:30am and leaves at 10:10am will be counted825

as two visits: one during the 9-10am hour and one during the 10-11am hour.826

The dwell time correction factor dpj . To estimate the mean occupancy at each POI pj in an hour827

t, we multiply the expected number of visitors present at pj in hour t by the dwell time correction828

factor dpj , which measures the expected fraction of an hour that a visitor present at pj at any hour829

will spend there. In other words, conditioned on a visitor being at pj at some time within an hour830

t, dpj is the expected fraction of the hour t that the visitor physically spends at pj . The same831

two assumptions above allow us to calculate dpj : since each visitor stays for exactly δ̂pj hours,832

and on average is counted as being present in
∫ 1

0

⌈
δ̂pj + τ

⌉
dτ = δ̂pj + 1 different hours, we have833

dpj = δ̂pj/(δ̂pj + 1).834

Truncating outliers. As described in Methods M3.1, our model necessarily makes parametric835

assumptions about the relationship between POI characteristics (area, hourly visitors, and dwell836

time) and transmission rate at the POI; these assumptions may fail to hold for POIs which are out-837

liers, particularly if SafeGraph data has errors. We mitigate this concern by truncating extreme838
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values for POI characteristics to prevent data errors from unduly influencing our conclusions.839

Specifically, we truncate each POI’s area (i.e., square footage) to the 5th and 95th percentile of840

areas in the POI’s category; for every hour, we truncate the number of visitor arrivals for each POI841

to its category’s 95th percentile of visitor arrivals in that hour; and we truncate each POI’s median842

dwell time to its category’s 90th percentile of median dwell times in that period.843

M7.2 Estimating the visit matrix W (t)
844

Overview. We estimate the visit matrix W (t) = {w(t)
ij }, which captures the number of visitors845

from CBG ci to POI pj at each hour t from March 1, 2020 to May 2, 2020, through the iterative846

proportional fitting procedure (IPFP).34 The idea is as follows:847

1. From SafeGraph data, we can derive a time-independent estimate W̄ of the visit matrix848

that captures the aggregate distribution of visits from CBGs to POIs from January 2019 to849

February 2020.850

2. However, visit patterns differ substantially from hour to hour (e.g., day versus night) and851

day to day (e.g., pre- versus post-lockdown). To capture these variations, we use current852

SafeGraph data to estimate the CBG marginals U (t), i.e., the total number of visitors leaving853

each CBG at each time t, as well as the POI marginals V (t), i.e., the total number of visitors854

present at each POI pj at time t.855

3. We then use IPFP to estimate an hourly visit matrix W (t) that is consistent with the hourly856

marginals U (t) and V (t) but otherwise “as similar as possible” to the distribution of visits857

in the aggregate visit matrix W̄ . Here, similarity is defined in terms of Kullback-Leibler858

divergence; we provide a precise definition below.859

Estimating the aggregate visit matrix W̄ . The estimated monthly visit matrices Ŵ (r) are typi-860

cally noisy and sparse: SafeGraph only matches a subset of visitors to POIs to their home CBGs,861

either for privacy reasons (if there are too few visitors from the given CBG) or because they are un-862

able to link the visitor to a home CBG.68 To mitigate this issue, we aggregate these visit matrices,863

which are available at the monthly level, over the R = 14 months from January 2019 to February864
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2020:865

W̄ :=
1

R

∑
r

Ŵ (r). (35)

Each entry w̄ij of W̄ represents the estimated number of visitors from CBG ci that are present at866

POI pj in an hour, averaged over each hour. After March 2020, SafeGraph reports the visit matrices867

Ŵ (r) on a weekly level in the Weekly Patterns v1 dataset. However, due to inconsistencies in the868

way SafeGraph processes the weekly vs. monthly matrices, we only use the monthly matrices up869

until February 2020.870

Estimating the POI marginals V (t). We estimate the POI marginals V (t) ∈ Rn, whose j-th871

element V (t)
pj represents our estimate of the number of visitors at POI pj (from any CBG) at time t.872

The number of visitors recorded at POI pj at hour t in the SafeGraph data, V̂ (t)
pj , is an underestimate873

because the SafeGraph data only covers on a fraction of the overall population. To correct for this,874

we follow Benzell et al.30 and compute our final estimate of the visitors at POI pj in time t as875

V (t)
pj

=
US population

total number of SafeGraph devices
· V̂ (t)

pj
. (36)

This correction factor is approximately 7, using population data from the most recent 1-year ACS876

(2018).877

Estimating the CBG marginals U (t). Next, we estimate the CBG marginals U (t) ∈ Rm. Here,878

the i-th element U (t)
ci represents our estimate of the number of visitors leaving CBG ci (to visit879

any POI) at time t. We will also use Nci; recall that Nci is the total population of ci, which is880

independent of t.881

We first use the POI marginals V (t) to calculate the total number of people who are out882

visiting any POI from any CBG at time t,883

N
(t)
POIs :=

n∑
j=1

V (t)
pj
, (37)

where n is the total number of POIs. Since the total number of people leaving any CBG to visit a884

POI must equal the total number of people at all the POIs, we have that N (t)
POIs =

∑m
i=1 U

(t)
ci , where885
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m is the total number of CBGs.886

Next, we estimate the number of people from each CBG ci who are not at home at time t as887

ĥ
(t)
ci Nci . In general, the total number of people who are not at home in their CBGs,

∑m
i=1 ĥ

(t)
ci Nci ,888

will not be equal to N (t)
POIs, the number of people who are out visiting any POI. This discrepancy889

occurs for several reasons: for example, some people might have left their homes to travel to places890

that SafeGraph does not track, SafeGraph might not have been able to determine the home CBG891

of a POI visitor, etc.892

To correct for this discrepancy, we assume that the relative proportions of POI visitors com-893

ing from each CBG follows the relative proportions of people who are not at home in each CBG.894

We thus estimate U (t)
ci by apportioning the N (t)

