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Abstract 

 

Background: With the development of next-generation sequencing technologies, it is possible to 

identify rare genetic variants that influence the risk of complex disorders. To date, whole exome 

sequencing (WES) strategies have shown that specific clusters of damaging rare variants in the 

TREM2, SORL1 and ABCA7 genes are associated with an increased risk of developing Alzheimer’s 

Disease (AD), reaching odds ratios comparable with the APOE-ε4 allele, the main common AD 

genetic risk factor. Here, we set out to identify additional AD-associated genes by an exome-wide 

investigation of the burden of rare damaging variants in the genomes of AD cases and cognitively 

healthy controls. 

Method: We integrated the data from 25,982 samples from the European ADES consortium and 

the American ADSP consortium. We developed new techniques to homogenize and analyze these 

data. Carriers of pathogenic variants in genes associated with Mendelian inheritance of dementia 

were excluded. After quality control, we used 12,652 AD cases and 8,693 controls for analysis. 

Genes were analyzed using a burden analysis, including both non-synonymous and loss-of-

function rare variants, the impact of which was prioritized using REVEL. 
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Result: We confirmed that carrying rare protein-damaging genetic variants in TREM2, SORL1 or 

ABCA7 is associated with increased AD-risk. Moreover, we found that carrying rare damaging 

variants in the microglial ATP8B4 gene was significantly associated with AD, and we found 

suggestive evidence that rare variants in ADAM10, ABCA1, ORC6, B3GNT4 and SRC genes 

associated with increased AD risk. High-impact variants in these genes were mostly extremely 

rare and enriched in AD patients with earlier ages at onset. Additionally, we identified two 

suggestive protective associations in CBX3 and PRSS3. We are currently replicating these 

associations in independent datasets. 

Conclusion: With our newly developed homogenization methods, we identified novel genetic 

determinants of AD which provide further evidence for a pivotal role of APP processing, lipid 

metabolism, and microglia and neuroinflammatory processes in AD pathophysiology. 

 

 

Introduction 

Alzheimer's disease is the leading cause of dementia and its impact will continue to grow due to 

the increase in life expectancy (1) Beyond rare autosomal dominant forms of early onset AD (less 

than 1% of all AD cases), the common complex form of AD has an estimated heritability of ~70% 

(2)  This heritability can be explained by the aggregated effect of many genes associated with AD 

risk. Deciphering this genetic component to the gene or even to the variant level offers a unique 

window of opportunity to (i) better define the aetiology underlying the disease; and (ii) to 

develop polygenic risk scores that may predict who will develop AD before clinical symptoms 

occur. Comprehensive knowledge of disease etiology is thus essential for the future development 

of treatment strategies, which will likely be most effective when administered to those with 

relevant genetic risk, before irreparable damage to brain cells has occurred. 

With such ambitious objectives, important efforts have been made to characterize the 

comprehensive genetic landscape of AD. With the advent of genome wide association studies 

(GWAS) based on DNA chips, numerous common genetic risk factors/loci have been associated 

with the risk of AD over the 10 last years (3, 4). However, our knowledge of the genetic 

component underlying AD is far from complete. While further efforts are underway to capture 

additional genetic information using GWASs, this approach is not really designed to efficiently 

capture the effect of rare (and even more singleton) variants on disease risk. However, rare 

variants are expected to explain at least part of the missing heritability of most complex diseases, 

including AD. 
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With the development of the next-generation sequencing technologies, it is possible to identify 

rare variants in genetic sequences. To date, whole exome sequencing (WES) strategies have 

shown that rare missense or loss-of-function variants in the TREM2, SORL1 and ABCA7 genes are 

associated with an increased risk of developing AD with a moderate to high effect (5-9). For the 

SORL1 gene, loss of function variants were associated with an increased risk of AD with an odds 

ratio in ranges that were not observed since the identification of the main AD genetic risk factor, 

the common APOE-ε4 allele (9-12). 

