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Coronavirus disease 2019 (COVID-19) is a novel human respira-

tory disease caused by the SARS-CoV-2 virus. Asymptomatic car-

riers of the COVID-19 virus display no clinical symptoms but are

known to be contagious. Recent evidence reveals that this sub-

population, as well as persons with mild disease, are a major con-

tributor in the propagation of the disease. The rapid spread of

COVID-19 forced governments around the world to establish and

enforce generalized risk mitigation strategies, from lockdowns to

guidelines for social distancing, in an effort to minimize community
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transmission. This created an unprecedented epidemiological situa-

tion not properly characterized by existing mathematical models of

isolation and quarantine. In this manuscript, we present a mathe-

matical model for community transmission of COVID-19 taking into

account asymptomatic carriers and varying degrees of risk mitiga-

tion. The main results consist of an exact calculation of the effective

reproduction number Re(t), and a modeling framework that enables

the quantification of the effect of risk mitigation and asymptomatism

on community transmission. A computation of Re(t) is provided us-

ing mean parameters. The point estimate of the basic reproduction

number is R0 ≈ 12.

1 Background

Coronavirus disease 2019 (COVID-19) is a novel human respiratory disease caused by the

SARS-CoV-2 virus. The first cases of COVID-19 disease surfaced during late December

2019 in Wuhan city, the capital of Hubei province in China. Shortly after, the virus quickly

spread to several countries (1). On January 30, 2020 The World Health Organization

(WHO) declared the virus as a public health emergency of international scope (2). Forty

one days later, on March 11, 2020 it was officially declared to be a global pandemic (3).

Asymptomatic individuals in the context of COVID-19 disease are subjects who carry

a viral load, but do not show clinical symptoms. When the first cases appeared in China,

there was no clarity about the existence of asymptomatic carriers. The evolution of our

understanding of this matter has produced a very broad span of estimates, ranging from

1% to 88%, as summarized next:

• 1.1% from the Chinese Center for Disease Control, cross sectional study (4). The
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criteria for inclusion was presence of symptoms. The only surprise is that this study

found any asymptomatic carrier at all.

• 17.9% from the Princess cruise ship in Japan (5). However, the age pyramid of

passengers was heavily biased toward > 60 year-old, precisely the age group most

likely to develop symptoms. This finding does not translate to communities.

• 30.8% from Japanese evacuees from Wuhan (6). The age pyramid of this group was

also tilted toward seniority.

• 50-75% from Vo’Euganeo in Italy. An entire village was tested (7).

• +80% from reanalysis of Chinese data (8).

• 88% in pregnant women in a maternity ward were positive for SARS-CoV-2 upon

admission but had no symptoms of COVID-19 at presentation (9).

Asymptomatic carriers pose a silent threat to communities because these individuals

might not adhere to risk mitigation strategies (e.g. wearing face masks). Asymptomatic

and symptomatic carriers may have similar levels of viral load and infectiousness (10,11).

Since they are frequently undetected by public health systems, the potential for sustained

contagion is high (5, 12).

The rapid spread of COVID-19 forced governments around the world to establish and

enforce generalized risk mitigation strategies, from lockdowns to guidelines for social dis-

tancing, in an effort to minimize community transmission (13–15). From a mathematical

point of view, the effects resulting from varying degrees of risk mitigation are not cap-

tured by existing quarantine models whose formulation depends on the isolation of a given

sub-population, whereas in COVID-19 entire societies were subject to restrictions (16–19).
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The primary aim of this manuscript is to qualitatively characterize the epidemiologi-

cal dynamics of SARS-CoV-2 via a compartmentalized model that takes into account the

asymptomatic sub-population and risk mitigation conditions. This manuscript is orga-

nized as follows: Sect. 2.1 presents a generalized model in which the additional models

covered in this manuscript are specific cases and modifications, Sect. 2.2 features a slight

simplification of the model featured in Sect. 2.1 with a reproduction number which ad-

mits a natural biological interpretation and a numerical implementation, Sect. 3 builds

upon the simplified model presented in Sect. 2.2 through means of a modification which

takes into account the changes in behavioral patterns during the risk mitigation period

which resulted in a reduction of the susceptible population and contains a numerical plot

of the effective reproduction number of the model, Sect. 4 is focused on covering the

biological relevance of the reproduction number listed in Sect. 2.2, Sect. 5 is the conclu-

sion and Sect. 6 contains tables in which the biological and computationally determined

parameters are listed separately.