POIs total POI visitors at time t according to the pro-895

portion of people who are not at home in each CBG ci at time t:896

U (t)
ci

:= N
(t)
POIs ·

ĥ
(t)
ci Nci∑m

k=1 ĥ
(t)
ckNck

, (38)

where Nci is the total population of CBG i, as derived from US Census data. This construction897

ensures that the POI and CBG marginals match, i.e., N (t)
POIs =

∑n
j=1 V

(t)
pj =

∑m
i=1 U

(t)
ci .898

Iterative proportional fitting procedure (IPFP). IPFP is a classic statistical method34 for ad-899

justing joint distributions to match pre-specified marginal distributions, and it is also known in the900

literature as biproportional fitting, the RAS algorithm, or raking.69 In the social sciences, it has901

been widely used to infer the characteristics of local subpopulations (e.g., within each CBG) from902

aggregate data.70–72
903

We estimate the visit matrix W (t) by running IPFP on the aggregate visit matrix W̄ , the904

CBG marginals U (t), and the POI marginals V (t) constructed above. Our goal is to construct a905

non-negative matrix W (t) ∈ Rm×n whose rows sum up to the CBG marginals U (t),906

U (t)
ci

=
n∑
j=1

w
(t)
ij , (39)

and whose columns sum up to the POI marginals V (t)
pj ,907

V (t)
pj

=
m∑
i=1

w
(t)
ij , (40)
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but whose distribution is otherwise “as similar as possible”, in the sense of Kullback-Leibler di-908

vergence, to the distribution over visits induced by the aggregate visit matrix W̄ .909

Algorithm 1: Iterative proportional fitting procedure to estimate visit matrix W (t)

Input: Aggregate visits W̄ ∈ Rm×n

CBG marginals U (t) ∈ Rm; POI marginals V (t) ∈ Rn

Number of iterations τmax

Initialize W (t,0) = W̄
for τ = 1, . . . , τmax do

if τ is odd then
for i = 1, . . . ,m do

αi ← U
(t)
ci /

∑n
j=1w

(t)
ij // Compute scaling factor for row i

W
(t,τ)
i,: ← αi ∗W (t,τ−1)

i,: // Rescale row i

end
else if τ is even then

for j = 1, . . . , n do
βj ← V

(t)
pj /

∑m
i=1 w

(t)
ij // Compute scaling factor for col j

W
(t,τ)
:,j ← αi ∗W (t,τ−1)

:,j // Rescale col j

end
end

end
W (t) ← W (t,τmax)

IPFP is an iterative algorithm that alternates between scaling each row to match the row910

(CBG) marginals U (t) and scaling each column to match the column (POI) marginals V (t). We911

provide pseudocode in Algorithm 1. For each value of t used in our simulation, we run IPFP912

separately for τmax = 100 iterations. Note that IPFP is invariant to scaling the absolute magnitude913

of the entries in W̄ , since the total number of visits it returns is fixed by the sum of the marginals;914

instead, its output depends only on the distribution over visits in W̄ .915

The notion of similarity invoked above has a maximum likelihood interpretation: if IPFP916

converges, then it returns a visit matrix W (t) whose induced distribution minimizes the Kullback-917

Leibler divergence to the distribution induced by W̄ .73 We further discuss the convergence of IPFP918

in our setting in SI Section S3.919
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Extended data920

Extended Data Figure 1: Predicted (blue) and true (orange) daily case counts for (a) our model, which uses hourly
mobility networks, (b) an SEIR model which uses hourly aggregated mobility data, and (c) a baseline SEIR model
which does not use mobility data. Incorporating mobility information improves out-of-sample fit and having a network,
instead of an aggregate measure, further improves fit. All three models are calibrated on observed case counts before
April 15, 2020 (vertical black line). Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters
and stochastic realizations. See Methods M4.4 and Methods M5.1 for details.

47

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 14, 2020. ; https://doi.org/10.1101/2020.06.15.20131979doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.15.20131979
http://creativecommons.org/licenses/by/4.0/