The detection of additional AD associated genes by investigating the differential burden of rare 

damaging variants between AD cases and controls requires very large sample sizes. Variants are 

often very rare such that many cases and controls are necessary to collect enough evidence for 

a statistically significant association. In addition, beyond issues of statistical power, WES analyses 

need to take into account common technical biases leading to strong batch effects that can have 

important impacts on the generated results with a risk to generate false positives or negatives. 

Furthermore, all genes have unique features, both functionally and genetically, and this is 

reflected by the diverse characteristics of variants that drive their association with AD. Using 

WES, unique variants may be observed in very few or only single carriers which requires alternate 

interpretation strategies compared to the classical GWAS analyses in which all measured variants 

are common. For these reasons, genome-wide comparisons of rare variants in AD cases and 

controls have likely not yet led to the identification of novel AD-associated genes beyond SORL1, 

ABCA7 and TREM2,(12) 

Here, to identify an association between the burden of rare coding variants at the gene level, we 

developed novel analysis methods to study the largest WES dataset available worldwide 

encompassing 21,345 samples (12,652 AD cases and 8,693 controls). This unique effort led to the 

identification of 11 genes associated with AD-risk, of which rare variants in eight genes were not 

previously significantly associated with AD genetic risk. Per gene, we report the effect sizes of the 

variant burden after a final refinement analysis that takes into account that a uniform exome-

wide analysis does not comply with gene-specific idiosyncrasies.  
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Methods 

Sample 

We analyzed the exome sequences of 25,982 individuals: sequence data from 15,088 individuals 

was collected as part of the Alzheimer Disease European Sequencing consortium (ADES) and 

sequence data from 11,365 individuals was obtained from the Alzheimer’s Disease Sequencing 

Project (ADSP) (12), see Table S1 for samples contributed per study. The total sample comprised 

14,658 AD cases and 10755 controls (569 were N/A). For sample description, see supplemental 

data. DNA samples were sequenced using a paired-end Illumina platform, whole exome 

sequences (WES) was generated using different exome capture kits (Table S2), a subset of the 

sample was sequenced using whole genome sequencing (WGS) (Figure S1, Table S2).  

 

Data processing, Quality control (QC) and genotype calling 

Raw sequencing data from all studies were collected on a single site and processed relative to 

the GRCh37 reference genome, using a uniform pipeline as described in detail in the 

supplementary methods. On the merged sample, we performed a sample QC (Figure 1a) after 

which 21,345 samples were available for analysis: 12,652 cases (4,060 EOAD, onset ≤ 65 years) 

and 8,693 controls. The variant QC was applied as described in Figure 1b; variant selection and 

annotation was performed as described in Figure 1c: The burden analysis was performed at the 

gene level based on protein-coding Ensembl transcripts with a ‘Gencode basic’ tag. Missense 

variants were annotated using REVEL (Rare Exome Variant Ensemble Learner) (13, 14) and LOF 

variants were annotated using LOFTEE (15). We selected variants that were estimated to have at 

least one carrier, and had a minor allele frequency (MAF) of <1%. We removed variants with 

>20% genotyping missingness or that did not pass a filter for differential missingness between 

the EOAD, LOAD and control groups (genotypes with a read depth <6 are considered missing, see 

supplement).  
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Gene burden test: Variant impact categories and thresholds 

Variants were divided in four deleteriousness categories: a LOF category, and 3 missense 

categories: REVEL ≥ 75, REVEL 50-75 and REVEL 25-50 (Figure 1c). Based on these, we constructed 

four deleteriousness thresholds in which we incrementally added variants with lower levels of 

variant predicted deleteriousness: first only LOF variants, then LOF variants + variants with a 

REVEL score ≥75, then LOF + REVEL≥50, and last LOF + REVEL≥25. This allows us to concentrate 

on the test which provides maximum evidence for a differential burden-signal. Multiple testing 

correction was performed across all performed tests (up to 4 per gene).  

