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Abstract 
A long-standing question in infectious disease dynamics is the role of transmission heterogeneities, 
particularly those driven by demography, behavior and interventions. Here we characterize 
transmission risk between 1,178 SARS-CoV-2 infected individuals and their 15,648 close contacts 
based on detailed contact tracing data from Hunan, China. We find that 80% of secondary 
transmissions can be traced back to 14% of SARS-CoV-2 infections, indicating substantial 
transmission heterogeneities. Regression analysis suggests a marked gradient of transmission risk 
scales positively with the duration of exposure and the closeness of social interactions, after 
adjusted for demographic and clinical factors. Population-level physical distancing measures 
confine transmission to families and households; while case isolation and contact quarantine 
reduce transmission in all settings. Adjusted for interventions, the reconstructed infectiousness 
profile of a typical SARS-CoV-2 infection peaks just before symptom presentation, with ~50% of 
transmission occurring in the pre-symptomatic phase. Modelling results indicate that achieving 
SARS-CoV-2 control would require the synergistic efforts of case isolation, contact quarantine, 
and population-level physical distancing measures, owing to the particular transmission kinetics 
of this virus. 
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Introduction 
While the age dependency in clinical severity of COVID-19 has been well documented (1–5), 
there is limited information on how transmission risk vary with age, clinical presentation, and 
contact types (6–12). Individual-based interventions such as case isolation, contact tracing and 
quarantine have been shown to accelerate case detection and interrupt transmission chains (13). 
However, these interventions are typically implemented in conjunction with population-level 
physical distancing measures, and their effects on contact patterns and transmission risk remain 
difficult to separate (14–24). A better understanding of the factors driving SARS-CoV-2 
transmission is key to achieve epidemic control while minimizing societal cost, particularly as 
countries relax physical distancing measures.  

    Hunan, a province in China adjacent to Hubei where the COVID-19 pandemic began, 
experienced sustained SARS-CoV-2 transmission in late January and early February 2020, but the 
outbreak was swiftly suppressed thereafter. As in many other provinces in China, epidemic control 
was achieved by a combination of individual-based interventions targeting cases and their contacts 
and population-level physical distancing measures. In this study, we reconstruct transmission 
chains for all identified SARS-CoV-2 infections in Hunan, as of April 3, 2020, based on granular 
epidemiological information collected through extensive surveillance and contact tracing efforts. 
We identify the demographic, clinical and behavioral factors that drive transmission 
heterogeneities and evaluate how interventions modulate the topology of the transmission network. 
Further, we reconstruct the infectiousness profile of SARS-CoV-2 over the course of a typical 
infection and estimate the feasibility of epidemic control by individual and population-based 
interventions.  
    We analyze detailed epidemiological records for 1,178 SARS-CoV-2 infected individuals and 
their 15,648 close contacts, representing 19,227 separate exposure events, compiled by the Hunan 
Provincial Center for Disease Control and Prevention. Cases were identified between January 16 
and April 2, 2020; index cases were captured by passive surveillance and laboratory confirmed by 
RT-PCR. Individuals who were close contacts of the index cases were followed for at least 2 weeks 
after the last exposure to the infected individual. Prior to February 7, 2020, contacts were tested if 
they developed symptoms during the quarantine period. After February 7, 2020, RT-PCR testing 
was required for all contacts, and specimens were collected at least once from each contact during 
quarantine, regardless of symptoms. Upon positive RT-PCR test results, infected individuals were 
isolated in dedicated hospitals, regardless of their clinical severity, while their contacts were 
quarantined in medical observation facilities.  

The dataset includes 210 epidemiological clusters representing 831 cases, with additional 347 
sporadic cases (29%) unlinked to any cluster (detailed in Materials & Methods).  For each cluster, 
we stochastically reconstruct transmission chains and estimate the timing of infection most 
compatible with each patient’s exposure history. We analyze an ensemble of 100 reconstructed 
transmission chains to account for uncertainties in exposure histories (Fig. 1 visualizes one 
realization of the transmission chains). We observe between 0 and 4 generations of transmission, 
with the largest cluster involving 20 SARS-CoV-2-infected individuals. The number of secondary 
infections ranges from 0 to 10, with a distribution of secondary infections best characterized by a 
negative binomial distribution with mean µ = 0.40  (95% CI, 0.39 to 0.41) and variance 
µ(1 + µ/k) = 0.95  (95% CI, 0.92 to 0.97), where 𝑘 = 0.30  (95% CI, 0.29 to 0.30) is the 
dispersion parameter (Fig. 1). This suggests 80% of secondary infection can be traced back to 14% 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2020. ; https://doi.org/10.1101/2020.08.09.20171132doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.09.20171132


of SARS-CoV-2 infected individuals, indicating substantial transmission heterogeneities at the 
individual-level. 

Results 
Characterizing SARS-CoV-2 transmission heterogeneities at the individual level   

To dissect the individual transmission heterogeneities and identify predictors of transmission, we 
analyze the infection risk among a subset of 14,622 individuals who were close contacts of 870 
SARS-CoV-2 patients. This dataset excludes primary cases whose infected contacts report a travel 
history to Wuhan. The dataset represents 74% of all SARS-CoV-2 cases in the Hunan epidemic, 
for whom contacts have been carefully monitored, capturing 17,750 independent exposure events.  

We start by characterizing variation in transmission risk across the diverse set of 17,750 
exposures. We focus on quantifying how the duration, timing and type of contact impact 
transmission risk, accounting for other factors including age, sex, clinical presentation, travel 
history of the primary case, as well as age and sex of the contacts.  Exposures are grouped into 5 
categories based on the type of contact settings, namely: household, extended family, social, 
community, and healthcare (Table S2), with the duration of exposure approximated by the time 
interval between the initial and final dates of exposure. We also stratify exposures by the date of 
occurrence, with January 25, 2020 marking the beginning of enhanced physical distancing 
measures in Hunan (based on Baidu Qianxi mobility index (25), Fig. S1A insert). To address 
putative variation in infectiousness over the course of infection, we distinguish exposures based 
on whether the exposure window contains the time of symptom onset of the primary case, a period 
associated with high viral shedding.  We use a mixed effects multiple logistic regression model 
(GLMM-logit) to quantify the effects of these factors on transmission (see Fig. S1A for regression 
results, and Table S3 for a detailed definition of all risk factors and summary statistics). 

We find a marked gradient of transmission risk scales positively with closeness of social 
interactions (Fig. S1A): household contacts pose the highest risk of transmission (see also (12)), 
followed by contacts in the extended family, social and community settings. Contacts in the 
healthcare setting have the lowest risk, suggesting that adequate protective measures were adopted 
by patients and healthcare staff in Hunan, China. Interestingly, the impact of physical distancing 
differs by transmission setting (Table 1): enhanced physical distancing measures elevates the risk 
of transmission in the household, likely due to increased contact frequency at home as a result of 
physical confinement during the “lockdown”. In contrast, reduced within-city mobility is 
associated with a reduction in transmission risk per contact opportunity in the community and 
social settings, possibly caused by adoption of prudent behaviors such as mask wearing, hand 
washing and coughing/sneezing etiquette. We also find that longer exposure window is a 
significant risk factor, with one additional day of exposure increasing the transmission risk by 10% 
(95% CI, 5% to 15%). Transmission risk is higher around the time of symptom presentation of the 
primary case (Table 1). And while susceptibility to SARS-CoV-2 gradually increases with age, we 
find no statistical support for age differences in infectivity (Fig. S1A), in agreement with previous 
findings (12). 

For each of the 17,750 contact exposure events, we estimate the probability of transmission 
using the point estimate of the baseline odds and odds ratios from the GLMM-logit regression 
(Fig. S1A). In Fig. 2A, we plot the distribution of transmission probabilities in the household, 
extended family, social, and community settings separately. The average “per-contact” 
transmission probability is highest in the household (7.1%, 95% CI, 1.2% to 19.3%), followed by 
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family (1.7%, 95% CI, 0.4% to 5.7%) and social settings (0.9% with 95% CI, 0.3% to 2.7%), and 
lowest in the community (0.4% with 95% CI, 0.1% to 1.1%). The gradient of transmission 
probabilities across settings is the joint effects of increasing duration of exposure with closeness 
of social interactions (Fig. 2B), superimposed on setting-specific risk differences (Fig. S1A). It is 
worth noting that these “per-contact” transmission probabilities were evaluated in a situation of 
intense interventions measures and high population awareness of the disease, and thus, they may 
be not generalizable elsewhere.  

The number of contacts is also a key driver of individual transmission potential and varies by 
transmission setting. Fig. 2C presents the contact degree distribution, defined as the number of 
unique contacts per individual. We find that the distributions of individual contact degree are over-
dispersed with dispersion parameter 0 < 𝑘 < 1 across all settings. Furthermore, household (𝑘 =
0.72) and extended family (𝑘 = 0.64) contacts are less dispersed than social (𝑘 = 0.19) and 
community (𝑘 = 0.14) contacts, suggesting that contact heterogeneities are inversely correlated 
with the closeness of social interactions. Fig. 2D visualizes the age-specific contact patterns 
between the primary cases and their contacts, demonstrating diverse mixing patterns across 
settings. Specifically, household contacts present the canonical “three-bands” pattern with the 
diagonal representing age-assortative interactions and the two off-diagonals representing inter-
generational mixing (26, 27). Other settings display more diffusive mixing patterns by age. 

Next, we summarize the overall transmission potential of an individual by calculating the 
cumulative contact rate (CCR) of the primary case. The CCR captures how contact opportunities 
vary with demography, temporal variation in the infectiousness profile, an individual’s contact 
degree, and interventions. (See Section 4.2 in Materials and Methods for detailed definition). 
Through regression analysis, we focus on how the overall transmission opportunity of an infected 
individual is affected by different intervention measures across transmission settings. After 
adjusting for age, sex, clinical presentation, and travel history to Wuhan, we find that physical 
distancing measures increase CCRs in the household and extended family and decrease CCRs in 
social and community settings (Fig. 2E). In contrast, faster case isolation (measured as the time 
between isolation, or pre-symptomatic quarantine, and symptom onset) universally reduces CCRs, 
decreasing transmission opportunities across all settings (Fig. 2E). 