Extended Data Figure 2: Predicted (green) and true (brown) daily death counts, when our model is calibrated on
observed death counts from March 19 to May 9, 2020. Shaded regions denote 2.5th and 97.5th percentiles across
sampled parameters and stochastic realizations. See Methods M5.5 for details.
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Extended Data Figure 3: A small fraction of POIs account for a large fraction of the predicted infections at POIs. We
additionally conducted a sensitivity analysis on which metric was used for model calibration and show that this key
finding holds across all metrics. For each metric setting, we ran our models on the observed mobility data from March
1–May 2, 2020 and recorded the predicted number of infections that occurred at each POI. Shaded regions denote
2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. See Methods M5.5 for details on
model calibration metrics, and Methods M6 for details on this experiment.
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Extended Data Figure 4: The predicted increase in infections under the reduced occupancy reopening strategy. We
simulate reopening starting on May 1, 2020 and run the simulation until the end of the month. Each dot represents the
level of occupancy reduction: e.g., capping visits at 50% of maximum occupancy, at 20% of maximum occupancy,
etc. The y-coordinate of each dot represents the predicted number of new infections incurred after reopening (per 100k
population) and its x-coordinate represents the fraction of visits lost from partial reopening compared to full reopening.
Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. In 4 MSAs,
the cost of new infections from reopening is roughly similar for lower-income CBGs and the overall population, but
in 5 MSAs, the lower-income CBGs incur more infections from reopening. Notably, New York City (NYC) is the
only MSA where this trend is reversed; this is because such a high fraction—65% (95% CI, 62%-68%)—of lower-
income CBGs in NYC had been infected before reopening that after reopening, only a minority of the lower-income
population is still susceptible (in comparison, the second highest fraction infected before reopening was 31% (95%
CI, 28%-35%) for Philadelphia, and the rest ranged from 1%-14%). See Methods M6 for reopening details.
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Extended Data Figure 5: POI attributes in all 10 MSAs combined. The top two plots pool POIs from all MSAs,
showing (a) the distribution of dwell time, and (b) the average number of hourly visitors divided by the area of the
POI in square feet. Each point represents one POI; boxes depict the interquartile range across POIs. The bottom two
plots pool across models from all MSAs, and show predictions for the increase in infections (per 100k population)
from reopening a POI category: (c) per POI, and (d) for the category as a whole. Each point represents one model re-
alization; boxes depict the interquartile range across sampled parameters and stochastic realizations. See Methods M6
for reopening details.
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Extended Data Figure 6: Daily per-capita mobility over time, (a) comparing lower-income to higher-income CBGs
and (b) comparing less white to more white CBGs. See Methods M6 for details.
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Extended Data Figure 7: Visits per capita from CBGs in the bottom- (purple) and top- (gold) income deciles to each
POI category, accumulated from March 1–May 2, 2020. See Methods M6 for details.
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Extended Data Figure 8: Predicted additional infections (per 100k population) from reopening each POI category,
for CBGs in the top- (gold) and bottom- (purple) income deciles. Reopening impacts are generally worse for lower-
income CBGs. See Methods M6 for reopening details.
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MSA CBGs POIs Hourly edges Total modeled pop Total visits
Atlanta 3,130 39,411 540,166,727 7,455,619 27,669,692
Chicago 6,812 62,420 540,112,026 10,169,539 33,785,702
Dallas 4,877 52,999 752,998,455 9,353,561 37,298,053
Houston 3,345 49,622 609,766,288 7,621,541 32,943,613
Los Angeles 8,904 83,954 643,758,979 16,101,274 38,101,674
Miami 3,555 40,964 487,544,190 6,833,129 26,347,947
New York City 14,763 122,428 1,057,789,207 20,729,481 66,581,080
Philadelphia 4,565 37,951 304,697,220 6,759,058 19,551,138
San Francisco 2,943 28,713 161,575,167 5,137,800 10,728,090
Washington DC 4,051 34,296 312,620,619 7,740,276 17,898,324
All MSAs combined 56,945 552,758 5,411,028,878 97,901,278 310,905,313

Extended Data Table 1: Dataset summary statistics from March 1–May 2, 2020.
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Param. Description Value (Source)
δE mean latency period 96 hours22,43

δI mean infectious period 84 hours22

δc period from infectious to confirmed 7 days22,74

rc percentage of cases which are detected 10%22, 43,74–76

δd period from infectious to death 18 days66

rd infection fatality rate 0.66%66

βbase base CBG transmission rate Variable (Estimated)
Nci population size of CBG ci Variable (2018 US Census57)
ψ scaling factor for POI transmission Variable (Estimated)
w

(t)
ij # visitors from CBG ci to POI pj at time t Variable (SafeGraph)

apj area of POI pj in square feet Variable (SafeGraph)
p0 initial proportion of latent population Variable (Estimated)
S

(0)
ci initial susceptible population in CBG ci (1− p0)Nci

E
(0)
ci initial latent population in CBG ci p0Nci

I
(0)
ci initial infected population in CBG ci 0
R

(0)
ci initial removed population in CBG ci 0

Extended Data Table 2: Model parameters. If the parameter has a fixed value, we specify it under Value; otherwise,
we write “Variable” to indicate that it varies across CBG / POI / MSA.
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Supplementary methods921

S1 Comparison of Google and SafeGraph mobility data922

To assess the reliability of the SafeGraph datasets, we measured the correlation between mobility923

trends according to SafeGraph versus Google.54 Google provides a high-level picture of mobility924

changes around the world for several categories of places, such as grocery stores or restaurants.925

We analyzed three of the categories defined by Google: Retail & recreation (e.g., restaurants,926

shopping centers, movie theaters), Grocery & pharmacy (e.g., grocery stores, farmers markets,927

pharmacies), and Residential (i.e. places of residence). We omitted Transit stations because they928

are not well-covered by SafeGraph POIs, Parks because SafeGraph informed us that parks are929

sometimes inaccurately classified in their data (e.g., other POIs are categorized as parks), and930

Workplaces because we do not model whether people are at work. To analyze the Retail & recre-931

ation and Grocery & pharmacy categories, we used POI visits in the SafeGraph Patterns datasets,932

identifying POIs in each category based on their 6-digit North American Industry Classification933

System (NAICS) codes (Table S6). For the Residential category, we used SafeGraph Social Dis-934

tancing Metrics, which provides daily counts of the number of people in each CBG who stayed at935

home for the entire day.936

For each US region and category, Google tracks how the number of visits to the category has937

changed over the last few months, compared to baseline levels of activity before SARS-CoV-2.938

To set this baseline, they compute the median number of visits to the category for each day of the939

week, over a 5-week span from January 3–February 6, 2020. For a given day of interest, they then940

compute the relative change in number of visits seen on this day compared to the baseline for the941

corresponding day of week. We replicated this procedure on SafeGraph data, and compared the942

results to Google’s trends for Washington DC and 14 states that appear in the MSAs that we model.943

For each region and category, we measured the Pearson correlation between the relative change in944

number of visits according to Google versus Safegraph, from March 1–May 2, 2020. Across the945

15 regions, we found that the median Pearson correlation was 0.96 for Retail & recreation, 0.79 for946

Grocery & pharmacy, and 0.88 for Residential. As an illustrative example, we visualize the results947

for New York state in Figure S3, and provide a full table of results for every state in Table S7.948

The high correlations demonstrate that the SafeGraph and Google mobility datasets agree well on949

the timing and directional changes of mobility over this time period, providing a validation of the950

reliability of SafeGraph data.951
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S2 Plausibility of predicted racial/socioeconomic disparities952