2 Mathematical Models

This section contains variations of models which fall into the class of models covered

by Aguilar and Gutierrez (2020) (20). The SEYAR model for the spread of COVID-

19 is formulated by decomposing the total host population (N) into the following five

epidemiological classes: susceptible human (S), exposed human (E), symptomatic human

(Y ), asymptomatic human (A), and recovered human (R).
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2.1 Generalized Model

The following generalized SEYAR dynamical system, is given by Equation 1 below, (see

Figure 1 below): 

Ṡ = Λ + λRSR−
(
βY

Y
N

+ βA
A
N

+ ξ
)
S,

Ė =
(
βY

Y
N

+ βA
A
N

)
S − (γ + ξ)E,

Ẏ = γ(1− α)E − (ξ + δ + λY R)Y + λAYA,

Ȧ = γαE − (λAR + λAY + ξ)A,

Ṙ = λARA+ λY RY − (λRS + ξ)R,

(1)

where N = S +E +Y +A+R. The demographic parameters Λ and ξ denote the human

recruitment and mortality rates, respectively. While λAY and λRS are the asymptomatic

to symptomatic transition and relapse rates, respectively. It is worth mentioning that

R

Y A

E

S

ξ

ξ

ξ

ξ

ξ
δ

Λ

λRS λSE

γ(1− α)

λAY

γα

λY R λAR

Figure 1: This figure is a schematic diagram of a generalized COVID-19 model including an
asymptomatic compartment. The longer arrows represent progression from one compartment to
the next. Hosts enter the susceptible compartment either through birth of migration and then
progress through each additional compartment subject to the rates described above.

for a basic SEIR model, where there is only one infected compartment, the progression

rate from the susceptible to the exposed class λSE is equal to the product of the effective
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contact rate β and the proportion of infected individuals I
N

. The force of infection is

λSE = β
I

N
S.

In our model, we decompose the infected compartment into symptomatic and asymp-

tomatic sub-compartments. Due to this decomposition, the force of infection is given by

the weighted sum

λSE =

(
βY

Y

N
+ βA

A

N

)
S.

Disease-Free Equilibrium (DFE) points are solutions of a dynamical system corresponding

to the case where no disease is present in the population. The reproduction number R0

is a threshold value that characterizes the local asymptotic stability of the underlying

dynamical system at a disease-free equilibrium. Listed below in Lemma 1 is a proof of

the reproduction number associated to the generalized Model 1.

Lemma 1. (Reproduction Number for the SEYAR COVID-19 Model). Define the fol-

lowing quantity

R0 :=
γ

γ + ξ

(
βY

δ + λY R + ξ

(
α

λAY
λAR + λAY + ξ

− (α− 1)

)
+ α

βA
λAR + λAY + ξ

)
. (2)

Then, the DFE w? for the SEYAR model in Equation 1 is locally asymptotically stable

provided that R0 < 1 and unstable if R0 > 1.

Proof. We order the compartments so that the first four correspond to the infected sub-

populations and denote w = (E, Y,A,R, S)T . The corresponding DFE is

w? =

(
0, 0, 0, 0,

Λ

ξ

)T
.
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The system in Equation 1 can be rewritten using the next generation method (21) as

ẇ = Φ (w) = F (w)− V (w), where F := (F1, . . . ,F5)
T and V := (V1, . . . ,V5)T , or more

explicitly


Ė

Ẏ

Ȧ

Ṙ

Ṡ

 =


(
βY

Y
N

+ βA
A
N

)
S

0
0
0
0

−


(γ + ξ)E
−γ (1− α)E + (ξ + δ + λY R)Y − λAYA

−γαE + (λAR + λAY + ξ)A
−λARA− λY RY + (λRS + ξ)R
−Λ− λRSR +

(
βY

Y
N

+ βA
A
N

+ ξ
)
S

 .