Characterizing the natural history of SARS-CoV-2 infection 
We have characterized the SARS-CoV-2 transmission risk factors and have shown that individual 
and population-based interventions have a differential impact on contact patterns and transmission 
potential. Next, we use our probabilistic reconstruction of infector-infectee pairs to further dissect 
transmission kinetics and project the impact of interventions on SARS-CoV-2 dynamics and 
control. Based on the reconstructed transmission chains, we estimate a median serial interval of 
5.7 days, with an inter-quartile range (IQR) of 2.8 to 8.7 days, which represents the time interval 
between symptom onset of an infector and his/her infectee (Fig. S2B). The median generation 
interval, defined as the interval between the infection times of an infector and his/her infectee, is 
5.3 days, with an IQR of 3.1 to 8.7 days (Fig. S2A). We estimate that 63.2% (95% CI, 59.6% to 
66.4%) of all transmission events occur before symptom onset, which is comparable with findings 
from other studies (6–8, 10–13, 19, 28). However, these estimates are impacted by the intensity of 
interventions, as we will show later. In Hunan, interventions including case isolation, contact 
tracing, and close-contact quarantine were in place throughout the epidemic. 
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    Case isolation and contact quarantine are meant to prevent potentially infectious individuals 
from contacting susceptible individuals, effectively shortening the infectious period. As a result, 
we would expect right censoring of the generation and serial interval distributions (29). 
Symptomatic cases represent 86.5% of all SARS-CoV-2 infections in our data; among these 
patients, we observe longer generation intervals for cases isolated later in the course of their 
infection (Fig. 3A). The median generation interval increases from 4.1 days (IQR, 1.9 to 7.2 days) 
for cases isolated 2 day since symptom onset, to 7.0 days (IQR, 3.6 to 11.1 days) for those isolated 
more than 6 days after symptom onset (p<0.001, Mann-Whitney U test). We observe similar tends 
for the serial interval distributions (Fig. 3B). The median serial interval increases from 1.7 days 
(IQR, -1.5 to 4.7 days) for cases isolated less than 2 day after symptom onset, to 7.3 days (IQR, 
3.4 to10.9 days) for those isolated more than 6 days after symptom onset (p<0.001, Mann-Whitney 
U test). 

    Faster case isolation restricts transmission to the earlier stages of infection, thus inflating the 
contribution of pre-symptomatic transmission (Fig. 3C).  The proportion of pre-symptomatic 
transmission is estimated at 86.6% (95% CI, 80.8% to 92.3%) if cases are isolated within 2 day of 
symptom onset, while this proportion decreases to 47.5% (95% CI, 41.4% to 53.3%) if cases are 
isolated more than 6 days after symptom onset (p<0.001, Mann-Whitney U test). 

To adjust for censoring due to case isolation and reconstruct the infectiousness profile of a 
SARS-CoV-2 infection in the absence of intervention, we characterize the changes in the speed of 
case isolation over time in Hunan. Fig. S4 shows the distributions of time from symptom onset to 
isolation during three different phases of epidemic control, coinciding with major changes in 
COVID-19 case definition  (Phase I: before Jan. 27th; Phase II: Jan. 27th – Feb. 4th; Phase III: after 
Feb. 4th, Fig. S3) (30). In Phase I, 78% of cases were detected through passive surveillance; as a 
result, most cases were isolated after symptom onset (median time from onset to isolation 5.4 days, 
IQR (2.7, 8.2) days, Fig. S4A). In contrast, in Phase III, 66% of cases were detected through active 
contact tracing, shortening the median time from onset to isolation to -0.1 days with IQR (-2.9, 
1.7) days, Fig. S4C. Phase II is intermediate. We use mathematical models (detailed in Materials 
and Methods) to dynamically adjust the serial interval distribution for censoring and apply the 
same approach to the time interval between a primary case’s symptom onset and onward 
transmission (Fig. S6A-B). These censoring-adjusted distributions can be rescaled by the basic 
reproduction number 𝑅! to reflect the risk of transmission of a typical SARS-CoV-2 case since the 
time of infection or since symptom onset (Fig 3D-E). Assuming no interventions were in place, 
we estimated that infectiousness peaks near the time of symptoms onset (Fig. S6B), consistent 
with our regression estimates that transmission risk is higher if the onset of the primary case 
occurred within the window of exposure (Table 1). 
Evaluating the impact of individual and population-based interventions on SARS-CoV-2 
transmission 
Next, we use the estimated infectiousness profile of SARS-CoV-2 (Fig. 3D-E) to evaluate the 
impact of case isolation on transmission. We first set a baseline reproduction number R0 for SARS-
CoV-2, in the absence of control. Results from a recent study (30) suggest that the observed initial 
growth rate in Wuhan was 0.15 day-1 (95% CI, 0.14 to 0.17), although the growth rate could be 
substantially lower (0.08 day-1) if accounting for changes in case definition. Conservatively, we 
consider the upper value of the growth rate at 0.15 day-1 together with our generation interval 
distribution adjusted for censoring (Fig. S6A), to estimate R0. We obtain a baseline reproduction 
number 𝑅! = 2.23 (95% CI, 2.13 to 2.43), using the renewal equation framework (31). This 
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represents a typical scenario of unmitigated SARS-CoV-2 transmissibility in an urban setting. The 
reconstructed infectiousness profile in the absence of control is shown in solid red lines in Fig. 
3D-E, with respect to time of infection and symptom onset respectively. Notably, SARS-CoV-2 
infectiousness peaks slightly before symptom onset (-0.1 days on average), with 86% of the overall 
infectiousness concentrated within ±5  days of symptom onset and 52% of the overall 
infectiousness in the pre-symptomatic phase (Fig. 3E).  
    Next, we evaluate the impact of case isolation on transmission by considering three different 
intervention scenarios mimicking the speed of isolation in the three phases of the Hunan epidemic 
control. We first assume that 100% of infections are detected and isolated and that isolation is fully 
protective (i.e., there is no onward transmission after the patient has been isolated/quarantined). 
The infectiousness profiles of the three intervention scenarios are shown in dashed lines in Fig. 
3D-E. We find that the basic reproduction number decreases in all intervention scenarios, but the 
projected decrease is not sufficient to interrupt transmission (Fig. 3D, 𝑅!" = 1.77 for Phase I, 
𝑅!" = 1.54  for Phase II, and 𝑅!" = 1.10 for Phase III).  

We further relax the assumption of 100% case detection and isolation and relate changes in the 
basic reproduction number to the efficacy of surveillance and compliance with case isolation and 
contact quarantine (measured as the fraction of total infections isolated) as well as the speed of 
isolation (delay from symptom onset to isolation, phase diagram in Fig. 3F). Dashed lines in Fig. 
3F illustrate 30%, 40% and 50% of reduction in 𝑅!. To reduce the 𝑅! in half (the minimum amount 
of transmission reduction required to achieve control for a baseline 𝑅!~2), 100% of infections 
would need to be isolated even if individuals are isolated as early as the day of symptom onset. In 
practice, epidemic control is unrealistic to achieve if case isolation and quarantine of close contacts 
are the only measures in place.   

Individual-based interventions are unlikely to be the sole mode of SARS-CoV-2 control in the 
months ahead. Layering additional physical distancing measures (e.g. through increased 
teleworking, reduced operation in the service industry, or broader adoption of face mask wearing), 
could provide substantial relief on the burden of case isolation and contact quarantine. The 
synergistic effects of these interventions are illustrated in Fig. 3G. We find that a 30% reduction 
in transmission from population-level measures would require a 70% case detection rate to achieve 
epidemic control, assuming that cases can be promptly isolated on average upon symptom 
presentation. Of note, a 30% reduction in transmission could be achieved in various ways and does 
not necessarily require physical distancing measures. It could also encompass the benefits of 
residual population-level immunity from the first wave of COVID-19, especially in hard-hit 
regions (32, 33). As a sensitivity analysis, we further consider a more optimistic scenario with a 
lower baseline 𝑅! = 1.59, corresponding to an epidemic growth rate of 0.08 day-1 (95% CI, 0.06 
to 0.10) in Wuhan (30), which is adjusted for reporting changes. As expected, control is much 
easier to achieve in this scenario: if detected SARS-CoV-2 infections are effectively isolated on 
average 2 days after symptom onset, a 25% population-level reduction in transmission coupled 
with a 43% infection isolation rate is able to achieve control (Fig. 3H). 

Discussion 
To our knowledge, our study is the most comprehensive analysis of contact tracing data so far. 

Detailed information on 1,178 SARS-CoV-2 infected individuals along with their 15,648 contacts 
has allowed us to dissect the behavioral and clinical drivers of SARS-CoV-2 transmission; to 
evaluate how transmission opportunities are modulated by individual and population-level 
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interventions, and to characterize the typical infectiousness profile of a case. Informed by this 
understanding, particularly the importance of pre-symptomatic transmission, we have evaluated 
the plausibility of SARS-CoV-2 control through individual and population-based interventions. 

Contacts in healthcare settings pose the lowest risk of transmission in Hunan, suggesting that 
adequate protective measures against SARS-CoV-2 were taken in hospitals and medical 
observation centers (Table 1). The risk of transmission scales positively with the closeness of 
social interactions, with a lower per-contact risk estimated for community exposures (including 
contacts in the public transportation system, food and entertainment venues), intermediate risk for 
social and extended family settings, and highest risk in the household. The transmission risk 
associated with household exposures is further elevated when intense physical distancing is 
enforced, and for contacts that last longer. These lines of evidence support that SARS-CoV-2 
transmission is facilitated by close proximity, confined settings, and high frequency of contacts. 
We cannot evaluate the relative risks of transmission in other settings such as schools, workplaces, 
conferences, prisons, or factories, as no contacts in these settings were reported in the Hunan 
dataset. 