To assess the plausibility of the predicted disparities in infection rates in Figure 3, we compared953

the model’s predicted racial disparities to observed racial disparities in mortality rates. (Data on954

socioeconomic disparities in mortality was not systematically available on a national level.) The955

racial disparities in Figure 3 are generally of the same magnitude as reported racial disparities956

in mortality rates—for example, the overall reported black mortality rate is 2.4× higher than the957

white mortality rate,77 which is similar to the median racial disparity across MSAs of 3.0× that our958

model predicts (Figure 3b). However, we note that this is an imperfect comparison because many959

factors besides mobility contribute to racial disparities in death rates.960

In addition, we observed that our model predicted unusually large socioeconomic and racial961

disparities in infection rates in the Philadelphia MSA. To understand why the model predicted962

such large disparities, we inspected the mobility factors discussed in the main text; namely, how963

much each group was able to reduce their mobility, and whether disadvantaged groups encountered964

higher transmission rates at POIs.965

First, we find in Philadelphia that higher-income CBGs were able to reduce their mobility966

substantially more than lower-income CBGs (Extended Data Figure 6 left). The CBGs with the967

greatest percentage of white residents were also able to reduce their mobility more than the CBGs968

with the lowest percentage of white residents (Extended Data Figure 6 right). These gaps are969

noticeable, but not obviously larger than those in other MSAs. The key to Philadelphia’s outlier970

status seems to lie in the comparison of transmission rates. Within the same category of POI—971

e.g., full-service restaurants—individuals from lower-income CBGs tend to visit POIs with higher972

transmission rates than individuals from high-income CBGs (Table S4). This is particularly true973

for Philadelphia; in 19 out of 20 categories, individuals from lower-income CBGs in Philadelphia974

encounter higher transmission rates than individuals from high-income CBGs, and CBGs with the975

lowest percentage of white residents encounter higher transmission rates than the CBGs with the976

highest percentage of white residents in all 20 categories (Table S5). The transmission rates en-977

countered by individuals from lower-income CBGs in Philadelphia are often dramatically higher978

than those encountered by higher-income CBGs; for example, up to 10.4× higher for grocery979

stores. Digging deeper, this is because the average grocery store visited by lower-income CBGs980

has 5.3× the number of hourly visitors per square foot, and visitors tend to stay 86% longer. Fur-981

thermore, Philadelphia’s large discrepancy in density between lower-income and higher-income982

POIs in SafeGraph data is consistent with Census data, which shows that the discrepancy in popu-983
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lation density between lower- and higher-income CBGs is larger in Philadelphia than in any of the984

other MSAs that we examine. In Philadelphia, CBGs in the bottom income decile have a popula-985

tion density 8.2× those in the top income decile, a considerably larger disparity than the overall986

median across MSAs (3.3×) or the next-highest CBG (4.5×).987

Since there are many other factors contributing to disparity that we do not model, we do988

not place too much weight on our model’s prediction that Philadelphia’s disparities will be larger989

than those of other cities. However, we consider this a valuable finding in terms of Philadelphia’s990

mobility patterns, suggesting that mobility may play an especially strong role in driving socioeco-991

nomic and racial infection disparities in this MSA, and we encourage policymakers to be aware of992

how differences in mobility patterns may exacerbate the disproportionate impact of SARS-CoV-2993

on disadvantaged groups.994

S3 Convergence of iterative proportional fitting995

For completeness, we briefly review the convergence properties of the iterative proportional fitting996

procedure (IPFP) used to infer our mobility networks. Consider the L1-error function997

E(t,τ) :=
∑
i

∣∣∣U (t)
ci
−
∑
j

w
(t)
ij

∣∣∣︸ ︷︷ ︸
Error in row marginals

+
∑
j

∣∣∣V (t)
pj
−
∑
i

w
(t)
ij

∣∣∣︸ ︷︷ ︸
Error in column marginals

, (41)

which sums up the errors in the row (CBG) and column (POI) marginals of the visit matrix W (t,τ)
998

from the τ -th iteration of IPFP. Each iteration of IPFP monotonically reduces this L1-error E(t,τ),999

i.e., E(t,τ) ≥ E(t,τ+1) for all τ ≥ 0.78 In other words, the row and column sums of W (t,τ) (which1000

is initialized as W (t,0) = W̄ ) progressively get closer to (or technically, no further from) the target1001

marginals as the iteration number τ increases. Moreover, IPFP maintains the cross-product ratios1002

of the aggregate matrix W̄ , i.e.,1003

w
(t,τ)
ij w

(t,τ)
k`

w
(t,τ)
i` w

(t,τ)
kj

=
w̄ijw̄k`
w̄i`w̄kj

(42)

for all matrix entries indexed by i, j, k, `, for all t, and for all iterations τ .1004

IPFP converges to a unique solution, in the sense that W (t) = limτ→∞W
(t,τ), if there exists1005

a matrix W (t) that fits the row and column marginals while maintaining the sparsity pattern (i.e.,1006

location of zeroes) of W̄ .78 If IPFP converges, then the L1-error also converges to 0 as τ → ∞,78
1007
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andW (t) is the maximum likelihood solution in the following sense. For a visit matrixW = {wij},1008

let PW represent a multinomial distribution over themn entries ofW with probability proportional1009

to wij , and define U (t) ⊆ Rm×n
+ and V(t) ⊆ Rm×n as the set of non-negative matrices whose row1010

and column marginals match U (t) and V (t) respectively. Then, if IPFP converges,1011

W (t) = arg min
W∈U(t)∩V(t)

KL (PW‖PW̄ ) , (43)

where KL (p‖q) is the Kullback-Leibler divergence KL (p‖q) = Ep
[
log p(x)

q(x)

]
. In other words, IPFP1012

returns a visit matrix W (t) whose induced distribution PW (t) is the I-projection of the aggregate1013

visit distribution PW̄ on the set of distributions with compatible row and column marginals.73 In1014

fact, IPFP can be viewed as an alternating sequence of I-projections onto the row marginals and1015