The matrix V admits the decomposition V = V− − V+, where the component-wise

definition is inherited. In a biological context, Fi is the rate of appearance of new infections

in compartment i, V+
i stands for the rate of transfer of individuals into compartment i by

any other means and V−i is the rate of transfer of individuals out of compartment i. Now,

let F and V be the following sub-matrices of the Jacobian of the above system, evaluated

at the solution w?

F =
(
∂Fi
∂xj

∣∣∣
w?

)
1≤i,j≤3

=

0 βY βA
0 0 0
0 0 0


and

V =
(
∂Vi
∂xj

∣∣∣
w?

)
1≤i,j≤3

=

 (γ + ξ) 0 0
γ (α− 1) (ξ + δ + λY R) −λAY
−γα 0 (λAR + λAY + ξ)

 .

A direct calculation shows that

V −1 =

 (γ + ξ)−1 0 0

− γ((α−1)(λAR+ξ)−λAY )
(γ+ξ)(ξ+δ+λY R)(ξ+λAY +λAR) (ξ + δ + λY R)−1 λAY ((ξ + δ + λY R) (ξ + λAY + λAR))−1

γα ((γ + ξ) (λAR + λAY + ξ))−1 0 (λAR + λAY + ξ)−1



and FV −1 is given by the following matrix
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 γ
(γ+ξ)(λAR+λAY +ξ)

(
−βY ((α−1)(λAR+ξ)−λAY )

δ+λY R+ξ + βAα
)

βY (δ + λY R + ξ)
−1 1

λAR+λAY +ξ

(
βY λAY

δ+λY R+ξ + βA

)
0 0 0
0 0 0

 .

Let I denote the 3× 3 identity matrix, so that the characteristic polynomial P (λ) of

the matrix FV −1 is given by

P (λ) = det
(
FV −1 − λI

)
,

= λ2
(
λ−

(
γβY

(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

))
.

The solution set {λi}1≤i≤3 is given by

{
0, 0,

γβY
(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

}
.

Therefore, the reproduction number for the SEYAR model in Equation 1 is given by

R0 := ρ
(
FV −1

)
,

= max
1≤i≤3

{λi},

=
γβY

(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

,

=
γ

γ + ξ

(
βY

δ + λY R + ξ

(
α

λAY
λAR + λAY + ξ

− (α− 1)

)
+ α

βA
λAR + λAY + ξ

)
.

The proof of the lemma regarding the local asymptotic stability of the DFE w? correspond-

ing to the SEYAR model in Equation 1 is now complete since w? is locally asymptotically

stable if R0 < 1, but unstable if R0 > 1 (21, Theorem 2).
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2.2 Simplified Model

This section features a simplification of Model 1 corresponding to the absence of demo-

graphic parameters, the asymptomatic to symptomatic transition rate and the relapse

rate. 

Ṡ = −
(
βY

Y
N

+ βA
A
N

)
S,

Ė =
(
βY

Y
N

+ βA
A
N

)
S − γE,

Ẏ = γ(1− α)E − (δ + λY R)Y,

Ȧ = γαE − λARA,
Ṙ = λARA+ λY RY.

(3)

R

Y A

E

S

δ

(
βY

Y
N

+ βA
A
N

)
(1− α)γ αγ

λY R λAR

Figure 2: Schematic diagram of a COVID-19 model including an asymptomatic compartment.
The arrows, except the disease-induced death (δ), represent progression from one compartment
to the next. Hosts progress through each compartment subject to the rates described below.

The reproduction number arising from the dynamical system 3 is given by the following

equation

R0 = (1− α) · βY ·
1

λY R + δ
+ α · βA ·

1

λAR
. (4)

The reproduction number featured in Equation 4 above corresponds to a DFE solu-

tion given by v? = (0, 0, 0, 0, S0)
T and the absence of demographic parameters and the

asymptomatic to symptomatic transition rate. It can be alternatively obtained by letting
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Table 1: Average values of parameters used to compute Figures 4 and 5. See Appendix
for sources. The fitted parameters were selected from the optimal fit of a calibrated model
for the City of San Antonio, TX (data not shown).