 

Gene burden test: age-at-onset association 

Based on previous findings in SORL1, TREM2 and ABCA7 (16), we expect an enrichment of high 

impact rare risk variants in early onset cases relative to late onset cases. Therefore, we applied a 

test based on ordinal logistic regression, in which the genetic risk for AD is considered to increase 

in the sample categories: i.e. burdenEOAD > burdenLOAD > burdencontrol. This test is optimally suited 

for picking up differential variant loads between the sample categories, and can also detect 

regular case-control signals for which genetic risk is equally distributed across EOAD and LOAD 

cases (burdenEOAD ~ burdenLOAD > burdencontrol) as well as EOAD-specific signals (burdenEOAD > 

burdenLOAD ~ burdencontrol). We considered an additive model, while correcting for population 

covariates (see supplement). Genes were only tested if the cumulative minor allele count (cMAC) 

of predicted damaging variants was ≥10. Genes were considered suggestively associated with AD 

if the False Discovery Rate (FDR) (Benjamini-Hochberg procedure (17) as <20% (FDR<0.2). Genes 

were considered significantly associated with AD in our discovery sample when the corrected p 

was <0.05 after family-wise correction using the Holm-Bonferoni procedure (18).  

 

Gene burden test: Testing for an age-at-onset or a 

deleteriousness-category effect 

To test whether the burden of damaging variants increased (or decreased for protective variants) 

towards younger patients, an ordinal regression was performed using only cases (no controls). 

Cases were grouped in 4 age-at-onset bins: ≤65, (65-70], (70-80] and >80. A significant effect (FDR 

< 0.05) signaled that there was a difference in enrichment between young and older cases. To 

determine if there was a significant trend in effect sizes between the different deleteriousness 

categories (REVEL 25-50, 50-75, 75-100 and LOF), an ordinal logistic regression test was 
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performed with constrained beta’s |𝑏𝑅𝐸𝑉𝐸𝐿 25−50| ≤ |𝑏𝑅𝐸𝑉𝐸𝐿 50−75| ≤ |𝑏𝑅𝐸𝑉𝐸𝐿 75−100| ≤ |𝑏𝐿𝑂𝐹|, 

and compared to a H0-model with a single beta (see supplement).  

Carrier frequency and odds ratios 

A carrier of a set of variants was defined as a sample for which the summed dosage of those 

variants was ≥0.5. Carrier frequencies (CFs) were determined as #carriers / #samples. Effect sizes 

(odds ratios, ORs) of the ordinal logistic regression can be interpreted as weighted averages of 

the OR of being an AD case versus control, and the OR of being an early-onset AD case or not. 

Ordinal odds ratios were calculated for each test, as well as separately for the 4 variant categories 

REVEL 25-50, 50-75, 75-100 and LOF. Next to ordinal ORs, we estimated ‘standard’ ORs. This was 

done across all samples (case/control), as well as per age category (EOAD versus controls and 

LOAD versus controls), as well as for smaller age-at-onset categories: ≤65 (EOAD), (65-70], (70-

80] and >80 using multinomial logistic regression, while correcting for 6 PCA covariates.  

 

Sensitivity analysis 

A sensitivity analysis was performed to determine if effects were potentially due to age 

differences between cases and controls. We constructed an age-matched sample, by dividing 

samples in strata based on age/age-at-onset, with each stratum covering 2.5 years. Case/control 

ratios in all strata were kept between 0.1 and 10 by down sampling respectively controls or cases. 

Subsequently, samples were weighted using the propensity weighting within strata method 

proposed by Posner and Ash (19). Finally, a case-control logistic regression was performed both 

on the unweighted and weighted case-control labels, and estimated odds ratios and confidence 

intervals were compared.  

 

Variant-specific analysis 

We performed a variant-specific analysis of the genes considered as significantly or suggestively 

associated with AD, to detect gene-specific idiosyncrasies not covered by our uniform exome-

wide analysis. We checked for outlier variants among those that were included in the burden 

test, determining which ones had a significantly lower or opposite effect size (fisher exact test) 

compared to other included variants of the same category (missense or LOF). Furthermore, we 

determined which missense or potential LOF variants did associate with AD (logistic regression 

test, at least 15 carriers), irrespective of REVEL/LOFTEE or MAF thresholds. We performed 
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corrections for multiple testing per gene using FDR, reporting only variants with a threshold of 

FDR < 0.2 (Table S3). We manually removed and added these variants to the burden tests, in 

order to calculate, next to standard odds ratios, also refined odds ratios. 