Regression analysis indicates a higher risk of transmission when an individual is exposed to a 
SARS-CoV-2 patient around the time of symptom onset, in line with our reconstructed 
infectiousness profile that peaks just before symptom onset. These epidemiological findings are in 
agreement with viral shedding studies (6, 34, 35). We estimate that overall in Hunan, ~63% of all 
transmission events were from pre-symptomatic individuals, in line with estimates from other 
modeling studies (6, 7, 10, 12, 36). However, this proportion is inflated by case isolation and 
contact quarantine measures, with right-censoring affecting transmission primarily in the 
symptomatic phase. We estimate that the relative contribution of pre-symptomatic transmission 
drops to ~52% in an uncontrolled scenario where case-based interventions are absent. 

Case isolation reduces the “effective” infectious period of SARS-CoV-2 infected individuals by 
blocking contacts with susceptible individuals. We observe that faster isolation significantly 
reduces CCRs across settings (Fig. 2E).  We also observe shorter serial and generation intervals 
and a larger fraction of pre-symptomatic transmission when individuals are isolated faster (Fig. 
3A-C). In contrast, population-level physical distancing measures have differential impacts on 
CCRs, decreasing CCRs in social and community settings, while increasing CCRs in the household 
and family. As a result, strict physical distancing confines the epidemic mostly to families and 
households (see also Fig. S7). The precise impact of physical distancing on transmission is difficult 
to separate from that of individual-based interventions. However, our analysis suggests that 
physical distancing changes the topology of the transmission network by affecting the number and 
duration of interactions. Interestingly, the topological structure of the household contact network 
is highly clustered (37), and high clustering is expected to hinder epidemic spread (38, 39). Thus, 
these higher-order topological changes could contribute to reducing transmission beyond the 
effects expected from an overall reduction in CCRs. Observationally, the effectiveness of physical 
distancing measures on reducing COVID-19 transmission has been demonstrated in China (16, 40) 
and elsewhere (41). 

We have explored the feasibility of SARS-CoV-2 epidemic control against two important 
metrics related to case isolation and contact quarantine: the speed of isolation and the infection 
isolation proportion (Fig. 3F). For a baseline transmission scenario compatible with the initial 
growth phase of the epidemic in Wuhan, we find that epidemic control solely relying on case 
isolation and quarantine of close contact is difficult to achieve. Layering case isolation and 
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quarantine of close contact with moderate physical distancing makes control more likely over a 
range of plausible parameters - a situation that could be further improved by residual immunity 
from the first wave of SARS-CoV-2 circulation (32, 33). Successful implementation of contact 
tracing requires a low-level of active infections in the community, as the number of contacts to be 
monitored is several folds the number of infections (~13 contacts were being traced per SARS-
CoV-2 infected individual in Hunan). The timing of easing of lockdown measures should align 
with the capacities of testing and contact tracing efforts, relative to the number of active infections 
in the community. Technology-based approaches could also facilitate intense contact tracing 
efforts (7, 42).  

It is important to point out several caveats. Our study is likely underpowered to assess the 
transmission potential of asymptomatic infections given the relatively small fraction of these 
infections in our data (13.5% overall and 22.1% of infections captured through contact tracing). 
There is no statistical support for decreased transmission from asymptomatic individuals (Fig. 
S1A), although we observe a positive, but non-significant trend in transmission risk scaling with 
disease severity. There is conflicting evidence from viral shedding studies; viral load appears 
independent of clinical severity in some studies (6, 23, 35, 43) while others suggest faster viral 
clearance in asymptomatic individuals (44). Before February 7 in Hunan, a fraction of contacts 
were only tested upon symptom presentation, which may affect our estimates on age-specific 
susceptibility, as younger individuals are less likely to develop symptom (45). The rate of 
asymptomatic infections and their impact on transmission have profound implications on the 
feasibility of control through individual-based interventions. Careful serological studies combined 
with virologic testing in households and other controlled settings will be needed to fully resolve 
the role of asymptomatic infections and viral shedding on transmission.  

In conclusion, detailed contact tracing data illuminate important heterogeneities in SARS-CoV-
2 transmission driven by biological and behavioral factors and modulated by the impact of 
interventions. Crucially, and in contrast to SARS-CoV-1, the ability of SARS-CoV-2 to transmit 
during the host’s pre-symptomatic phase makes it particularly difficult to achieve epidemic control 
(46). Our risk factor estimates can provide useful evidence to guide the design of more targeted 
and sustainable mitigation strategies, while our reconstructed transmission kinetics will help 
calibrate further modeling efforts. Moving forward, it will be particularly important to intensify 
collection and analysis of rich contact tracing data to monitor how transmission risk changes over 
time with growing population immunity, waxing and waning of interventions, and reactive 
changes in human behavior and contact opportunities.   
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Fig. 1. SARS-CoV-2 transmission chains. Top: Realization of the reconstructed transmission chains 
among 1,178 SARS-CoV-2 infected individuals in Hunan province. Each node in the network represents a 
patient infected with SARS-CoV-2 and each link represents an infector-infectee relationship. Colors of the 
node denote the reporting prefecture of infected individuals. Bottom: The bar plot shows the distribution of 
the number of secondary infections based on 100 stochastic samples of the reconstructed transmission 
chains. Red dots represent fit from a negative binomial distribution. 
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Fig. 2. Heterogeneity in contact rates of SARS-CoV-2 cases and impact of interventions, by category 
of contact. Columns from left to right represent community contacts (public transportation, food & 
entertainment), social contacts, extended family contacts, and household contacts. (A) Distribution of the 
transmission risk by setting, adjusted for all other covariates in Fig. S1. (B) Cumulative distribution function 
of the duration of exposure (i.e. the probability that exposure is longer or equal to a certain value). Dashed 
vertical lines indicate average values. (C) The distribution of the number of unique contacts (degree 
distribution) of the primary cases in each setting. The dashed vertical lines indicate average values. (D) Age 
distribution of SARS-CoV-2 case-contact pairs (contact matrices). (E) Rate ratios of negative binomial 
regression of the cumulative contact rates (CCRs) against predictors including the infector’s age, sex, 
presence of fever/cough, Wuhan travel history, whether symptom onset occurred before social distancing 
was in place (before or after Jan. 25, 2020), and time from isolation to symptom onset.  CCRs represent the 
sum of relevant contacts over a one-week window centered at the date of the primary case’s symptom onset. 
Dots and lines indicate point estimates and 95% confidence interval of the rate ratios, numbers below the 
dots indicate the numerical value of the point estimates; Ref. stands for reference category; * indicates p-
value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. 
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Fig. 3. (A) Violin plot of the generation interval distributions stratified by time from symptom onset to 
isolation/pre-symptomatic quarantine (B) Same as A but for the serial interval distributions (C) Same as A 
but for the fraction of pre-symptomatic transmission, among all transmission events, with vertical line 
indicating 50% of pre-symptomatic transmission. Dots represent the mean and whiskers represents 
minimum and maximum. (D) Estimated average transmission risk of a SARS-CoV-2 infected individual 
since time of infection under four intervention scenarios: the red solid line represents an uncontrolled 
epidemic scenario modelled after the early epidemic dynamics in Wuhan before lockdown; the dashed lines 
represent scenarios where quarantine and case isolation are in place and mimic Phase I, II, and III of 
epidemic control in Hunan. The shapes of these curves match that of the generation interval distributions 
in each scenario while the areas under the curve are equal to the ratio of the baseline/effective basic 
reproduction numbers (𝑅!/𝑅!"s). (E) Same as in D but with time since symptom onset on the x-axis (colors 
are as in (D)). The vertical line represents symptom onset. (F) Reduction (percentage) in the basic 
reproduction number as a function of mean time from symptom onset (or from peak infectiousness for 
asymptomatic cases) to isolation τ#$% (x-axis) and fraction of  SARS-CoV-2 infections being isolated (y-
axis). The distribution of onset to isolation follows a normal distribution with mean 𝜏&'(  and standard 
deviation of 2 days. The dashed lines indicate 30%, 40% and 50% reductions in R0 under interventons. (G) 
Effective basic reproduction number as a function of population-level reduction in contact rates (i.e. through 
physical distancing, expressed as a percentage, x-axis) and isolation rate (fraction of total infections 
detected and further isolated). We assume baseline basic reproduction number 𝑅! = 2.23, and a normal 
distribution for the distribution from onset to isolation with mean of 0 days and standard deviation of 2 
days. The dashed line represents the epidemic threshold 𝑅" = 1. The blue area indicates region below the 
epidemic threshold (namely, controlled epidemic) and the red area indicates region above the epidemic 
threshold. (H) Same as in G but assuming 𝑅! = 1.59 (a more optimistic estimate of R0 in Wuhan adjusted 
for reporting changes), and a normal distribution for the distribution from onset to isolation with mean of 2 
days and standard deviation of 2 days.  
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Risk factors Odds ratio 95% CI 

Household contacts 

Before 01/25/2020 2.17*** (1.38, 3.43) 

After   01/25/2020 3.72*** (2.38, 5.81) 

Extended Family contacts 

Before 01/25/2020 1.00 Reference 

After   01/25/2020 0.96 (0.61, 1.49) 

Social contacts 

Before 01/25/2020 0.63 (0.37, 1.07) 

After   01/25/2020 0.43* (0.22, 0.86) 

Community contacts 

Before 01/25/2020 0.39** (0.19, 0.78) 

After   01/25/2020 0.17** (0.05, 0.62) 

Healthcare contacts 

Before 01/25/2020 0.18* (0.04, 0.73) 

After   01/25/2020 0.07 (0.00, 1.07) 

Duration of exposure (days) 1.10*** (1.05, 1.15) 

Symptom onset within exposure window (Yes) 1.46* (1.08, 1.97) 