Parameter Description Dimension Value

FITTED
βY Effective contact rate from days−1 1.17

symptomatic to susceptible.
βA Effective contact rate from days−1 1.16

asymptomatic to susceptible.
k Risk mitigation coefficient n/a 0.03
Parameter Description Dimension Mean Variance

BIOLOGICAL
γ−1 Mean latent period. days 5.2 0.5
α Probability of becoming n/a 0.60 0.10

asymptomatic upon infection.
λ−1YR Mean symptomatic days 13.5 31.8

infectious period.
λ−1AR Mean asymptomatic days 8.33 n/a

infectious period.
δ Disease-induced death rate. days−1 0.026 0.094

ξ = λAY = 0 in Equation 2.

The calculation of R0 during the first stages of an epidemic poses significant chal-

lenges. Evidence of this difficulty was observed in the 2009 influenza A (H1N1) virus

pandemic (22). Particularly, the COVID-19 pandemic has a different characterization in

each country in which it has spread due to differences in surveillance capabilities of public

health systems, socioeconomic factors, and environmental conditions.

The first three weeks of community transmission is well characterized by an exponential

function in multiple locations. Figure 3 shows the number of cases reported in thirteen

countries with universal health care and strong surveillance systems until March 25, 2020.

Ten of these countries are in the European zone, plus Australia, Canada and Japan.

An exponential fitting for each country reveals an average coefficient of determination
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R2 = 0.9846±0.0164. The average growth rate r in the exponential model Y = a ·(1+r)t,

where t is time measured in days, is r = 23.32%, and the average of the initial conditions

is a = 103 cases. Thus,

Y = 103 · 1.2332t. (5)
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Figure 3: First three weeks (or less) of data for thirteen countries with COVID-19 cases
and strong surveillance systems for communicable diseases.

There are well known challenges in attempting to fit an exponential function to epi-

demiological data (23–25). To compare the output of the model to the data from the

thirteen countries studied, the growth rate found in Equation 5 was superimposed on the

model. The initial condition a0 in the exponential function Y = a0 · (1 + r)t was fitted to

the dynamical system with the Nelder-Meade simplex algorithm (26).
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Figure 4 shows a calculation of System 3 using the parameter values listed in Table 1.

This representation of the dynamics of the disease must be understood as a theoretical

development; in reality, the progression of an epidemic depends on a multitude of factors

that necessarily result in deviations from this ideal case.
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Figure 4: Numerical implementation of System 3 with parameter values listed in Table
1. The left-most panel shows the time series corresponding to a point estimate of R0 =
12.11. The center panel shows a times series of the symptomatic compartment; the red
dots represent the exponential function whose parameters are the average of the thirteen
countries studied. The right-most panel shows a simulation representing the effect of
limiting contact between the susceptible and infected populations. At the time of writing
there is no data available to calibrate an intervention model.
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3 Modeling Risk Mitigation Conditions

Changes in behavioral patterns in response to an outbreak have an effect on the spread of

a given disease. When an infectious pathogen threatens a community, individual aware-

ness and public health interventions can motivate a portion of community individuals

to take measures to reduce their exposure to the pathogen. The rapid spread and high

contagiousness of COVID-19 resulted in exponential growth during the first three weeks

of the outbreak as shown in Figure 3 of Section 2.2. In response, drastic measures were

taken by community leaders in order to reduce the susceptiblity of the population and,

as a result, slow down the spread of the disease. Social distancing, the cancellation of

events likely to attract crowds, the closing of schools and working from home will all have

a drastic impact on the size of the susceptible population at a given time (27, 28).

Let Q(t) denote the risk at time t. Q(t) should be chosen such that the rate of change

of risk decreases proportionally to the amount of risk present, i.e. the more danger there

is, the more careful people are. Consider the following initial value problem:{
Q̇ = −kQ, k > 0

Q(0) = 1.
(6)

The solution is given by Q(t) = e−kt. This framework captures a broad spectrum of risk

mitigation strategies, from shelter-in-place orders (e.g. k = 0.05), to minimal guidelines

for social distancing (e.g. k ≈ 0). Thus, the following model modification is proposed to

model the effect of these behavioral changes

λSE =

(
βY

Y

N
+ βA

A

N

)
SQ.