Results 

 

Sample description: 

After sample QC (Figure 1a), 21,345 participants were included in the main analysis (12,652 

cases; 8,693 controls) (Table 1). AD cases were separated in EOAD cases with age at onset ≤ 65 

(n=4,060) and LOAD cases (N=8,592). All demographic data are available in Table S1. As expected, 

cases were more likely to carry at least one APOE ε4 allele: the fraction of homozygous APOE ε4 

carriers was 6.6% of the cases vs. 0.9% of the controls; fraction of heterozygous APOE ε4 carriers 

was 40.6% of the cases vs 18.4% of the controls (Table 1).  

 

Burden tests using different deleteriousness thresholds 

We detected a total of 13,522,252 variants in these individuals, and 7,674,898 variants passed 

quality control (Figure 1b). These variants were annotated according to four predicted 

deleteriousness categories based on LOFTEE score for LOF variants and the REVEL prediction 

score for missense variants. Finally, we selected 407,032 coding missense and loss of function 

(LOF) variants with MAF <1% based on criteria as described in the methods (Figure 1c). We used 

four deleteriousness thresholds by incrementally including variants with on lower levels of 

variant predicted deleteriousness: respectively LOF (n=56,565), LOF + REVEL≥75 (n=109,576), LOF 

+ REVEL≥50 (n=208,720), and LOF + REVEL≥25 (n=407,032). 

 

Among the 19,822 autosomal protein-coding genes considered in our annotation, we tested 

13,299 genes with at least 10 minor alleles (cumulative minor allele count or cMAC ≥ 10) 

appertaining to the LOF+REVEL≥25 variant threshold. For the remaining genes, the burden of 

variants per gene was considered too low (cMAC<10) to infer any dependable signal. 

For the LOF+REVEL≥50, the LOF+REVEL≥75 and the LOF-only thresholds, respectively 9,255, 5,781 

and 3,233 genes reached the minimum of having at least cMAC ≥10 to allow testing (Figure 2). In 

sum, 31,568 tests were performed across 13,299 genes. Of note, since we tested each gene for 
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having a differential variant burden in cases and controls for different deleteriousness thresholds, 

a single gene could theoretically be identified multiple times in the burden test.  

 

Identification of genes for which rare variant-burden associates 

with AD risk 

We performed 31,568 tests in our analysis, and the genetic inflation of our analysis model was 

𝝀=1.038 (Figure 3). Of all tests, 19 tests passed the FDR<0.2 threshold for having a suggestive 

differential variant burden in AD cases and controls (Table 2, Figure 3). These tests covered 11 

genes (in order of significance): SORL1, TREM2, ABCA7, ATP8B4, ADAM10, ABCA1, ORC6, CBX3, 

PRSS3, B3GNT4 and SRC. Of these, 6 tests (covering 4 genes) were significant when using a more 

conservative family-wise error rate correction for multiple testing (Holm-Bonferoni corrected 

p<0.05): SORL1, TREM2, ABCA7, and ATP8B4. 

The predicted deleteriousness and the number of identified rare variants varied per gene. We 

aimed to accommodate for this variability by using different deleteriousness predictions 

thresholds. Tests using the LOF+REVEL≥25 threshold provided the most evidence for an 

association between variant-burden and AD risk (i.e. lowest p value) for the TREM2, ABCA7, 

ATP8B4, ORC6, CBX3, PRSS3, B3GNT4 genes. Tests using the LOF+REVEL≥50 threshold provided 

the most evidence for SORL1, ABCA1 and SRC, and testing using the LOF+REVEL≥75 threshold 

provided the most evidence for an association for the ADAM10 gene (Table 2, Figure 3). The 

SORL1, ABCA7, ATP8B4, ADAM10, and ABCA1 genes were identified using multiple thresholds 

(light grey gene names in Figure 3). Most genes were associated with an increased burden in 

cases, but at the FDR<0.2 significance level we identified CBX3 and PRSS3 which exhibited a lower 

burden of LOF+REVEL≥25 variants in cases than in controls, indicating potential protective 

association (Table 2). 