I-projections onto the column marginals.73, 79
1016

However, in our setting, IPFP typically does not return a unique solution and instead oscil-1017

lates between two accumulation points, one that fits the row marginals and another that fits the1018

column marginals.79 This is because W̄ is highly sparse (there is no recorded interaction between1019

most CBGs and POIs), so the marginals are sometimes impossible to reconcile. For example, sup-1020

pose there is some CBG ci and POI pj such that w̄ij is the only non-zero entry in the i-th row and1021

j-th column of W̄ , i.e., visitors from ci only travel to pj and conversely visitors from pj are all1022

from ci. Then, if U (t)
ci 6= V

(t)
pj , there does not exist any solution W (t) such that U (t)

ci = V
(t)
pj = w

(t)
ij .1023

Note that in this scenario, IPFP still monotonically decreases the L1-error.78
1024

In our implementation (Algorithm 1), we take τmax = 100, so IPFP ends by fitting the column1025

(POI) marginals. This ensures that our visit matrixW (t) is fully compatible with the POI marginals1026

V (t), i.e.,1027

V (t)
pj

=
m∑
i=1

w
(t)
ij , (44)

while still minimizing the L1-error E(t,τ) with respect to the CBG marginals U (t). Empirically, we

find that τmax = 100 iterations of IPFP are sufficient to converge to this oscillatory regime.
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Supplementary tables
Category % visits % POIs
Full-Service Restaurants 14.82% 10.86%
Limited-Service Restaurants 8.08% 3.69%
Elementary and Secondary Schools 6.36% 3.06%
Other General Stores 5.97% 1.37%
Gas Stations 4.56% 2.94%
Fitness Centers 4.55% 2.98%
Grocery Stores 4.16% 2.17%
Cafes & Snack Bars 4.01% 2.70%
Hotels & Motels 2.93% 1.57%
Religious Organizations 2.31% 5.04%
Parks & Similar Institutions 1.93% 2.31%
Hardware Stores 1.79% 1.87%
Department Stores 1.78% 0.32%
Child Day Care Services 1.71% 2.76%
Offices of Physicians 1.63% 4.02%
Pharmacies & Drug Stores 1.54% 0.95%
Sporting Goods Stores 1.16% 1.05%
Automotive Parts Stores 1.16% 1.80%
Used Merchandise Stores 1.15% 1.01%
Colleges & Universities 1.12% 0.44%
Convenience Stores 1.09% 0.66%
Pet Stores 0.93% 0.85%
New Car Dealers 0.73% 0.43%
Hobby & Toy Stores 0.73% 0.36%
Offices of Dentists 0.70% 2.67%
Commercial Banking 0.70% 2.05%
Gift Stores 0.69% 0.57%
Liquor Stores 0.61% 0.82%
Women’s Clothing Stores 0.59% 1.00%
Home Health Care Services 0.55% 1.02%
Furniture Stores 0.53% 0.89%
Electronics Stores 0.51% 0.72%
Used Car Dealers 0.50% 1.08%
Book Stores 0.49% 0.32%
Musical Instrument Stores 0.49% 0.50%
Optical Goods Stores 0.47% 0.76%
Family Clothing Stores 0.46% 0.49%
Car Repair Shops 0.41% 1.83%
Offices of Mental Health Practitioners 0.41% 1.05%
Tobacco Stores 0.41% 0.31%
Office Supplies 0.40% 0.33%
Beauty Salons 0.39% 1.58%
Paint and Wallpaper Stores 0.38% 0.56%
Other Gas Stations 0.37% 0.20%
Sports Teams and Clubs 0.37% 0.03%
Cosmetics & Beauty Stores 0.36% 0.71%
Jewelry Stores 0.34% 0.60%
Junior Colleges 0.34% 0.07%
Sewing & Piece Goods Stores 0.34% 0.39%
Senior Homes 0.34% 0.41%
Libraries & Archives 0.3% 0.3%

Table S1: The 50 POI subcategories accounting for the largest fraction of visits in the full SafeGraph dataset. Collec-
tively they account for 88% of POI visits and 76% of POIs.
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MSA 7 days earlier 3 days earlier 3 days later 7 days later
Atlanta 0.586 (0.397, 0.834) 0.803 (0.639, 0.956) 1.359 (1.075, 1.741) 1.981 (1.189, 2.761)
Chicago 0.641 (0.563, 0.711) 0.848 (0.769, 0.933) 1.226 (1.143, 1.365) 1.542 (1.446, 1.639)
Dallas 0.642 (0.495, 0.782) 0.855 (0.693, 1.013) 1.298 (1.09, 1.577) 1.722 (1.487, 1.966)
Houston 0.656 (0.500, 0.812) 0.848 (0.663, 1.021) 1.288 (1.079, 1.541) 1.731 (1.493, 2.064)
Los Angeles 0.608 (0.407, 0.848) 0.816 (0.639, 0.984) 1.265 (1.041, 1.554) 1.692 (1.216, 2.137)
Miami 0.576 (0.424, 0.795) 0.792 (0.669, 0.919) 1.317 (1.117, 1.559) 1.856 (1.281, 2.27)
New York City 0.818 (0.795, 0.856) 0.909 (0.890, 0.927) 1.113 (1.094, 1.133) 1.27 (1.246, 1.307)
Philadelphia 0.799 (0.731, 0.868) 0.916 (0.823, 1.005) 1.12 (1.031, 1.206) 1.287 (1.246, 1.351)
San Francisco 0.609 (0.408, 0.798) 0.815 (0.666, 1.012) 1.271 (1.048, 1.527) 1.689 (1.452, 2.029)
Washington DC 0.671 (0.447, 0.879) 0.848 (0.627, 1.045) 1.207 (0.959, 1.586) 1.488 (1.158, 1.789)

Table S2: What if people had begun mobility reductions earlier or later? We report the expected ratio of the
number of infections predicted under the counterfactual to the number of infections predicted using observed mobility
data; a ratio lower than 1 means that fewer infections occurred under the counterfactual. The numbers in parentheses
indicate the 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. See Methods M6 for
details.