In the above,
(
βY

Y
N

+ βA
A
N

)
S describes the infection force of the disease and Q(t) = e−kt

measures the risk due to the behavioral change of the susceptible individuals. Therefore,
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we arrive at the following alteration of System 3.

Ṡ = −
(
βY

Y
N

+ βA
A
N

)
SQ,

Ė =
(
βY

Y
N

+ βA
A
N

)
SQ− γE,

Ẏ = γ(1− α)E − (δ + λY R)Y,

Ȧ = γαE − λARA,
Ṙ = λARA+ λY RY.

(7)

Next, we provide a formula for the effective reproduction number of System 7. In partic-

ular, we have Theorem 1 below.

Theorem 1. The effective reproduction number corresponding to the dynamical system

given by Equation 7 is given by the following equation

Re(t) =

(
(1− α)

βY
λY R + δ

+ α
βA
λAR

)
e−kt. (8)

Proof. The matrix V corresponding to System 7 is unchanged by the modification involv-
ing the exponential multiplier Q(t) := e−kt. Let BY (t) := βYQ(t) and BA(t) := βAQ(t),
then

F (t) =

0 BY (t) BA(t)
0 0 0
0 0 0

 .

In the constant case, i.e. BY (t) ≡ βY and BA(t) ≡ βA for all t ≥ 0, we have

F (t) = F =

0 βY βA
0 0 0
0 0 0

 .

Thus, it follows that

R0 := ρ
(
FV −1

)
= (1− α)

βY
λY R + δ

+ α
βA
λAR

.

It is clear that the exponential multiplier Q preserves the non-negativity of F (t) for all

t. For fixed time t = t0, the quantity ρ (F (t0)V
−1) is equal to the maximum eigenvalue

of the linear operator F (t0)V
−1.

For t ∈ R+, the eigenvalue functions depend continuously on the coefficients of the

characteristic polynomial. The high regularity of the exponential multiplier measuring the
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risk effect, i.e. Q ∈ (C∞b (R+), ‖ · ‖∞) (the space of smooth bounded functions equipped

with the supremum norm) in combination with its monotonic decreasing behavior for all

t ≥ 0 ensures that the ordering of the eigenvalue functions is preserved and the maxi-

mum is well-defined. Precisely, denote dim(F (t)V −1) = n, the spectral radius function

ρ (F (t)V −1) is interpreted to be the largest eigenvalue function λi(t) for i = 1, · · · , n in

the Banach space L∞(R+).

In this case, the spectral radius function ρ (F (t)V −1) is well-defined and is given by:

ρ
(
F (t)V −1

)
:= max

1≤i≤3
λi∈L∞(R+)

{λi(t)} = max
L∞(R+)

{0, 0,R0Q(t)} = R0Q(t).

Therefore, we arrive at the following reproduction function which takes into account an

exponential decline in the susceptible population:

Re(t) := R0Q(t) = R0e
−kt.

Remark 3.1. It is a direct consequence of Equation 8 that Re(0) = R0 and the disease

should stop spreading after ≈ 1
k

lnR0 days provided continual isolation resulting in such a

drastic decrease in susceptibility is maintained. Particularly, it follows that ‖Re(t) ‖∞ =

Re(0) = R0 and inft∈R+Re(t) = 0, thus Re(t) ∈ (0,R0] for all t ∈ R+.

In general, the susceptible population decreases in response to the infection force which

is reflected in the canonical definition of R0(t), as given by equation 10. The above

modification accounts for a decline in the susceptible population that is consistent with

observable results pertaining to the COVID-19 pandemic.