 

Dependence of effect sizes on variant deleteriousness category 

Next, we investigated the effect on AD risk for variants from the four predicted variant 

deleteriousness categories. In our dataset all genes (except CBX3) included LOF variants. For 7 

genes, we identified at least 3 carriers with LOF variants (SORL1, TREM2, ABCA7, ATP8B4, 

ADAM10, ABCA1, ORC6). For 6 of these 7 genes, we observed that the LOF variant category had 

a higher ordinal OR point-estimate than the (missense) variant categories (p=0.06, binomial test) 

(Figure 4). Finally, when tested whether variant impact was ordered according to predicted 
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deleteriousness: LOF ≥ REVEL 75-100 ≥ REVEL 50-75 ≥ REVEL 25-50 using a trend test (see 

methods), this test was significant (FDR<0.05) for SORL1, ADAM10, and ABCA1.  

Relation between variant-burden and age at onset 

Subsequently, we investigated the relationship between age and variant-burden by testing if 

variant-burden in AD patients decreased with the age at onset categories ≤65 (EOAD), 65-70, 70-

80 and >80 (Figure 5). The median age at onset in the complete dataset was 73. For most of the 

identified genes, the burden of damaging variants was highest in younger cases, and decreased 

with increasing age at onset. The median age at onset of case carriers, was lowest in ORC6 (60y), 

followed by ADAM10 (62y), SRC (64y), B3GNT4 (66y), SORL1 (67y), ABCA1 (70y), TREM2 (70y), 

ABCA7 (70y) and was the highest in ATP8B4 (72y). Notably, while the median age at onset of 

missense variants in SORL1 was 68, it was lower for LOF variant carriers (60). In the ATP8B4, CBX3, 

and PRSS3 genes we observed no relationship between the variant burden and age at onset. Note 

that the variants in the latter two genes were associated with a protective effect, and therefore 

most carriers are controls.  

 

Carrier or variant frequency 

In line with the above, the fraction of variant carriers generally decreased with increasing age 

(Figure 5). However, a considerable fraction of older AD patients carries variants in the SORL1, 

TREM2, ABCA7, ATP8B4 and ABCA1 genes, suggesting that variants in these genes also contribute 

to an increased risk of late-onset AD. Of note, there were only a few carriers of damaging variants 

in the ADAM10, ORC6, B3GNT4 and SRC genes (respectively 13, 16, 29 and 27 carriers), such that 

impairment of these genes is likely to contribute to AD in only a few patients.  

A relatively large fraction of variants from the most significant variant threshold per gene were 

singletons, i.e. variants that were carried by only a single individual in our dataset (Figure 6a). 

There were 126 carriers of a singleton variant in SORL1 (43%), 9 in ADAM10 (69%), 105 in ABCA1 

(48%), 14 in ORC6 (88%), 17 in B3GNT4 (59%) and 10 in SRC (37%). However, the AD-association 

of the TREM2, ABCA7 and ATP8B4 genes was carried by more common variants: singletons were 

identified in only 8 carriers (3%), 167 carriers (13%) and 45 carriers (6%). Finally, in the protective 

genes we also found relatively low numbers of singletons: 0 in CBX3 (0%) as the association signal 

was driven by a single recurrent variant and 14 in PRSS3 (13%), indicating that their protective 

signal was effectuated by more common (but still rare) variants. We further tested if the effect 
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size trended to be higher for the rarer variants: a significant trend (FDR<0.05) was observed for 

SORL1 (p≤0.00004) and ABCA1 (p≤0.00004), and a suggestive trend in TREM2 (p=0.04) (Figure 6). 

 

Age-matched analysis 

To investigate whether the observed variant burden-effects were AD-specific, or whether they 

could also be explained by other age-related diseases, we performed a sensitivity analysis with 

strict age-matching. There was a strong agreement between the effect sizes when comparing 

age-matched case-control analysis and the case-control analysis unselected for age (Figure S3). 