MSA 0% 25% 50%

Atlanta 16.593 (3.088, 30.532) 7.714 (1.73, 15.833) 2.265 (1.17, 3.673)
Chicago 6.202 (5.2, 7.088) 3.329 (2.761, 3.759) 1.587 (1.421, 1.704)
Dallas 18.026 (10.361, 27.273) 5.908 (3.75, 8.857) 1.87 (1.532, 2.349)
Houston 18.964 (11.949, 32.755) 5.725 (3.761, 9.233) 1.659 (1.362, 2.109)
Los Angeles 12.926 (3.15, 24.207) 5.097 (1.779, 9.721) 1.665 (1.176, 2.309)
Miami 10.781 (3.382, 15.935) 4.85 (1.886, 7.405) 1.777 (1.208, 2.3)
New York City 2.037 (1.902, 2.174) 1.73 (1.603, 1.811) 1.333 (1.258, 1.389)
Philadelphia 2.976 (2.734, 3.39) 1.894 (1.747, 2.137) 1.211 (1.141, 1.305)
San Francisco 9.743 (7.089, 15.596) 4.282 (3.124, 6.781) 1.714 (1.427, 2.255)
Washington DC 5.85 (2.329, 9.713) 3.032 (1.541, 4.646) 1.509 (1.132, 1.959)

Table S3: What if the magnitude of mobility reduction changed? Each column represents a counterfactual sce-
nario where the magnitude of mobility reduction is only a some percentage of the observed mobility reduction, i.e.,
0% corresponds to no mobility reduction, and 100% corresponds to the real, observed level of mobility reduction. We
report the expected ratio of the number of infections predicted under the counterfactual to the number of infections
predicted using observed mobility data; a ratio lower than 1 means that fewer infections occurred under the counterfac-
tual. The numbers in parentheses indicate the 2.5th and 97.5th percentiles across sampled parameters and stochastic
realizations. See Methods M6 for details.
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Atlanta Chicago Dallas Houst. LA Miami NY Phila. SF DC Median
Full-Service
Restaurants

0.764 1.204 0.956 1.000 1.445 1.232 2.035 2.883 1.758 1.171 1.218

Limited-Service
Restaurants

0.940 0.950 1.002 0.906 1.067 0.872 1.901 1.614 0.994 0.962 0.978

Other General
Stores

0.782 1.083 0.957 0.729 0.760 0.894 1.218 1.312 1.045 0.950 0.954

Gas Stations 1.326 1.865 1.310 1.515 2.254 2.195 1.899 6.461 1.357 1.870 1.868
Fitness Centers 0.536 0.907 0.708 0.670 1.461 0.789 1.151 1.516 0.995 1.160 0.951
Grocery Stores 0.948 3.080 0.838 1.333 2.408 1.498 4.984 10.437 2.478 1.977 2.192
Cafes & Snack
Bars

1.385 0.919 0.716 1.120 1.327 2.168 1.943 1.757 0.982 0.932 1.224

Hotels & Motels 1.228 1.200 0.814 0.804 1.229 1.134 1.260 1.993 1.199 1.346 1.214
Religious Organi-
zations

1.546 1.763 0.956 0.919 1.746 1.464 1.756 1.736 1.515 1.852 1.641

Hardware Stores 3.938 3.340 1.575 2.111 1.333 0.939 3.553 6.716 4.202 13.560 3.446
Department
Stores

1.132 1.230 0.978 0.911 1.083 1.431 1.667 0.976 0.867 1.042 1.062

Offices of Physi-
cians

1.235 0.721 0.667 1.036 1.141 1.687 1.307 1.319 1.193 0.445 1.167

Pharmacies &
Drug Stores

1.636 1.389 1.176 0.854 1.718 1.555 2.577 5.624 1.200 1.699 1.596

Sporting Goods
Stores

0.936 1.540 1.129 0.812 1.168 0.700 1.253 1.161 0.826 2.777 1.145

Automotive Parts
Stores

0.890 1.707 0.862 1.086 1.990 1.414 1.524 2.697 1.753 1.246 1.469

Used Merchan-
dise Stores

0.993 0.931 1.000 1.315 1.017 1.074 1.352 1.668 1.587 0.814 1.046

Convenience
Stores

1.208 0.932 1.613 0.647 0.838 0.824 1.736 2.322 1.086 1.428 1.147

Pet Stores 1.260 0.820 1.192 1.487 1.536 0.776 3.558 1.652 2.124 0.905 1.374
New Car Dealers 2.036 1.471 0.741 0.809 1.180 1.377 2.022 1.129 0.395 0.872 1.154
Hobby & Toy
Stores

1.168 1.110 1.165 0.853 1.771 1.520 1.525 1.088 0.883 0.926 1.138

Median 1.188 1.202 0.968 0.915 1.330 1.305 1.746 1.702 1.196 1.166

Table S4: Transmission rate disparities at each POI category between income groups. We report the ratio of the
average transmission rate encountered by visitors from CBGs in the bottom income decile to that for the top income
decile. A ratio greater than 1 means that visitors from CBGs in the bottom income decile experienced higher (more
dangerous) transmission rates. See Methods M6 for details.
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Atlanta Chicago Dallas Houst. LA Miami NY Phila. SF DC Median
Full-Service
Restaurants

0.802 1.354 0.981 0.965 1.065 1.167 2.418 2.661 1.223 1.013 1.116

Limited-Service
Restaurants

0.940 1.144 1.028 0.940 0.820 0.919 2.136 1.523 0.799 1.346 0.984

Other General
Stores

0.776 1.277 0.838 0.841 1.527 1.132 2.158 1.313 0.925 1.312 1.204

Gas Stations 1.402 1.891 1.389 1.190 1.336 1.857 1.818 2.286 2.321 1.316 1.610
Fitness Centers 0.607 1.167 0.670 0.831 0.780 1.066 1.447 1.977 1.103 1.205 1.084
Grocery Stores 0.589 3.664 0.613 1.195 2.386 0.950 5.864 13.705 2.243 2.262 2.252
Cafes & Snack
Bars