Table 1: SARS-CoV-2 transmission risk in Hunan by contact setting, duration of exposure, and whether 
the exposure window contains the date of symptom onset of the primary case – a period of intense viral 
shedding. Risk is further stratified by the date of implementation of social distancing interventions in 
Hunan, which is 01/25/2020. The regression model is adjusted for demographic characteristics of the cases 
and their contacts, clinical symptoms, and travel history. Details are provided in the Material and Methods, 
while the full results of the regression including additional risk factors are shown in Fig. S1. * indicates p-
value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. 
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Materials and Methods 
1. Data source 
1.1 Epidemiological SARS-CoV-2 data 
We collected data on 1,178 confirmed SARS-CoV-2 infections in Hunan Province, China, from January 16 to April 
2, 2020, following the protocol for field epidemiological investigation developed by the National Health Commission 
of the People’s Republic of China to identify potential COVID-19 cases (1). SARS-CoV-2 infections were identified 
by a combination of traffic entrance and community screening in high-risk populations who had a history of traveling 
to Wuhan City/Hubei Province, which captured travel-associated cases; passive surveillance in hospitals and 
outpatient practices, which captured symptomatic cases; and systematic monitoring of contacts of confirmed cases, 
which captured symptomatic and asymptomatic infections. All SARS-CoV-2 positive individuals in this database 
received positive laboratory confirmation of SARS-CoV-2 infection by RT-PCR test. Before February 7, 2020, 
contacts were tested if they developed symptoms during the quarantine period. After February 7, specimens were 
collected at least once from each contact during quarantine, regardless of symptoms.  The information collected for 
each case includes age, sex, prefecture (of case being reported), clinical severity (asymptomatic, mild, moderate, 
severe, or critical, see Table S1 for definition), potential exposures (travel history to Wuhan or contact with confirmed 
SARS-CoV-2 infection), time windows of potential exposures, date of the start of isolation/pre-symptomatic 
quarantine, date of symptom onset (list of symptoms below), date of  healthcare consultation, date of hospital 
admission and ICU admission (if applicable), and date of laboratory-confirmation. The list of symptoms observed and 
documented among all patients includes:  fever (57.7%), dry cough (36.4%), fatigue (23.9%), sputum (19.6%), 
headache (10.3%), muscle ache (8.6%), sore throat (7.8%), chills (7.6%), chest tightness (5.4%), diarrhea (5.2%), 
shortness of breath (5%), runny nose (4.2%), stuffy nose (4.2%), vomiting (2.2%), joint pain (2.0 %), nausea (1.9%), 
difficulty in breathing (1.4%), chest pain (1.3%), abdominal pain (0.5%), conjunctival hyperemia (0.3%). All 
epidemiological information and testing data were collected by the Hunan CDC staff or by trained local CDC 
personnel and entered in a systematic database. 
 
Table S1. Definitions of clinical severity of SARS-CoV-2 infections 

Clinical severity Definition 
Asymptomatic SARS-CoV-2 positive individuals who do not show any symptoms throughout the course 

of infection.  
Mild Patients with mild symptoms and no radiographic evidence of pneumonia 
Moderate Patients with fever, or respiratory symptoms, and radiographic evidence of pneumonia 
Severe Patients who have any of the following: 

a. respiratory distress, breathing rate ≥30 beats/min; or 
b. finger oxygen saturation ≤93% during resting state; or 
c. PaO2/FiO2 ≤300mmHg (1mmHg = 0.133kPa). 

Patients whose pulmonary imaging have obvious progress of lesions (>50%) within 
24~48 hours are managed as severe case. 

Critical Patients who have any of the following: 
a. respiratory failure that requires mechanical ventilation; or 
b. shock; or 
c. other organ failures that requires ICU admission. 
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Dates of key events in the course of exposure and infection: For each SARS-CoV-2 positive individual in the 
database, information is compiled on the start/end date of exposure, along with the date of symptom onset (for 
symptomatic individuals) and laboratory confirmation. Biologically, the time of infection should occur before the 
onset of symptom or a positive RT-PCR test. Thus, we update the patient’s end date of putative exposures in the 
database as the earliest of the reported exposure end date, date of symptom onset, or date of laboratory confirmation. 
If the start date of exposure is later than the date of symptom onset or positive RT-PCR test, it likely reflects recall 
error and we update the exposure start date as missing (1.9% of the records). 
 
 
1.2 Contact tracing database 
    We collected data on 15,648 individuals in close contact with the 1,178 confirmed SARS-CoV-2 infections 
identified in Hunan Province, China, representing 19,227 unique exposure events following the national protocol (1). 
Information included age, and sex of the contacts, type of contacts (household, extended family, social, community, 
and healthcare, see Table S2 for definition), as well as the start and end dates of contact exposure. If the contact was 
confirmed with SARS-CoV-2 by RT-PCR, a unique identifier mapping the individual to the SARS-CoV-2 patient 
database was provided.  
 
Table S2: Definition of contact types. 

Contact Type Definition 
Household  A household member living with a SARS-CoV-2 infected individual. 
Extended family  A family member not residing in the same household but who has been in close contact 

with the primary SARS-CoV-2 infected individual. 
Social  Friends, coworkers and classmates who study, work or are in close contact with the primary 

infected individual. 
Community Staff who interact with SARS-CoV-2-infected individuals in restaurants, entertainment 

venues, or other service settings; passengers seated in close proximity to a SARS-CoV-2 
infected individual. 

Healthcare Healthcare workers who provide diagnosis, treat or nurse a SARS-CoV-2 patient or other 
patients and caregivers in the same ward as a SARS-CoV-2 infected individual. 

    Any individual reporting encounters as described in Table S2 and occurring within <1m of a SARS-CoV-2 infected 
individual (irrespective of displaying symptom) was considered a close contact, at risk of SARS-CoV-2 infection. All 
records were extracted from the electronic database managed by Hunan Provincial Center for Disease Control and 
Prevention. All individual records were anonymized and de-identified before analysis. 
 
1.3 Definition of a SARS-CoV-2 cluster 
    Based on the contact tracing database, we define a SARS-CoV-2 cluster as a group of two or more confirmed 
SARS-CoV-2 cases or asymptomatic infections with an epidemiological link, i.e. occurring in the same setting (e.g. 
home, work, community, healthcare, or other) and for which a direct contact between successive cases can be 
established within two weeks of symptom onset of the most recent case (alternatively, the date of RT-PCR test for 
asymptomatic infections). In total, there are 210 clusters recorded in the database, for a total of 831 SARS-COV-2 
infections. 
    While clusters of cases are grouped together based on shared exposures, a subset of cases report additional 
exposures outside the cluster as possible causes of infection as well. As a result, there can be more than one index case 
within each cluster. In addition, for cases that only report exposures within the cluster, a unique infector cannot always 
be identified, given simultaneous SARS-CoV-2 exposures within the same cluster.  
    A sporadic case is defined as a laboratory-confirmed SARS-CoV-2 individual who does not belong to any of the 
reported clusters (i.e. a singleton who has no epidemiological link to other infections identified). In total, there are 347 
sporadic cases recorded in the database. 
    Since the source and direction of transmission within a cluster cannot always be defined based on epidemiological 
grounds alone, we next turn to a modeling approach to probabilistically reconstruct possible infector-infectee 
transmission chains and further evaluate predictors of transmission. 
 
2. Reconstruction of SARS-CoV-2 transmission chains  
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2.1 Sampling algorithm 
For each cluster and each patient 𝑖 in the cluster, the time of infection t!!"# is stochastically sampled by randomly 
drawing from the incubation period distribution and subtracting this value from the reported time of symptom onset, 
i.e. t!!"# = t!

$%& 	−	τ!!"'(, where τ!!"'( is the sampled incubation period and t!
$%&	 the date of symptom onset (2).  The 

incubation period follows a Weibull distribution: 

𝑔)*+,(𝜏) =
𝑘
𝜆 -
𝜏
𝜆.

-./
𝑒𝑥𝑝 2−-

𝜏
𝜆.

-
3 

with shape parameter 𝑘 = 1.58 and scale parameter 𝜆 = 7.11. The median incubation period is taken to be 5.56 days 
with IQR (3.14, 8.81) days (2).  
The sampled time of infection 𝑡)

)*0 must satisfy the following constrains: 
• t!!"# must fall within the start and end dates of the exposures identified by epidemiological investigation. 
• For any infector-infectee pair, the time of infection of the infector 𝑡)*01+234

)*0   must be earlier than the time of 
infection of the infectee 𝑡)*01+211

)*0 , i.e. 𝑡)*01+234
)*0 	< 	 𝑡)*01+211

)*0 . 
   A SARS-CoV-2 infected individual may have multiple exposures (either through contacts with multiple SARS-
CoV-2 infected individuals, or travel history to Wuhan in addition to contact with a SARS-CoV-2 individual). For an 
individual i who has multiple sources of exposure with a cluster, all other cases in contact with i are potential sources 
of infection, except for those whom i has infected. If the sampled infection time of infectee i, 𝑡)

)*0 , satisfies the 
constraints of multiple exposures, we randomly choose one as the source of infection. If 𝑡)

)*0 satisfies the constrains 
of none of the plausible exposures, we resample 𝑡)

)*0 until individual i has one and only one valid source of infection. 
For individuals with missing onset dates (including all asymptomatic individuals), we set the time of infection as 
missing. The source of infection is then randomly chosen from all plausible exposures identified from epidemiological 
investigation.  

We stochastically reconstruct 100 realizations of transmission chains to account for uncertainties in both the timing 
and source of exposures. 375 of the 831 (45%) SARS-CoV-2 infections do not have unique epidemiological link and 
their transmission routes may vary from one realization to another. 

We remove all singletons from the reconstruction of transmission chains, since they are not epidemiologically 
linked to other cases, but we consider these singletons when we analyze the distribution of secondary cases and when 
we represent the transmission network in Fig. 1.  

 
 
2.2 Distribution of the number of secondary infections among transmission chains 
Next, we calculate the number of secondary infections for each of the 1,178 SARS-CoV-2 individuals based on the 
100 reconstructed transmission chains among 831 cluster cases, and the 347 singletons. The distribution of secondary 
infections is shown in Fig. 1 We fit a negative binomial distribution to these data using package “pystan” version 
v2.19.1.1 with uniform prior. We estimated mean 𝜇 = 0.40, 95% CI 0.39 to 0.41 and dispersion parameter 𝑘	 = 	0.30, 
95%CI 0.29 to 0.30.  
  