The age-matched analysis supported for each gene a role in AD, but based on the confidence 

intervals for the effect of the SRC gene, we cannot exclude the possibility that observed effects 

might also be attributable to a non-AD age-related disease. We observed a slight reduction in the 

effect size in the age-matched analysis, as observed for SORL1 and TREM2. This was according to 

expectations, as mortality due to AD causes an additional age-related effect between young cases 

and old controls, which is removed by the age-matching.  

 

APOE-ε4 sensitivity analysis 

We did not correct our analysis for the common APOE genotype because this is not a confounder 

for the identification of a differential burden of rare variants between cases and controls. To 

investigate the validity of this assumption, we performed a sensitivity analysis in which we 

compared analysis corrected and uncorrected for carriership of the APOE-ε4 allele, which did not 

change our results (Figure S2).  

 

Gene specific analysis 

For our genome wide burden analysis variant selection criteria and thresholds were uniformly 

applied to all variants in each gene. Therefore, it was necessary to refine burden effects by 

correcting for variants with divergent effects compared to the variants in the burden (see 

Methods and Table S3). Gene-specific analyses are described for each gene in the Supplementary 

Material. This led to a refinement of the associations of SORL1, TREM2, ABCA7, and ABCA1 (Table 

1, Figure 7).  
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Carriers of multiple variants 

We finally measured the presence of multiple damaging variants in carriers. Of the cases, 

1,963/12,652 cases (15.5%) carried at least one damaging variant in at least one gene. Of these, 

101 cases carried damaging variants in two genes, and 1 case carried damaging variants in three 

genes. This was slightly lower than expected under a model in which damaging variants were 

randomly distributed across the cases (114.3 double and 3.4 triple carriers expected, ratio=0.86, 

p=0.082). In particular, we observed that there were significantly less carriers of damaging 

ATP8B4 variants that also carried a damaging variant in another gene (41 observed, 62.2 

expected, ratio=0.66, p=0.0028). Of the individuals who carried damaging variants in multiple 

genes, 48.0% were classified as EOAD, compared to 36.9% of the cases that carried only a single 

damaging variant (p=0.027, fisher-exact test).  

 

Discussion 

In our WES study we identified four genes in which carrying a rare deleterious variant associated 

with AD at exome-wide significance. Of these, we identified rare predicted damaging variants in 

the ATP8B4 gene as a novel AD risk factor, the other three genes were previously established AD 

risk factors, i.e. SORL1, TREM2 and ABCA7(7, 9, 20, 21). Additionally, we identified seven genes 

with suggestive evidence for an association with AD risk. Of these, the ADAM10 and ABCA1 genes 

were previously identified to be associated with AD-related mechanisms (22, 23), while for rare 

variants in the ORC6, CBX3, PRSS3, B3GNT4, and SRC genes we provide a first report for a 

suggestive association with AD risk. Almost all genes showed an increased variant burden in the 

younger cases, with the exception of the variants in CBX3 and PRSS3, which were associated with 

a protective effect. For several genes we observed trends that the rarest variants associated with 

the highest effect sizes. Also, a large fraction of the signal in SORL1, ADAM10, ABCA1, ORC6, 

B3GNT4 and SRC came from singleton variants, while in TREM2, ABCA7, ATP8B4 CBX3, and PRSS3 

the majority of the signal was carried by more common (but still rare) variants. Common 

missense variants (MAF > 1%), which occur in TREM2, SORL1 and ABCA7, had relatively small (or 

protective) effects compared to the effect size observed in the burden test. Investigation of gene-

functions indicated that most identified genes were associated with aspects of the Alzheimer 

Disease pathophysiology. 

 

Impaired SORL1 function (Sortilin Related Receptor 1) has been associated with increased Aβ 

production due to a disruption of APP processing (24, 25) and a decrease in the degradation of 
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intracellular nascent Aβ peptides by lysosomes (26). In the present dataset, we identified a total 

of 168 damaging variants in the SORL1 gene, carried by 291 individuals. The association with AD 

is mainly driven by variants which are individually extremely rare and mostly singletons. The 

burden of predicted damaging SORL1 variants was highest in EOAD cases and decreased with 

increasing AAO (9, 16, 27). We observed a relationship between the predicted variant 

deleteriousness level and the effect on AD risk: LOF variants associated with a 36-fold increased 

risk of EOAD and 7-fold increased risk of LOAD, while missense variants associated with a 2.7 and 

1.9-fold increase risk of EOAD and LOAD, respectively.  