1.308 1.104 0.845 0.840 0.976 2.619 1.767 2.456 1.045 0.867 1.074

Hotels & Motels 0.977 1.007 1.366 0.718 1.112 1.024 1.449 2.494 0.654 0.899 1.015
Religious Organi-
zations

0.938 1.606 1.060 0.953 2.096 1.795 1.933 2.040 1.674 1.188 1.640

Hardware Stores 0.909 3.900 1.523 1.461 1.952 0.586 5.032 3.898 11.103 13.432 2.925
Department
Stores

1.081 1.301 0.805 0.777 0.992 2.337 2.479 1.357 1.089 1.402 1.195

Offices of Physi-
cians

0.894 1.323 1.006 1.415 0.898 1.117 1.652 2.073 0.694 1.911 1.220

Pharmacies &
Drug Stores

0.888 1.376 0.930 0.732 1.538 1.674 3.315 3.366 1.135 1.715 1.457

Sporting Goods
Stores

0.767 0.674 0.650 0.506 1.946 0.818 1.532 2.152 0.880 1.715 0.849

Automotive Parts
Stores

1.049 1.479 1.010 1.353 2.998 2.657 1.740 3.387 1.646 0.601 1.562

Used Merchan-
dise Stores

0.858 1.195 0.699 1.060 1.270 0.593 1.500 3.024 1.425 0.799 1.128

Convenience
Stores

2.016 5.055 1.272 2.188 0.761 0.902 1.911 2.276 1.239 1.844 1.878

Pet Stores 0.925 1.624 0.724 1.465 1.506 0.881 2.715 10.182 1.568 2.408 1.537
New Car Dealers 1.008 1.398 0.812 0.736 0.942 0.998 1.977 0.866 0.772 0.383 0.904
Hobby & Toy
Stores

2.569 0.853 0.628 0.979 1.373 1.388 2.237 0.825 0.864 1.286 1.132

Median 0.932 1.339 0.888 0.959 1.303 1.092 1.955 2.281 1.119 1.314

Table S5: Transmission rate disparities at each POI category between racial groups. We report the ratio of the
average transmission rate encountered by visitors from CBGs with the lowest (bottom decile) proportion of white
residents versus that for the top decile. A ratio greater than 1 means that visitors from CBGs in the bottom decile
experienced higher (more dangerous) transmission rates. See Methods M6 for details.
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Google category Google description NAICS categories

Retail & recreation

Restaurants
Cafes
Shopping centers
Theme parks
Museums
Libraries
Movie theaters

Full-Service Restaurants
Limited-Service Restaurants
Snack and Nonalcoholic Beverage Bars
Drinking Places (Alcoholic Beverages)
Malls, Amusement and Theme Parks
Museums, Libraries and Archives
Motion Picture Theaters (except Drive-Ins)

Grocery & pharmacy

Grocery markets
Food warehouses
Farmers markets
Specialty food shops
Drug stores
Pharmacies

Supermarkets and Other Grocery (except
Convenience) Stores
Food (Health) Supplement Stores
Fish and Seafood Markets
All Other Specialty Food Stores
Pharmacies and Drug Stores

Table S6: Mapping of Google mobility data categories to NAICS categories. Google descriptions taken from
https://www.google.com/covid19/mobility/data documentation.html.

State Retail & recreation Grocery & pharmacy Residential
California 0.947 0.834 0.876
Delaware 0.957 0.847 0.856
Florida 0.963 0.814 0.885
Georgia 0.948 0.682 0.868
Illinois 0.964 0.710 0.899
Indiana 0.956 0.741 0.877
Maryland 0.956 0.825 0.886
New Jersey 0.951 0.720 0.935
New York 0.958 0.763 0.909
Pennsylvania 0.971 0.850 0.875
Texas 0.965 0.789 0.886
Virginia 0.967 0.840 0.877
Washington, DC 0.959 0.889 0.780
West Virginia 0.960 0.740 0.814
Wisconsin 0.967 0.783 0.886
Median 0.959 0.789 0.877

Table S7: Pearson correlations between the Google and SafeGraph mobility timeseries. We report correlations
over the period of March 1–May 2, 2020 for the 15 states that we model. See SI Section S1 for details.
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MSA # sets βbase ψ p0

Atlanta 16 0.004 (0.001, 0.014) 2388 (515, 3325) 5× 10−4(1× 10−4, 2× 10−3)
Chicago 4 0.009 (0.006, 0.011) 1764 (1139, 2076) 2× 10−4(2× 10−4, 5× 10−4)
Dallas 5 0.009 (0.004, 0.011) 1452 (1139, 2388) 2× 10−4(1× 10−4, 2× 10−4)
Houston 8 0.001 (0.001, 0.009) 2076 (1139, 2076) 2× 10−4(1× 10−4, 5× 10−4)
Los Angeles 25 0.006 (0.001, 0.016) 2076 (515, 3637) 2× 10−4(2× 10−5, 1× 10−3)
Miami 7 0.001 (0.001, 0.011) 2388 (515, 2388) 2× 10−4(2× 10−4, 2× 10−3)
New York City 7 0.001 (0.001, 0.009) 2700 (1452, 3013) 1× 10−4(5× 10−5, 1× 10−3)
Philadelphia 3 0.009 (0.001, 0.009) 827 (827, 1452) 5× 10−4(1× 10−4, 5× 10−4)
San Francisco 5 0.006 (0.001, 0.009) 1139 (827, 1764) 5× 10−4(2× 10−4, 1× 10−3)
Washington DC 17 0.016 (0.001, 0.019) 515 (515, 3949) 5× 10−4(2× 10−5, 5× 10−4)

