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Abstract 

Infectious disease outbreaks are expected to grow exponentially in time, when left unchecked 
Measures such as lockdown and social distancing can drastically alter the growth dynamics of the 
outbreak. Indeed the 2019-2020 COVID-19 outbreak is characterized by a power law growth 1. 
Strikingly however, the power law exponent is different across countries 2. Here I illustrate the 
relationship between these two extreme scenarios, exponential and power law growth, based 
on the impact of superspreaders and lockdown strategies to contain the outbreak. The theory 
predicts an inverse relationship between the power law exponent and the speed of the lockdown 
that is validated by the observed COVID-19 data across different countries. 

 

Research from the late 90s and the 2000s uncovered 
the heterogeneity of social connectivity patterns, 
causing deviations from common expectations 3-6. 
Superspreaders are the manifestation of this 
heterogeneity in the contest of infectious disease 
outbreaks: most infected individuals infect a few 
other individuals (secondary cases), but a few 
infected superspreaders generate a large number of 
secondary cases 7. This was already observed in the 
2002-2004 severe acute respiratory syndrome (SARS) 
outbreak as well as the 2012 Middle East respiratory 
syndrome (MERS) outbreak, and it has recently been 
reported for the ongoing COVID-19 outbreak 8-10. 

In earlier work I investigated the influence of 
superspreaders on infectious disease outbreaks 11. 
These analyses showed that superspreaders can lead 
to a new type of infectious disease dynamics that is 
better described by a power law rather than the 
canonical exponential growth. To understand how 
that happens let us have a look at the two trees of 
disease transmission in Fig. 1A and B. In Fig. 1A most 
individuals transmit the disease approximately to the 
same number of other individuals, and the chain of 
transmissions extends in this manner over several 

generations. The dynamics of the number of new 
cases 𝑛(𝑡) at a given time t is in this case described 
by the exponential law 11 
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Here 𝑁' represents the number of patients zero. 
𝑁'=1 for the country where the outbreak originated, 
but it can be larger than 1 in countries where multiple 
infected cases arrive and start a new outbreak. 𝑅' is 
the average number of secondary cases generated by 
a patient zero, 𝑅 is the average number of secondary 
cases generated by infected individuals other than 
patient zero and 𝑅'𝑅*+, is the number of new cases 
at generation d of the outbreak. D is the final 
generation, when the outbreak ends due to natural 
extinction or interventions strategies. The remaining 
part of equation (1) translates generations into 
infection times. It is basically the time interval 
distribution of a chain of d disease transmission 
events, where T is the average time from being 
infected to disease transmission.  

When D is very large, equation (1) represents the 
Taylor expansion of the exponential  
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If 𝑅 > 1 then the outbreak grows exponentially over 
time, else if 𝑅 > 1 the outbreak decays 
exponentially. This is the canonical expectation of 
infectious disease dynamics. In this scenario the key 
quantity is the reproductive number R and 
interventions strategies are focused on bringing it 
below 1. 

However, there are a number of assumptions behind 
equation (2) that make it inadequate to model all 
infectious diseases outbreaks. First, we have just 
assumed that D is large, i.e. that the free spreading 
of the disease goes over several generations. That 
would typically be true for infectious diseases with 
mild symptoms such as the common cold, but it is not 
the case for COVID-19. The mortality and 
hospitalization rate of COVID-19 infections have led 
governments to impose strict lockdown measures. As 

a consequence, the tree of disease transmission is 
truncated after a few generations, as shown in Fig. 
1B. 

Second, the distinction between patient zero and the 
other infected individuals needs a deeper analysis. 
The disease spreading introduces a bias towards 
individuals with larger daily person-to-person 
proximity contacts. For example, if the disease is 
transmitted via the daily proximity patterns between 
individuals and each individual is in contact with 
others at a rate Λ=, then 12 
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where 𝐸() denotes the expectation based on the 
distribution of Λ=  in the population. If Λ=  exhibits 
small variations around its expected value then 𝑅 ≈
𝑅'. However, the existence of superspreaders tell us 
that there are a few individuals with very large Λ=. In 
reality 𝐸(ΛE) ≫ 𝐸(Λ)E 6, implying that 𝑅 ≫ 𝑅'. 

 
 

Figure 1. Causal tree of disease transmission of an infectious disease outbreak. A) Typical topology leading 
to an exponential growth. B) Typical topology leading to a power law growth. 
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When these two elements are taken into 
consideration, a small number of generations D and 
the existence of superspreaders, then equation (1) is 
better approximated by 11 
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In short, the number of infected cases from one 
generation to the next can increase so dramatically 
that the number of new daily infectious will be 
dominated by the time the individuals at the last 
layer get infected. The power law behaviour 
predicted by equation (4) is so different from the 
readily explainable exponential behaviour (2) that it 
has been neglected for 14 years. However, recent 
reports indicate that the COVID-19 outbreak is in fact 
better fitted by a power law growth rather than an 
exponential growth 1,2.  

Equation (4) makes a testable prediction, that the 
exponent of the power law growth, 𝑛(𝑡)~𝑡H, 
depends on D,  

(5) 𝛼 = 𝐷 − 1 

In the COVID-19 context, the number D of 
generations, or rounds of unhindered spread, in a 
population is determined the time between contact 
with patients zero and a lockdown measure imposed. 
Therefore D can be estimated as the number 
generations of disease transmission from patient 
zero to the implementation of lockdown,  

(6) 𝐷 ≈ 0LMNOPMQR+0STUV3	NXVY
-

 

where 𝑡Z[\]*[^_  is the time when the lockdown was 
implemented and 𝑡 =ab0	\cbd is the time when the first 
case was reported. T, as before, is the average time 

 
 

Figure 2. Relationship between the power law exponent and the day of first confirmed case. The points 
are based on observational data for the COVID-19 outbreak in the indicated countries. The line is the 
theoretical prediction. 
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from being infected to disease transmission. 
Combining equations (5) and (6) then yields 

(7) 𝛼 = 0LMNOPMQR+0STUV3	NXVY
-

− 1 

To test the equation above I collected data for the 
power law exponents 2 and the date of first 
confirmed case (World Health Organization, WHO) 
associated with the COVID-19 outbreak in several 
countries. Excluding China, there is a clear inverse 
correlation between the date the first confirmed 
case was reported and the estimated power law 
exponent (Fig. 2). To test equation (7), T was 
estimated as the COVID-19 incubation time, which is 
approximately 5 days 13. I have also assumed that 
most countries (China excluded) implemented 
lockdown measures around March 20th (79 days from 
Jan 1st) 14. Based on these parameter estimates we 
obtain the theoretical line predicted by equation (7), 
which is in very good agreement with the data in Fig. 
2. 

In conclusion, the power law dynamics of the COVID-
19 outbreak and the relationship between the power 
law exponent and the time interval between first 
case and lockdown, are a validation of the new 
power law of infectious disease spreading 11. Again 
this study also underscores the crucial importance of 
early lockdown timing in the control of an infectious 
disease in a population with superspreaders. 

 

Methods 

The mathematical formulation leading to equation 
(1) was reported in Ref.  11. 

The time of first confirmed case were retrieved from 
the WHO website at https://covid19.who.int/. 

The time of lockdown is reported in Ref 14 and 
available at https://www.politico.eu/article/europes-
coronavirus-lockdown-measures-compared/.  
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