3. Kinetics of SARS-CoV-2 transmission 
3.1 Generation interval and serial interval distribution 
The generation interval is defined as the time interval between the dates of infections in the infector and the infectee. 
We calculate the generation intervals of all the infector-infectee pairs based on 100 realization of the reconstructed 
transmission chains. The distribution of the generation interval is shown in Fig. S2A. The observed serial interval is 
defined as the time interval between dates of symptom onsets in the infector and the infectee. We calculate the serial 
interval of all the infector-infectee pairs based on 100 realizations of the reconstructed transmission chains with known 
dates of symptom onset. The distribution of the serial interval is shown in Fig. S2B.  
 
3.2 Gauging the impact of case isolation on the distribution of the serial and generation intervals. 
We select all infector-infectee pairs for which the infector has been isolated during the course of his/her infection, date 
of symptom onset is available, and times of infection have been estimated. We stratify the data by the infector’s time 
interval between onset and isolation, τ!$5 , with 𝜏)63 ∈ {(−∞, 2), [2, 4), [4, 6), [6, +∞)	𝑑𝑎𝑦𝑠}, and assess how the 
generation interval and serial interval distributions change with the speed of case isolation (Fig. 3A and Fig. 3B).   
 
3.3 Speed of case isolation and relative contribution of pre-symptomatic transmission. 
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As cases are isolated earlier in the course of infection, we expect that the contribution of pre-symptomatic transmission 
will increase. This is because symptomatic transmission occurs after pre-symptomatic transmission and transmission 
will be blocked after effective isolation. In other words, isolated individuals remain infectious, but they can only 
effectively transmit before isolation, which is predominantly in their symptomatic phase. To validate the hypothesis 
that the contribution of pre-symptomatic transmission is affected by interventions, we first estimate the overall 
contribution of pre-symptomatic transmission among all reconstructed transmission chains. Let 𝑡𝑟),8-   represent each 
transmission event from an infector to infectee 𝑖, in realization 𝑗 of the 100 sampled transmission chains; 𝑘 = 0 
indicates that infection in an infectee occurred before the time of symptom onset of his/her infector, denoting pre-
symptomatic transmission, while 𝑘 = 1 indicates that the time of infection occurred after the infector’s symptom onset 
(i.e. post-symptomatic transmission). Thus, the overall fraction of pre-symptomatic transmission in realization 𝑗 can 
be calculated using the following formula: 

𝑃8
941 =

∑ 𝑡𝑟),8-)

∑ ∑ 𝑡𝑟),8--)
 

Mean and 95% CI of 𝑃941 can be estimated over the 100 realizations of the reconstructed transmission chains. We 
further stratify 𝑃941  by the time interval between an infector’s symptom onset and isolation, considering four 
categories (days): 

(−∞, 0),  [0,2),  [2,4),  [4,6),  [6, +∞) 
The mean and variance (based on 100 realization of the sampled transmission chains) of 𝑃941 for each category of the 
isolation intervals is shown in Fig. 3C. 
 
3.3 Relative infectiousness profiles over time adjusted for case isolation. 
In Hunan province, all COVID-19 cases regardless of clinical severity were managed under medical isolation in 
appointed hospitals; while contacts of SARS-CoV-2 infections were quarantined in designated medical observation 
centers. In Section 4, we estimate that the risk of transmission in the healthcare setting is the lowest among all contact 
settings, thus case isolation and contact quarantine are highly effective to block onward transmission after 
isolation/quarantine. As a result, the observed serial/generation intervals are shorter than they would be in the absence 
of case isolation and contact quarantine. The censoring effects are clearly demonstrated in Fig. 3A and Fig. 3B,  where 
we observe that the median generation time drops from 7.0 days for 𝜏)63 > 6	(𝑑𝑎𝑦𝑠) after symptom onset, to 4.1 days 
for 𝜏)63 < 2	(𝑑𝑎𝑦𝑠).  

Moreover, the speed of case isolation is not static over time. Fig. S4 shows the distribution of time from symptom 
onset to isolation in three different phases of epidemic control (Phase I, II, and III) defined by two major changes in 
COVID-19 case definition issued by National Health Commission on Jan. 27 and Feb. 4. The median time from 
symptom onset to isolation decreases from 5.4 days in Phase I to -0.1 days in Phase III, due to the expansion of 
“suspected” case definition (3) and strengthening of contact tracing effort (Fig. S3). 
 
3.3.1 Generation interval adjusted for case isolation. 

Estimating the generation interval distribution in the absence of interventions is important to understand the kinetics 
of SARS-CoV-2 transmission, as the shape of the generation interval distribution represents the population-average 
infectiousness profile since the time of infection. To minimize the potential error of flipping the directionality of 
infector-infectee relationship during contact tracing, we further limit our analysis to the infector-infectee pairs where 
the primary case had a travel history to Wuhan (and no other SARS-CoV-2 contact), while the secondary case did not 
have a travel history to Wuhan but was epidemiological linked to the primary case. To further reduce potential recall 
bias on the timing of symptom onset/exposure, we down-sample the outlier incubation periods. To do this in a 
statistically sound manner, we rely on the independence of the incubation periods of the infector and the infectee, and 
down-sample infector-infectee pairs whose joint likelihood of the observed incubation period pair is very low. 
Specifically, we first estimate the joint empirical distribution of the incubation periods of both the infector and infectee 
using the gaussian kernel density estimate (4) in the package “scipy” version v1.5.0 function 
“scipy.stats.gaussian_kde” (5). The joint likelihood of observing the incubation periods of a given infector-infectee 
pair based on the kernel density estimate is denoted as 𝑝-:1(𝜏))*+,, 𝜏8)*+,). The joint likelihood of the incubation period 
of the same infector-infectee pairs based on two independent draws from the Weibull distribution 𝑔)*+,(𝜏) =
-
;
-<
;
.
-./

𝑒𝑥𝑝 2−-<
;
.
-
3	with shape parameter 𝑘 = 1.58 and scale parameter 𝜆 = 7.11 (Section 2.1) is denoted as 

𝑝=(𝜏))*+,, 𝜏8)*+,) . If 𝑝-:1R𝜏))*+,, 𝜏8)*+,S > 𝑝=R𝜏))*+,, 𝜏8)*+,S , it suggests the observed incubation periods are over-
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represented relative to expectations, and vice versa. We introduce a down-sampling weight in accordance with the 
incubation period distribution as 𝑤)*+, = 𝑝=R𝜏))*+,, 𝜏8)*+,S/𝑝-:1R𝜏))*+,, 𝜏8)*+,S.   
    To account for the “censoring” of generation interval distribution due to quarantine/case isolation, we first exclude 
generation intervals where transmission occurred after isolation of the infector (only 4.3% of the reconstructed 
transmission events, attesting to the effectiveness of isolation). We then divide the generation intervals into three 
groups based whether the date of symptom onset of the infectors fall within a given phase of epidemic control in 
Hunan. In Group 1 the illness onset of the infectors occurred before Jan. 27th (Phase I); in Group 2 the illness onset of 
the infector occurred between Jan. 27th and Feb. 4th (Phase II); in Group 3, the illness onset of the infector occurred 
after Feb. 4th (Phase III).  For a given generation interval 𝜏>? of an infector-infectee pair in each group, we denote: 

• The time of symptom onset of the infector as 𝑡3*612. 
• The time of case isolation/quarantine of the infector as 𝑡)63. 
• The time of transmission from the infector to the infectee as 𝑡)*0.. 
• The time interval between onset of the infector and transmission to the infectee 𝜏3) = 𝑡3*612 − 𝑡)*0. 
• The time interval between infection times in the infector and infectee, i.e. the generation interval 𝜏)) 
• The probability distribution from symptom onset to isolation as 𝑃)(𝜏)63), where 𝑖 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼} denotes the 

different phases of epidemic control, determined by symptom onset in the infector 𝑡3*612. The functional 
form of 𝑃)(𝜏)63) is shown in Fig. S4. The corresponding cumulative probability distribution is denoted as 
𝐶A?) (𝜏)63). 

The probability of this infection-infectee pair escaping the “censoring” due to quarantine and case isolation is 𝑝)16+. =
1 − 𝐶A?) (𝜏3)). For every n observations of the generation interval 𝜏))  under intervention 𝑝)(𝜏)63) given 𝜏3) , there 
should be 𝑚 = *

9!
"#$. observations of 𝜏>? given 𝜏3) without intervention 𝑝)(𝜏)63). Thus, we denote the sampling weight 

adjusted for case isolation as 𝑤)63 =
/

9!
"#$.. The overall resampling weight of generation interval 𝜏)) between infector 𝑖 

and infectee 	𝑗  considering both incubation period distribution and censoring due to case isolation is given by 

𝑤6BC9D1(𝑖, 𝑗) = 𝑤)*+, ×𝑤)63 =
9&E<!

!'$(,<)
!'$(F

9!
"#$.×9*+"E<!

!'$(,<)
!'$(F

 . We resample from {𝜏))(𝑖, 𝑗)}  with sampling weights 

𝑤6BC9D1(𝑖, 𝑗) until we reach a sample size of 𝑛 = 10000 to obtain the distribution of generation time {𝜏))
B:8.} adjusted 

for censoring. The distribution of 𝜏))
B:8. reflects the generation interval that would have been observed in the absence 

of quarantine and case isolation/quarantine. We fit Weibull, gamma, and lognormal function to {𝜏))
B:8.} . The 

distribution of 𝜏))
B:8. is best described by the Weibull distribution: 

𝑔>?
B:8.(𝜏) =

𝑘
𝜆 -
𝜏
𝜆.

-./
𝑒𝑥𝑝 2−-

𝜏
𝜆.