 

TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) is involved in microglia-dependent 

pathophysiological processes in AD through Aβ phagocytosis and clearance and/or compaction 

in amyloid plaques (28, 29). In our dataset, we identified 17 damaging TREM2 variants carried by 

291 individuals. Although damaging TREM2 variants are rare, most variants were observed in 

several individuals, which is different from what is observed in, for example, SORL1. We found a 

clear relation with predicted variant deleteriousness and the association with AD: TREM2 LOF 

variants after refinement associated with a 10.8-fold increased risk of AD, while missense variants 

associated with a 3.5-fold increased AD risk.  

 

One of the functions of ABCA7 (ATP Binding Cassette Subfamily A Member 7) is to clear the blood 

brain barrier from Aβ (30). Impaired ABCA7 protein function was also associated with a faster 

APP endocytosis, an increased in vitro Aβ production, and an accelerated amyloid pathology 

accumulation in young transgenic mice (31-33). In our dataset, we found an AD-association of 

damaging variants in the ABCA7 gene based on 272 variants carried by 1,267 individuals. As many 

as ~7.5% of all AD cases with an AAO<70 years and 5% of all controls carried such an ABCA7 

variant. The association with AD is driven by damaging variants with different features: some are 

individually extremely rare or singletons, while others occur in several individuals. Both LOF and 

missense variants in the ABCA7 gene were associated with a ~1.4-1.8-fold increased AD risk, but 

the burden of damaging variants concentrated in younger AD patients. 

 

We identified a new signal in the ATP8B4 gene (ATPase Phospholipid Transporting 8B4) which 

encodes a member of the cation transport ATPase which is involved in phospholipid transport at 

the cell membrane.  ATP8B4 is expressed in macrophages/microglia in the brain and rare variants 

in this gene have been associated with the risk of developing systemic sclerosis, an autoimmune 

disease (34). Approximately 4% of the AD cases and 2.5% of the controls carried a rare, predicted 

deleterious variant in ATP8B4. The burden reaches exome wide significance based on 74 variants 
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carried by 767 individuals. The association with AD was mainly driven by 3 missense variants 

(G395S, C874R, and H987R), while the burden of highly rare variants (allele count < 5) did not 

associate with AD. In contrast to SORL1, TREM2 and ABCA7, the variant burden was not 

associated with AAO. A common variant in the ATP8B4 locus (rs6493386) was previously 

associated with both AD risk and LDL (35, 36). A signal in the proximity of the ATP8B4 locus was 

reported in a large GWAS meta-analysis, which was tagged to the neighboring SSP2L gene (4). It 

cannot be excluded that the SSP2L association with AD might be driven by ATP8B4 rather than 

by SSP2L. Our observations highlight potential implication of ATP8B4 in inflammation and may 

provide additional support for the importance of microglia/inflammation in the AD 

pathophysiology. 

 

α-secretase ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) plays 

a major role in APP metabolism (37). In our analysis, we identified only 11 damaging ADAM10 

variants in 12 carriers. With the rare occurrence of such variants only a very strong association 

with AD will enable the detection of an exome-wide significant signal, even in the current large 

sample. Indeed, we found  that damaging LOF variants and missense variants were suggestively 

associated with a 15-fold and 6-fold increased AD-risk, respectively. In addition, similar to the 

association signals identified in SORL1 and ABCA7 genes, these LOF and high-impact missense 

variants showed suggestive association with an increased risk of EOAD. Notably, LOF variants in 

ADAM10 were previously reported to be associated with an autosomal dominant inheritance of 

abnormal pigmentation of the skin (38), such that skin pigmentation might represent a clinical 

proxy for carrying a rare LOF variant in the ADAM10 gene. We could not retrospectively 

investigate skin pigmentation in our cohort. Common variants in ADAM10 were recently 

associated with AD risk in a GWAS meta-analysis (REF), which aligns with the independent AD-

associations with common variants and rare variant-burden also observed for SORL1, ABCA7, 

and, most likely, ATP8B4 . Previous reports identified the Q170H and the R181G variants in 

ADAM10 in LOAD families (39). While we did detect these variants in our sample, the single 

variant analysis indicated that these were not significantly associated with AD.  