The modified SEYAR model 7 can be used as a tool to explore multiple scenarios cor-

responding to different interventions. Featured below is a plot of the effective reproduction

number Re(t) labeled as Equation 8.
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Figure 5: The effective reproduction number given by Equation 8 was computed with
parameter values listed in Table 1. The red dashed line corresponds to Re ≡ 1. Notice
that the function Re decreases below 1 after 1

k
lnR0 ≈ 83 days, as mentioned in Remark

3.1.

4 Discussion

The reproduction number R0 shown in Equation 4 arising from the simplified model (3)

admits a natural biological interpretation. To guide this discussion, it is pertinent to refer

to the original epidemic model proposed by W. O. Kermack and A. G. McKendrick in

1927 (29), see Figure 6 below. The corresponding dynamical system is given by
Ṡ = −β I

N
S,

İ = β I
N
S − ωI,

Ṙ = ωI.

(9)
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S I R
β ω

Figure 6: This figure is a schematic diagram of a SIR model consisted of three compartments,
namely: susceptible (S), infected (I) and recovered (R). Humans progress through each com-
partment subject to the rates described above.

Epidemiologically speaking, the basic reproduction number is the average number of sec-

ondary infections generated by a single infection in a completely susceptible population. It

is proportional to the product of infection/contact (a), contact/time (b) and time/infection

(c). The quantity a is the infection probability between susceptible and infectious indi-

viduals, b is the mean contact rate between susceptible and infectious individuals and c

is the mean duration of the infectious period.

The case of an increasing infected sub-population corresponds to the occurrence of

an epidemic. This happens provided that İ = β I
N
S − ωI > 0 or β

ω
S
N
> 1. Under

the assumption that in the beginning of an epidemic, virtually the total population is

susceptible, that is S
N
≈ 1. As a result, we arrive at the following equivalent condition

R0 :=
β

ω
> 1.

The parameter β in Figure 6 is equal to ab and ω is equal to c−1. This combination of

parameters stands to reason as it is a ratio of the effective contact rate β and the mean

infectious period ω−1.

Since the case fatality ratio is of negligible size (i.e. δ ≈ 0), the reproduction number

featured in Equation 4 has a similar natural biological interpretation as the sum of ratios

consisting of the effective contact rates βY , βA and mean infectious periods λ−1Y R, λ−1AR for

the symptomatic and asymptomatic sub-populations, weighted with the probabilities of

becoming symptomatic (1− α) or asymptomatic α upon infection.
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R0 ∝

(
probability of becoming

symptomatic upon infection

)
·

(
symptomatic

contact rate

)
·

(
mean symptomatic

infectious period

)

+

(
probability of becoming

asymptomatic upon infection

)
·

(
asymptomatic

contact rate

)
·

(
mean asymptomatic

infectious period

)
.

Estimations of the basic reproduction number, R0, vary on a broad range. The ini-

tial estimates of the preliminary outbreak dynamics suggested R0 to be in the interval

[0.3, 2.38] (30–38). A posterior analysis estimated a medianR0 value of 5.7 (95% CI 3.8–8.9)

(39); remark 3.1 indicates that the period required to stop the spread of the disease should

be at least 58 days with a risk mitigation coefficient of k = 0.03.

The reproduction number is not a biological constant corresponding to a given pathogen

(40). In reality, the values of R0 fluctuate with time, and depend on numerous factors.

It provides a means to measure the contagiousness of a disease under given circumstances

and is utilized by public health authorities to gauge the severity of an outbreak. The de-

sign of various public health strategies and measurement of their effectiveness are guided

by estimates of R0. Established outbreaks usually fade provided that interventions main-

tain R0< 1. It is defined to be the average number of secondary cases generated by a

typical case. A decrease in the susceptible proportion of the population S(t)
N(t)

overtime will

cause a corresponding decrease in the values of the reproduction number.

The canonical definition of the effective reproduction number Re(t) takes into consid-

eration the susceptibility of the population,

Re(t) :=
R0

N(t)
S(t). (10)

It directly follows by Equation 10 thatRe(0) = R0, as initially the total human population

is assumed to be susceptible. The plot of Re(t) is similar to the plot of the susceptible
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portion. This is reasonable since Equation 10 implies that Re(t) is proportional to S(t).