-
3 

with 𝑘	 = 	1.3 and λ = 	9.61 (Fig. S6A).  
 
3.3.2 Distribution of time interval between symptom onset and transmission, adjusted for case isolation. 
    In contrast to the generation interval distribution, which characterize the relative infectiousness of a SARS-CoV-2 
infection over time with respect to the time of infection, we now focus on the interval between symptom onset and 
transmission. This shifts the reference point of the infectiousness profile from the time of infection to the time of 
symptom onset. Namely the distribution of symptom onset to transmission adjusted for case isolation {𝜏AH

B:8.} 
represents the population-average relative infectiousness profile over time since the onset of symptom. Of note, since 
we observe substantial pre-symptomatic transmission for SARS-CoV-2, negative values of  𝜏AH

B:8. are allowed. 
Similarly to the previous section, we resample from {𝜏AH(𝑖, 𝑗)} with sampling weights 𝑤6BC9D1(𝑖, 𝑗) until a sample 

of size 𝑛 = 10000 is reached to obtain the distribution of symptom onset to transmission {𝜏AH
B:8.}. The resampled 

distribution represents the infector’s relative infectiousness (population average) with respect to the infector’s 
symptom onset (Fig. S6B). The best-fit distribution is a normal distribution: 

𝑓AH
B:8.R𝜏AH

B:8.S =
1

𝜎√2𝜋
𝑒
./IJ

<,-
.+)..K
L M

/

 

with mean 𝜇 = −0.22 days and standard deviation 𝜎 = 3.47 days. After adjusting for case isolation, the fraction of 
transmission occurring during the pre-symptomatic phase of SARS-CoV-2 infection is 52%. 
 
3.4 Estimating the basic reproduction number in Wuhan before lockdown 
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A recent study (6) estimated the initial growth rate of the epidemic in Wuhan at 0.15 day-1 95% CI (95% CI, 0.14 to 
0.17) ahead of the lockdown. The estimate is based on the daily rise in reported cases by onset date; adjustment for 
increased reporting due to a broadening case definition places the growth rate at 0.08 day-1 (6). The Euler–Lotka 
equation (7) describes the relationship between the basic reproduction number 𝑅N, the epidemic growth rate 𝑟, and the 
generation interval distribution 𝑔(𝜏): 

𝑅N =
1

∫𝑒𝑥𝑝(−𝑟 ∗ 𝜏) × 𝑔(𝜏)𝑑𝜏
 

 
We assume that no effective intervention had been implemented in Wuhan by the time of the lockdown (Jan. 23). 
Using the generation time distribution adjusted for “censoring” due to quarantine and case isolation 𝑔>?

B:8.(𝜏) described 
in the previous section, we estimate the basic reproduction number in Wuhan during the exponential growth phase at 
𝑅NO,PB* = 2.23, (95% CI, 2.13 to 2.43), based on the conservatively higher estimate of growth rate in this city (0.15 
day-1 95% CI (95% CI, 0.14 to 0.17). If we rescale the adjusted generation time distribution 𝑔>?

B:8.(𝜏) by a factor of 
𝑅NO,PB*, the function 

𝑟>?(𝜏) = 𝑔>?
B:8.(𝜏) × 𝑅NO,PB* 

represents the average risk of SARS-CoV-2 transmission to a secondary case at time 𝜏 since infection. The red line in 
Fig. 3D visualizes the functional form of 𝑟>?(𝜏). 
    Similarly, if we rescale the adjusted distribution of symptom onset to transmission 𝑓AH

B:8.(𝜏) with 𝑅NO,PB* , the 
function 

𝑟AH(𝜏) = 𝑓AH
B:8.(𝜏) × 𝑅NO,PB* 

represents the average risk of transmission to a secondary case at time 𝜏 since the symptom onset of the infector. The 
red line in Fig. 3E visualizes the functional form of 𝑟AH(𝜏). 
 
3.5 Evaluating the impact of case isolation and quarantine on SARS-CoV-2 transmission. 
To evaluate the impact of quarantine and case isolation on the reduction of SARS-CoV-2 transmission at different 
phases of epidemic control, we denote the time intervals between a patient’s time of infection to his/her time of 
isolation as 𝜏)*0)63 . The corresponding probability distribution is 𝑝))

8 (𝜏), where 𝑗 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼} denotes the phase of 
epidemic control. We denote the distribution of the incubation period τ)*+,  as 𝑝)*+,(𝜏)  and the distribution of 
symptom onset to isolation 𝜏3*612)63  as 𝑝3)

8 (𝜏), for each phase j of epidemic control. We sample 𝜏)*0)63 = 𝜏)*+, + 𝜏3*612)63  
numerically through independently sampling of 𝜏)*+, and 𝜏3*612)63  and add them together. Fig. S5 shows the distribution 
of 10000 numerical sampling of 𝜏)*0)63  at different phases of epidemic control. We fit the sampled distribution of 𝜏)*0)63  
to various probability distributions including normal, lognormal, gamma, Cauchy, logistic, and hyperbolic secant 
distribution. The top three fits are show in Fig. S5 and the best fit is selected based on the Akaike information criterion 
during each of the three phases of epidemic control. We denote cumulative density distribution of 𝑝))

8 (𝜏) as 

𝐶))
8(𝜏) = e 𝑃))

8(𝜏Q)𝑑𝜏Q
<

.R
 

where 𝐶))
8(𝜏) gives the probability that transmission is blocked after time 𝜏, where 𝜏 is the time since infection. The 

shaded areas in Fig. S5 visualize the probabilities 𝐶))
8(𝜏) for the best-fit distribution. 

    Assuming that all SARS-CoV-2 patients are subject to case isolation and quarantine efforts carried out in Hunan 
province, we can estimate the average risk of transmission 𝑟>?

+3*243D(8)(𝜏) of an infected individual at time 𝜏 since 
his/her infection, during phase 𝑗 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼} of epidemic control as: 

𝑟>?
+3*243D(8)(𝜏) = 𝑟(𝜏) × -1 − 𝐶))

8(𝜏). = 𝑔>?
B:8.(𝜏) × 𝑅NO,PB* × -1 − 𝐶))

8(𝜏). 
The corresponding basic reproduction number assuming 100% SARS-CoV-2 infection detection rate is given by: 

𝑅N
8 = e 𝑟>?

+3*243D(8)(𝜏)	𝑑𝜏
R

N
, 𝑗 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼} 

 
In Fig. 3D, we visualize the transmission profile with respect to infection time 𝑟>?

+3*243D(8) for all three phases of 
epidemic control (dashed lines) and shows the estimated values of the corresponding basic reproduction number 𝑅N

8. 
    Similarly, following Section 3.3.1,  𝐶3)

8 (𝜏) gives the probability that transmission is blocked after time 𝜏 since 
symptom onset in the infector, for the 3 phases of epidemic control 𝑗 ∈ {𝐼, 𝐼𝐼, 𝐼𝐼𝐼}. We can estimate the average risk 
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of transmission 𝑟AH
+3*243D(8)(𝜏) of an infected individual at time 𝜏 since his/her onset of symptom, during phase 𝑗 ∈

{𝐼, 𝐼𝐼, 𝐼𝐼𝐼} of epidemic control as: 
𝑟AH
+3*243D(8)(𝜏) = 𝑟(𝜏) × -1 − 𝐶3)

8 (𝜏). = 𝑓AH
B:8.(𝜏) × 𝑅NO,PB* × -1 − 𝐶3)

8 (𝜏). 
 

In Fig. 3E, we visualize the transmission profile with respect to symptom onset time 𝑟AH
+3*243D(8) for all three phases of 

epidemic control (dashed lines). 
 
3.6 Evaluating synergistic effects of individual-level and population-level interventions on SARS-CoV-2 
transmission. 
We start by characterizing the controllability of SARS-CoV-2 (measured as 𝑅N under control measures) as a function 
of infection isolation rate and the speed of case isolation/pre-symptomatic quarantine. In Fig. 3F, we plot the phase 
diagram of 𝑅N as a function of infection detection proportion (fraction of all SARS-CoV-2 infections detected) and 
the mean time from symptom onset to isolation/quarantine 𝜏)63. Contour lines indicates reductions in R0 from baseline 
non-intervention conditions. It is worth noting that we do not know the precise prevalence of truly asymptomatic 
infections as well as their role in transmission. Here we assume that asymptomatic cases have a similar shape of 
infectiousness profile over the course of infection as symptomatic cases, and a peak of infectiousness corresponding 
to the time of symptom onset in symptomatic cases, as shown in Fig. S6. The corresponding  𝜏)63 for asymptomatic 
cases is measured as time from peak infectiousness to isolation. Here we assume that the distribution of symptom 
onset/peak infectiousness to isolation follows a normal distribution with mean 𝜏)63 and standard deviation of 2 days.  
    We further consider the synergic effects of layering individual-based intervention (case isolation, contact tracing, 
and quarantine) with population-based interventions (ie, via physical distancing, measured as a reduction in effective 
contact rates). In Fig. 3G, we plot the phase diagram of 𝑅N as a function of the proportion of population-level contact 
reduction and infection isolation rate, with the average speed of isolation 0 days after symptom onset/peak 
infectiousness and standard deviation of 2 days.  The blue area indicates the region below the epidemic threshold, 
where control is achieved, and the red area indicates region above the epidemic threshold. 
    Last, we consider a sensitivity analysis with a lower base  𝑅N = 1.59, using the growth rate of 𝑟 = 0.08 observed 
in Wuhan data with adjustment for changes in reporting (Section 3.4). In Fig. 3F, we plot the phase diagram of 𝑅N as 
a function of % population-level contact reduction (i.e. through physical distancing) and isolation rate, assuming that 
SARS-CoV-2 infections are isolated 2 days after symptom onset/peak infectiousness on average with a standard 
deviation of 2 days.  The blue area indicates the region below the epidemic threshold and the red area indicates region 
above the epidemic threshold. 
 