Table S8: Model parameters used for each MSA. # sets counts the number of parameter sets that are within 20% of
the RMSE of the best-fit parameter set, as described in Section M4. For each of βbase (which scales the transmission
rates at CBGs), ψ (which scales the transmission rates at POIs), and p0 (the initial proportion of infected individuals),
we show the best-fit parameter set and, in parentheses, the corresponding minimum and maximum within the 20%
threshold.
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Supplementary figures

Figure S1: For each POI category, we plot the predicted cumulative number of infections (per 100k population) that
occurred at that category for CBGs in the bottom- (purple) and top- (gold) income deciles. Shaded regions denote
2.5th and 97.5th percentiles across sampled parameters and stochastic realizations.
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Figure S2: Rbase and RPOI implied by model parameter settings. In the top two plots, dotted black lines denote
plausible ranges from prior work, the blue line shows the mean across MSAs, and the grey shaded area indicates the
range across MSAs. Rbase does not vary across MSAs because it does not depend on MSA-specific social activity. The
bottom two plots show the same results broken down by MSA. See Methods M4.1 for details.
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Figure S3: Google versus SafeGraph mobility trends for New York state. The y-axis represents mobility levels com-
pared to baseline activity in January and February 2020. For the categories from left to right, the Pearson correlations
between the datasets are 0.96, 0.76, and 0.91. See SI Section S1 for details.
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Figure S4: Sensitivity analysis on detection rate and delay. Instead of assuming a constant detection rate and constant
infectious-to-confirmation delay on cases, we tested sampling the number of confirmed cases and delay distribution
stochastically. The number of confirmed cases was sampled from a Binomial distribution, and we tried two different
delay distributions that were fitted on empirical line list data, (a) Li et al.22 and (b) Kucharski et al.43 (For more
details, see Methods M5.4.) For both delay distributions, we find that model predictions under the stochastic setting
are highly similar to the predictions made under the constant rate and delay setting (labeled as “deterministic” in the
plot). Note that the “deterministic” and “stochastic” labels only apply to the computation of confirmed cases from
infectious individuals to confirmed cases; the underlying SEIR models are all stochastic, as described in Methods M3.
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Figure S5: Sensitivity analysis on the parametric form for transmission rate. Our model assumes that POI transmission
rates depend on two factors: time spent at the POI and the density of individuals per square foot. We tested this
assumption by computing an alternate transmission rate that only included time spent (removing density) and another
version that only included density (removing time spent); see Section M5.2 for details. We found that the relative
risks predicted by our original transmission rate formula concorded best with the assessments of risk proposed by
independent epidemiological experts.64, 65 The x-axis represents their proposed risk scores; some scores are missing
(e.g., 3 and 4 on the right) because there was no overlap between the categories they assigned that score and categories
that we analyzed. The y-axis represents each category’s predicted average transmission rate in the first week of March,
taking the median over MSAs. Due to space constraints, only a subset of the categories scored at 2 by Emanuel et al.
(left) are labeled – the labels are reserved for either the 2 most visited categories in this group (Grocery Stores and
Other General Stores) and/or the 3 categories with highest predicted transmission rates within the group.
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Figure S6: Sensitivity analysis on model calibration metrics and reopening risks. We conducted a sensitivity anal-
ysis on which metric was used for model calibration, comparing our default metric (top left) to three other metrics
(Methods M5.5). We ran our reopening experiments forward with the model parameters selected by each metric. The
predicted ranking of risk from reopening different POI categories remains consistent across all metrics.
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Figure S7: Sensitivity analysis on model calibration metrics and predicted socioeconomic disparities. We conducted
a sensitivity analysis on which metric was used for model calibration, comparing our default metric (top left) to three
other metrics (Methods M5.5). We then analyzed the socioeconomic disparities in each MSA predicted by the model
parameters selected by each metric. The predicted disparities remain remarkably consistent across all metrics, and, for
every metric, the best fit models predict that lower-income CBGs are at higher infection risk.
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Figure S8: Assessing model identifiability on simulated data. The horizontal axis ranks grid search parameter settings
by how well they fit real data (measured by RMSE to daily case count), with the best-fit parameter settings on the left.
The vertical axis plots plots RMSE on simulated case count data generated using the best-fit parameter settings. For
all 10 MSAs, the parameters that obtain the lowest RMSE on the simulated data are always the true parameters that
were used to generate that data (as shown by the left-most point on the plot). This demonstrates that the model and
fitting procedure can correctly recover the true parameters on simulated data. Methods M5.3 provides more details.
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Figure S9: RMSE on daily case count data as a function of parameters βbase (horizontal axis) and ψ (vertical axis).
Color indicates the ratio of RMSE to that of the best-fit model. The white polygon shows the convex hull of the
parameter settings used to generate results: i.e., all models with an RMSE less than 1.2× that of the best-fit model.
For all parameter combinations, we take the minimum RMSE over p0. Methods M5.3 provides more details.
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Figure S10: POI attributes in Atlanta. The top two plots show the distribution of dwell time and the average number
of hourly visitors divided by the area of the POI in square feet. Each point represents one POI; boxes depict the
interquartile range across POIs. The bottom two plots show predictions for the increase in infections (per 100,000
people) from reopening a POI category: per POI (left bottom) and for the category as a whole (right bottom). Each
point represents one model realization; boxes depict the interquartile range across sampled parameters and stochastic
realizations.

Figure S11: POI attributes in Chicago. See Figure S10 for details.
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Figure S12: POI attributes in Dallas. See Figure S10 for details.

Figure S13: POI attributes in Houston. See Figure S10 for details.
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Figure S14: POI attributes in Los Angeles. See Figure S10 for details.

Figure S15: POI attributes in Miami. See Figure S10 for details.
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Figure S16: POI attributes in New York. See Figure S10 for details.

Figure S17: POI attributes in Philadelphia. See Figure S10 for details.
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Figure S18: POI attributes in San Francisco. See Figure S10 for details.

Figure S19: POI attributes in Washington DC. See Figure S10 for details.
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