Since the case fatality ratio δ ≈ 0, the total population N(t) varies little within a tight

envelope around the initial susceptible population S(0). This is easily observable upon

inspection of the dynamical system given by Equation 4 in Section 2.2, as it is clear that

N(t) = S(0)− δ
∫ t

0

Y (ζ)dζ,

where the function Y appearing in the above integral denotes the symptomatic sub-

population.

5 Conclusion

As the COVID-19 pandemic evolves, governments around the world are taking drastic

steps to limit community spread. This will necessarily dampen the growth of the dis-

ease. The parameter k introduced in Equation 6 accounts for generalized risk mitigation

measures in which there is risk aversion by a substantial portion of the population, thus af-

fecting effective contact rates. We call k the risk mitigation coefficient. As risk mitigation

measures evolve due to government interventions, k is adjusted accordingly. In practice,

one would set a risk mitigation coefficient corresponding to each mitigation period.

In juxtaposition to the SARS-CoV epidemic of 2003 where only symptomatic indi-

viduals were capable of transmitting the disease (41, 42), asymptomatic carriers of the

SARS-CoV-2 virus may be capable of the same degree of transmission as symptomatic

individuals (11). In a public health context, the silent threat posed by the presence of

asymptomatic and other undocumented carriers in the population renders the COVID-

19 pandemic far more difficult to control. SARS-CoV-2 is evidently among the more

contagious pathogens known, a phenomenon most likely driven by the asymptomatic

sub-population.
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The calculation of R0 poses significant challenges during the first stages of any out-

break, including the COVID-19 pandemic. This is due to paucity and timing of surveil-

lance data, different methodological approaches to data collection, and different guidelines

for testing. Estimates vary greatly: 0.3 (30), 2.28 (31), 2.38 (8), 3.28 (32), and others.

The value of R0 must be understood as a threshold parameter that can be utilized to

characterize disease spread. The estimations of R0 are expected to vary substantially

per locality depending on how public health officials communicate the risk to the gen-

eral public, general beliefs and (dis)information available to the population, and other

socioeconomic and environmental factors affecting contact rates.

Different degrees of complication arise due to the presence asymptomatic carriers in an

epidemic. If there were relatively few asymptomatic carriers, (for example 1 asymptomatic

for every 9 symptomatic), the time to peak could be extended. Many infectious diseases

exhibit this behavior and this is far from the worst case scenario; however, controlling

the outbreak becomes more challenging. The mid-level situation corresponds to a higher

percentage of asymptomatic carries (for example twenty to seventy percent). The relative

large number of asymptomatic carriers would accelerate the transmission of the disease,

and would make it increasingly difficult to contain. This is the only plausible explanation

for the unprecedented speed of propagation of COVID-19. Another possibility is the case

where there would be significantly more asymptomatic carriers than symptomatic, (for

example 80 times more) (43). Provided that exposure results in immunity, this scenario

would be less damaging than the mid-level. If many people get infected, these cases do

not develop severity, and exposure confers immunity, this would accelerate the emergence

of herd immunity. This could be the most desirable outcome at this point. The scenario

most likely occurring is the mid-level; this case creates a protracted epidemic, with a

slow build up of herd immunity. This mid-level scenario could result in the need of risk
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mitigation strategies until there is a vaccine.

The worst-case scenario would consist of the following: (i) mid-level or significantly

more asymptomatic carriers than symptomatic, (ii) exposure does not confer immunity,

and (iii) a vaccine is elusive as it has been for other coronaviruses that cause the common

cold. This unfortunate state of affairs could reduce the life expectancy of our entire

species.