4. Evaluating individual-level transmission heterogeneity of SARS-CoV-2 
4.1 Regression analysis to evaluate the “per-exposure” risk of SARS-CoV-2 transmission as a function of 
demographical, epidemiological, clinical, and behavioral predictors. 
In this section, we use a mixed effects multiple logistic regression model to evaluate the risk of SARS-CoV-2 
transmission for each exposure reported in the contact tracing database. Each entry in the database represents a contact 
exposure between a SARS-CoV-2 infected individual and his/her contact. For individuals who were in contact with 
SARS-CoV-2 infected individual, the contact individual’s age, sex, type of contact, the start/end dates of exposure, as 
well as the infection status (whether the exposed individuals was eventually infected with SARS-CoV-2) are carefully 
documented (Section 1.2). All SARS-CoV-2 infected individual (both primary cases and secondary infections via 
contact exposures) have unique identifiers that can be mapped to the SARS-CoV-2 patient line-list database, where 
additional information about the course of infection is also available (see Section 1.1 for detailed information). An 
individual in the contact tracing database can be exposed to multiple SARS-CoV-2 cases; further, an individual in the 
contact tracing database can be exposed to the same SARS-CoV-2 case through multiple independent exposures. All 
exposures are recorded independently. 

For each exposure in the contact-tracing database, the regression outcome is coded as 1 if the contact eventually 
becomes infected and 0 if not infected. For each exposure, a list of independent variables, their definitions, and 
corresponding values are shown in Table S3 (fixed effects in the mixed model): 

 
Table S3: Fixed effect variables of the mixed effects multiple logistic regression model 

Fixed effect  Definition Category Counts % 
Age (contact) Age category of the contact. Age is categorized into 

three age categories: 0-12 years, 13-25 years, 26-64 
0-12 years 1392/14662 9% 

13-25 years 1859/14662 13% 
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years, 65 years and older (+65 years); 26-64 years is 
the reference category. 

 26-64 years 9323/14662 63% 
+65 years 1415/14662 10% 

NA 673/14662 5% 
Sex (contact) Sex of the contact (male/female). Female is the 

reference category. 
male 7473/14662 51% 

female 6958/14662 47% 

NA 231/14662 2% 

Age (case) Age category of the case. Age is categorized into three 
age categories: 0-12 years, 13-25 years, 26-64 years, 
65 years and older (+65 years); 26-64 years is the 
reference category. For main regression with data 
imputation (Fig. S1), we merge age brackets of 0-12 
years and 13-25 years into 0-25 years as only 3% of 
data in the 0-12 years bracket. For regression of 
sensitivity analysis that removes missing data, we keep 
both 0-12 years and 13-25 years age brackets.  

0-12 years 27/870 3% 

13-25 years 74/870 8% 

 26-64 years 666/870 77% 

+65 years 103/870 12% 

NA 0/870 0% 

Sex (case) Sex of the case (male/female). Female is the reference 
category. 

male 454/870 52% 
female 416/870 48% 

NA 0/870 0% 
Clinical 

severity (case) 
Clinical severity category of the case. Here we 
consider three categories: the first category represents 
asymptomatic cases; the second represents mild & 
moderate cases (reference category) and the third 
represents severe & critical cases. A definition of 
clinical severity is provided in Section 1.1, Table S1. 

asymptomatic 108/870 12% 
mild 217/870 25% 

moderate 427/870 49% 
severe 94/870 11% 

critical 24/870 3% 
NA 0/870 0% 

“Fever” (case)  If the SARS-CoV-2 case had “fever (Yes/No)” during 
the course of illness. Cases without “fever” are the 
reference class. 

Yes 524/870 60% 
No 342/870 39% 
NA 4/870 1% 

“Dry cough” 
(case) 

If the SARS-CoV-2 case had “dry cough (Yes/No)”. 
Cases without “dry cough” are the reference class. 

Yes 314/870 36% 
No 552/870 63% 
NA 4/870 1% 

Travel history 
Wuhan (case) 

If the SARS-CoV-2 case had travel history to Wuhan 
(Yes/No): cases without travel history to Wuhan are 
the reference category. 

Yes 356/870 41% 
No 459/870 53% 
NA 55/870 6% 

Transmission 
settings 

The type of interactions between a case and a contact: 
the 6 contact types are household, extended family, 
social, community, and healthcare contacts. 
Definition of the contact types are detailed in Section 
1.2 Table S2. For exposures in each setting, we first 
define the exposure time as the midpoint between the 
start and end date of the exposure window. The median 
household exposure time is 01/25, 2020. We further 
divide the contacts in different settings into two 
categories: we denote household contact with exposure 

household  
(pre 01/25) 964/17750 5% 

household 
(post 01/25) 924/17750 5% 

extended 
family (pre 

01/25) 
3141/17750 18% 

extended 
family (post 

01/25) 
2723/17750 15% 
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time before 01/25/2020 as household (pre 01/25); we 
denote household contact with exposure time after 
01/25/2020 as household (post 01/25). The reference 
class is household (pre 01/25). Similarly, we divide 
contacts in extended family, social, community, and 
healthcare settings into:  
extended family (pre/post 01/25), social (pre/post 
01/25), community (pre/post 01/25), healthcare 
(pre/post 01/25). 

social 
 (pre 01/25) 2269/17750 13% 

social 
 (post 01/25) 1626/17750 9% 

community 
(pre 01/25) 3328/17750 13% 

community 
(post 01/25) 822/17750 5% 

healthcare 
(pre 01/25) 740/17750 4% 

healthcare 
(post 01/25) 927/17750 5% 

NA 1313/17750 7% 

Duration of 
exposure 

Duration of exposure: defined as the time interval 
between the start and end date of exposure in days. The 
duration of exposure is a numeric variable. 

NA 2045/17750 11% 

Onset within 
exposure 

Onset within exposure: defined as if the symptom 
onset of the primary case occurred within the exposure 
time window of the contact. (Yes/No), No is the 
reference class. 

Yes 9837/17750 56% 
No 4118/17750 23% 

NA 3795/17750 21% 
     
We also introduce random effects for each SARS-CoV-2 case, representing the individual-level infectiousness 
heterogeneity that is not explained by the independent variables representing fixed effects. These random effects also 
take into account the lack of independence of our observations.  
    A contact could report more than one SARS-CoV-2 exposure. If the contact eventually becomes infected, however, 
only one of the many exposures will be the actual source of infection. In this case, if we denote the number of exposures 
as 𝑛1U93, for each of the contact’s 𝑛1U93 exposure entries in the database with two different outcomes, either the 
contact became infected (1 as regression outcome) with regression weight 1/𝑛1U93 or the contact avoided infection 
from the same exposure (0 as regression outcome) with regression weight (𝑛1U93 − 1)/𝑛1U93. We remove contacts 
who become infected but also have travel history to Wuhan (81/15646, <1%), as the infection could possibility 
originate from exposures in Wuhan in addition to exposure to local cases in Hunan. 

A fraction of the regression variables has missing values in the contact-tracing database (see Table S3, column 3). 
We adopted the state-of-the-art “Multivariate Imputation by Chained Equations” algorithm (8) (implemented in R 
package “MICE” version 3.9.1 https://cran.r-project.org/web/packages/mice/index.html) to impute missing values in 
the database. All independent variables in Table S3 are used as predictors for data imputation. The number of multiple 
imputations is set as 10 with each imputation running 10 realizations. For each of the 5 realizations of imputed contact-
tracing databases, we independently perform mixed effects multiple logistic regression of the risk of SARS-CoV-2 
transmission with all exposures and variables described in Table S3 as covariates. The regression is performed using 
R package “lme4” (9) version v1.1-23 function “glmer” (https://cran.r-project.org/web/packages/lme4/index.html). 
The final odds-ratio estimates are pooled from the 5 independent regressions on 5 imputed databases using “MICE” 
package’s “pool” function, based on Rubin’s rule (8). The odds ratios of independent variables, their 95%CIs, and the 
baseline odds (intercept) are reported in Fig. S1A. 
     To examine the model’s fit to the data, we explore (i) how well the model reproduces the age profiles of infector-
infectee pairs and (ii) whether the model captures the amount of transmission that occurs in different settings 
(household, family, transportation, etc). We first randomly choose one of the five imputed contact-tracing databases. 
For each exposure entry in the imputed contact-tracing database, we calculate the model predicted risk of infection 
based on all fixed variables in the regression. We simulate the infection status of the contact according to the predicted 
risk by drawing from a binomial distribution. We repeat the process for all contacts, and further simulate 100 
realizations of projected infection databases to gauge variability. Fig. S1C shows the observed age distribution of the 
infector-infectee pairs in the original data, and Fig. S1B visualizes the projected age distribution based on the 
regression model, averaged over 100 realizations. Violin plots in Fig. S1D show the relative fraction (with projection 
uncertainties) of transmission that is explained by each type of contacts, based on the model, while the dots in Fig. 
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S1D represents the empirical observations. We find that the model accurately captures the strong assertiveness of 
transmission in the 30-50 years age group, and the off diagonals that represent transmission between different 
generations. Further, the model reproduces the relative contribution of different types of contacts seen in the empirical 
data (Fig. S1D). 
    As a sensitivity analysis of imputing missing data (especially addressing the issue of imputing “onset within 
exposure” for SARS-CoV-2 infected individuals that are asymptomatic), we perform a GLMM-logit regression with 
entries of missing data removed. We’ve further break-up the age bracket of predictor “Age (case)” (Table S3) into 0-
12 years, 12-25 years, 26-64 years, and 65+ years. We remove the predictor of “onset within exposure”, however, for 
predictor “clinical severity (case)”, we break down the category “mild & moderate”, and “severe & critical” based on 
the whether onset of the primary case occurred within the exposure time window. “(-)” indicate symptom onset outside 
the exposure time window, while “(+)” indicate symptom onset within the exposure time window. The results of the 
regression are shown in Fig. S8.  
 
 
4.2 Regression analysis evaluating predictors of individual contact patterns among SARS-CoV-2 cases and the 
impact of interventions 
While Section 4.1 addresses predictors of “per-contact” transmission risk heterogeneity, in this section we aim to 
characterize variation in individual contact patterns of SARS-CoV-2 cases by type of contact. We are particularly 
interested in the impact of both individual-based and population-based intervention on contact rates. Intuitively, the 
overall transmission rate of an infectious individual can be interpreted as the sum of contact rates across contact 
categories weighted by the “per-contact” transmission risk. Thus, conditioning on all other predictors, higher contact 
rates would translate to higher transmission rates. 
    We use regression analysis to model the individual contact patterns of each symptomatic SARS-CoV-2 case, whose 
contacts are traced and documented in the contact-tracing database. We focus on symptomatic cases (the majority of 
our data) because we are particularly interested in contacts near the time of symptom onset, since we have previously 
shown that transmission risk is highest near symptom onset. We first define a time window 𝜏6VC9. of peak 
infectiousness as ±5 days before and after each case’s symptom onset 𝑡6VC9. . This time window accounts for a 
majority (86%) of the total infection risk of a typical symptomatic SARS-CoV-2 infection (Fig. S6B). In addition, we 
consider the 4 main contact types separately: community, social, family, and household contacts. For each 
symptomatic SARS-CoV-2 case and contact type 𝑠, we denote the number of contacts on day 𝑖 as 𝑘)6. Here each 
contact in 𝑘)6 is weighted by the regression odds ratios of GLMM-logit, excluding effects from duration of exposure 
and if onset is within exposure time window. The cumulative daily contact rate 𝐶𝐶𝑅<#012.

6  within the time window 
𝜏6VC9. for a given case is given by: 

𝐶𝐶𝑅<#012.
6 = g 𝑘)6

2#012.WX

)Y2#012..X

×𝑤(𝑡6VC9. − 𝑖) 

Here 𝑤(𝜏) is the infectiousness profile with respect to symptom onset (Fig. S6B).  Clearly, case isolation will impact 
an infected individual’s contact rate, irrespective of whether the case is symptomatic. However here we restrict our 
analysis to symptomatic cases as the speed of case isolation and pre-symptomatic quarantine can be quantitatively 
measured as the time from isolation/pre-symptomatic quarantine to symptom onset.  
    To quantify the impact of socio-demographic factors and interventions on 𝐶𝐶𝑅<#012.

6 , we consider a negative 
binomial regression with 𝐶𝐶𝑅<#012.

6  as the dependent variable and proxies of interventions intensities as independent 
variables in the regression. Specifically, we use a within-city mobility index as a proxy for the intensity of population-
level social distancing, while we use time between isolation and symptom onset to measure the intensity of individual-
level interventions (here, case isolation). We also include demographic and clinical predictors as independent variables 
to adjust for age and sex differences, as well as other changes in contact patterns. A full description of all regression 
variables is shown in Table S4: 
 
Table S4: Variables of the negative binomial regression on cumulative contact rates. 

Independent variable Definition 
Age (categorical) Age category of the SARS-CoV-2 case. We consider three age categories: 0-18 

years, 19-64 years, 65 years and older; 19-64 years is the reference category. 
Sex (Male/Female) Sex of the contact (male/female). Female is the reference category. 
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Symptom fever (Y/N) Whether the SARS-CoV-2 case had “fever”. Cases without “fever” are the 
reference class. 

Symptom dry cough (Y/N) Whether the SARS-CoV-2 case had “dry cough”. Cases without symptom “dry 
cough”, i.e. Dry Cough (N), is the reference class. 

Travel history to Wuhan 
(Y/N) 

If the SARS-CoV-2 case reported a travel history to Wuhan: cases without travel 
history to Wuhan are the reference category. 

Physical distancing 
(Before/After Jan. 25) 

Based on the within-city mobility index (Fig. S1A, insert) provided by Baidu 
Qianxi (10), we grouped the individual patients into categories depending on 
whether the patients symptom onsets occurred before and after January 25, 2020, 
corresponding to weak/strong physical distancing. Onsets occurred before Jan. 
25 (weak physical distancing) is the reference class. 

Isolation to onset (days) Time from case isolation to symptom onset. This is used as a proxy for individual-
level intervention intensity. The larger the value, the earlier the case is being 
isolated. Positive values indicate isolation before symptom onset, negative values 
indicate isolation after symptom onset. 

 
The regression is performed using the R package “MASS” (11) version 7.3-51.6 function “glm.nb” (https://cran.r-
project.org/web/packages/MASS/index.html). The point estimates rate ratios along with their 95% CIs for each of the 
variables are presented in the bottom panels of Fig. 2E. We identify an effect of interventions on contact rates, along 
with clinical factors; these effects tend to be most intense in the social and transportation settings. 
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Supplementary Figures 
 

 
Fig. S1. (A) Individual predictors of transmission risk among close contacts of SARS-CoV-2 infected indivdiuals in 
Hunan. The predictors of the logistic regression as those indicated on the left (fixed effects) and we also include 
random effects for individual SARS-CoV-2 infections. Dots and lines indicate point estimates and 95% confidence 
interval of the odds ratio, numbers below the dots indicate the numerical value of the point estimates; “Ref.” stands 
for reference category; * indicates p-value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. Top inset 
indicates the within city mobility index in Changsha, Hunan for year 2020 and 2019, provide by Baidu Qianxi (10); 
dashed line indicates January 25, 2020. (B) Age distribution of projected infector-infectee pairs based on the regression 
model (average over 100 ensemble projections). (C) Age distribution of observed infector-infectee pairs. (D) The 
contribution of household, family, social, community, and healthcare contacts to transmission. Dots represent 
empricial observations and violin plots represents model estimates based on 100 ensemble projections. 
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Fig. S2. (A) Distribution of generation interval (time interval between the infection of an infector and his/her 
infectee’s). The distribution is calculated based on 100 realization of plausible transmission chains reconstructed based 
on the contact tracing database. The estimated generation intervals have a median of 5.3 days with IQR (3.1, 8.7). 
Grey bars represent data; solid lines represent the Weibull distribution fitted to the data (best fit based on AIC score); 
dashed lines represent lognormal and gamma distributions fitted to the data. (B) The distribution of serial interval 
(interval between the symptom onset time of an infector and his/her infectee’s). As with the generation interval, the 
serial interval distribution is calculated over 100 realization of the plausible transmission chains reconstructed through 
the contact database. The estimated serial interval distribution has a median of 5.7 days with IQR (2.8, 8.7) days. Red 
dots represent data; solid lines represent the lognormal distribution fitted to the data (best fit based on AIC score); 
dashed lines represent normal and gamma distributions fitted to the data. 

 

Fig. S3. Incidence of SARS-CoV-2 infections by onset date, for cases captured through contact tracing (red) or passive 
surveillance (blue). The dashes lines indicate the Phase I, II, and III of epidemic control. 

 

 

Fig. S4. Distribution of time from symptom onset to isolation in three different phases of epidemic control. Dots are 
data estimated from the transmission chains, lines are candidate distributions fitted to the data and solid lines 
distributions fitted best to the data based on Akaike information criterion (A) Phase I of epidemic control (before Jan. 
27): time from onset to isolation has a median of 5.4 days with IQR (2.7, 8.2) days. (B) Phase II of epidemic control 
(Jan. 27 – Feb. 4): time from onset to isolation distribution has a median of 2.2 days with IQR (0.4, 5.0) days. (C) 
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Phase III of epidemic control (after Feb. 4): time from onset to isolation distribution has a median of -0.1 days with 
IQR (-2.9, 1.7) days.  

 

Fig. S5. Same as S3 but focusing on the time from infection to isolation. (A) Phase I of epidemic control (before Jan. 
27): time from infection to isolation has a median of 11.9 days with IQR (7.9, 16.5) days (B) Phase II of epidemic 
control (Jan. 27 – Feb. 4): time from infection to isolation distribution has a median of 8.6 days with IQR (5.2, 12.5) 
days. (C) Phase III of epidemic control (after Feb. 4): time from infection to isolation distribution has a median of 5.1 
days with IQR (1.9, 8.7) days. 

 

Fig. S6. (A) Distribution of generation interval τZ[
\]^. adjusted for censoring due to case isolation and quarantine. This 

represents the distribution that would have been observed in the absence of quarantine and case isolation. The 
distribution of  τZ[

\]^. has a median of 5.6 days with IQR (3.2, 9.0) days. Grey bars represent data; solid lines represent 
the Weibull distribution fit to the data (best fit based on AIC score); dashed lines represent gamma and lognormal 
distributions fitted to the data. (B) Distribution of time from symptom onset to transmission 𝜏AH

B:8.; negative values 
represent pre-symptomatic transmission. Grey bars represent data; solid lines represent the normal distribution fitted 
to the data (best fit based on AIC score); dashed lines represent Cauchy and gamma distributions fitted to the data. 

 

Fig. S7. Trends in the relative contribution of different types of contacts to SARS-CoV-2 transmission. Estimates 
are averaged over a 10-day moving window.  The grey shade in the background indicates the time series of SARS-
CoV-2 incidence in Hunan, China. 
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Fig. S8. A sensativity analysis of GLMM-logit regression that removes missing values. The predictors of the logistic 
regression as those indicated on the left (fixed effects) and we also include random effects for individual SARS-CoV-
2 infections. The “(-)” in “Mild & Moderate (-)” and “Sever & Critical (-)” indicate the SARS-CoV-2 infected 
individual’s symptom onset occurred outside the exposure time window;  The “(+)” in “Mild & Moderate (+)” and 
“Sever & Critical (+)” indicate the SARS-CoV-2 infected individual’s symptom onset occurred within the exposure 
time window. Dots and lines indicate point estimates and 95% confidence interval of the odds ratio, numbers below 
the dots indicate the numerical value of the point estimates; “Ref.” stands for reference category; * indicates p-
value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. Note that the regression results of odds ratio in 
healthcare setting after January 25 is not visualized due to very low point estimate (9.1 × 10._), with 0 of the 927 
contact exposures in healthcare settings after January 25 led to secondary transmissions. 
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