6 Appendix

Table 2: Latent period

Parameter Dimension Biological Computational Source
γ−1 days 5.1(4.5, 5.8) n/a (44)

5.2(4.1, 7) n/a (45)
6.4(5.6, 7.7) n/a (46)
5.2(1.8, 12.4) n/a (47)
5.2(4.2, 6) n/a (48)
3.9 n/a (49)
5(4.2, 6.0) n/a (50)1

5.6(5, 6.3) n/a (50)2

n/a 4.2(3.5, 5.1) (39)6

n/a 1.25 (51)
n/a 3.68(3.48, 3.90) (52)3

n/a 3.62(3.44, 3.87) (52)4

n/a 3.43(3.30, 3.63) (52)5

Mean 5.2 3.2
Variance 0.5 1.3

The latent period is defined to be the number of days elapsed between exposure to the pathogen and
when symptoms are manifested. This parameter is also referred to as the mean incubation period in the
literature. Quantities are listed as values, ranges or Median(95% CIs).

(1) This data corresponds to the case of excluding Wuhan.

(2) This data corresponds to the case of including Wuhan.

(3) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 10-23, 2020.

(4) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 24-February 3, 2020.
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(5) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 24-February 8, 2020.

(6) This estimate was obtained utilizing a uniform distribution from 2.2 to 6 days.

Table 3: Asymptomatic Proportion

Parameter Dimension Biological Computational Source
α n/a 17.9%(15.5%, 20.2%) n/a (5)

33.3̄% n/a (53)1

[50%, 75%] n/a (7)
80% n/a (54)
n/a 41.6%(16.7%, 66.7%) (6)2

[80%, 95%] n/a (55)1

n/a 86%(82%, 90%) (52)
78% n/a (56)

Mean 60% 60%
Variance 10% 10%

The probability of becoming asymptomatic upon infection is obtained by the proportion of asymptomatic
infections in a given population and is utilized as a transmission factor accounting for the asymptomatic
sub-population. Quantities are listed as values, ranges or Median(95% CIs).

(1) This percentage was assumed.

(2) A Bayes theorem was utilized to obtain this estimation.

Table 4: Asymptomatic Infectious Period

Parameter Dimension Biological Computational Source
λ−1AR days 8.33 n/a (57)1

n/a 3.45(3.24, 3.70) (52)2

The asymptomatic infectious period is defined to the the number of days an individual who never develops
symptoms exhibits viral shedding. For the asymptomatic infectious period we assumed viral shedding
was synonymous with transmissibility. Quantities are listed as values, ranges or Median(95% CIs).

(1) This quantity was estimated by taking the average number of days for which viral
RNA was detected via swab one day prior to the limit of quantification.

(2) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 10-23, 2020.
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Table 5: Symptomatic Infectious Period

Parameter Dimension Biological Computational Source
λ−1Y R days [10, 11] n/a (57)1

n/a 2.9 (58)
20(17, 24) n/a (59)2

10 n/a (60)
n/a 3.47(3.26, 3.67) (52)3

n/a 3.15(2.62, 3.71) (52)4

n/a 3.32(2.92, 4.04) (52)5

n/a [4, 14] (39)6

Mean 13.5 4.4
Variance 31.8 6.7

The symptomatic infectious period is the number of days an individual who develops COVID-19 symp-
toms exhibits viral shedding. For the symptomatic infectious period we assumed viral shedding was
synonymous with transmissibility. Quantities are listed as values, ranges or Median(95% CIs).

(1) This assumption is based on the finding that sputum viral loads showed a late and
high peak around days 10 to 11.

(2) In this finding, the median duration of viral shedding was 20 days with interquartile
range of (17, 24).

(3) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 10-23, 2020.

(4) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 24-February 3, 2020.

(5) This estimate corresponds to the best-fit model posterior estimates of key epidemio-
logical parameters for simulation during January 24-February 8, 2020.

(6) This interval corresponds to the range of a uniform distribution.

Table 6: Case Fatality Ratio

Parameter Dimension Reported Source
δ n/a 2.69% Computed with data from Dong et al. (61)

shown in Figure 7
Mean 0.026
Variance 0.094
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Figure 7: The case fatality ratio (δ) is computed as the number of deaths attributed to
COVID-19 divided by the number of reported cases on the same period. The mean case
fatality ratio from 188 countries as of August 2, 2020, is shown with a red asterisk on the
right panel, δ = 0.026 (61).
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15. H. Sjödin, A. Wilder-Smith, S. Osman, Z. Farooq, J. Rocklöv, Eurosurveillance 25,
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