The role of the ABCA1 transporter (ATP Binding Cassette Subfamily A Member 1) gene, has been 

assessed extensively (40). ABCA1 protein lipidates APOE in the CNS (41), and poor ABCA1-

dependent lipidation of APOE-containing lipoprotein particles may increase Aβ deposition and 

fibrillogenesis (42). Indeed, mice overexpressing ABCA1 in an AD-like mouse model had 

significantly less Aβ deposition (41). A rare deleterious missense variant (A937V) was previously 

proposed to be implicated in a LOAD family (43) and another rare deleterious missense variant 

(N1800H) was previously associated with AD risk (44). Based on 142 variants carried by 216 
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individuals, we found that the burden of rare variants in the ABCA1 gene was suggestively 

associated with increased risk of AD. This variant burden did not include the A937V and N1800H 

variants, which were previously associated with AD (43, 44), respectively due to differential 

missingness and a low REVEL score. We were able to manually include the N1800H variant in a 

post hoc analysis, which improved the association of ABCA1 from p=2.4e-5 to p=4.5e-7, crossing 

the conservative Bonferroni threshold. Damaging variants in ABCA1 associated with AD with a 

pattern similar as SORL1: early onset cases carried the highest fraction of predicted deleterious 

variants and a higher level of variant deleteriousness associated with a higher AD risk. While LOF 

variants in ABCA1 were suggestively associated with a relatively modest >4-fold increased early 

onset AD risk (i.e. compared to damaging variants in SORL1 or TREM2), the large number of 

damaging ABCA1-variants in our sample enabled the detection of the suggestive association.  

 

The protein encoded by ORC6 (Origin Recognition Complex Subunit 6) is part of a highly 

conserved six subunit protein complex essential for the initiation of the DNA replication in 

eukaryotic cells (45). It is expressed at a low level in neurons (46). We identified 15 rare damaging 

mutations in 16 individuals (14 of whom were cases), which were suggestively associated with a 

strong >9-fold increased risk for having early onset of AD, in a pattern resembling the AD-

association of damaging SORL1 variants. When this association replicates, further functional 

investigation is necessary to explain the involvement of the ORC6 protein in AD pathophysiology. 

 

The protein encoded by the B3GNT4 gene is a member of the beta-1,3-N-

acetylglucosaminyltransferase protein family. B3GNT4 was associated with serum urate and 

triglyceride concentration in GWAS (47, 48) which were both associated with increased risk for 

dementia and AD. While the protein is highly expressed in the brain (49), its function in the brain 

is not well explored. We identified 22 rare damaging mutations in 29 individuals, and the burden 

of damaging variants was highest in the early onset cases as evidenced by a suggestive >12-fold 

increased risk for early onset AD. The few variants identified included only one LOF variant, such 

that the number of variants was too low to infer a relation with variant-damagingness.  

 

The protein encoded by SRC (Proto-Oncogene, Non-Receptor Tyrosine Kinase) is a non-receptor 

protein tyrosine kinase that belongs to the same family as Pyk2, an AD genetic risk factor, and 

Fyn. Moreover, SRC is known to bind Pyk2, which is critical for Pyk2 activity (50) SRC is activated 

by many different classes of cellular receptors including immune response receptors, integrins 

and other adhesion receptors (51) The suggestive AD-risk increasing signal in SRC-variants was 

based on 15 damaging variants carried by 27 individuals, and the strongest association was found 
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in early onset cases (OR=6.6). SRC has been described to potentially modulate APP 

trafficking/metabolism (52), but also Tau phosphorylation (53). 

 

We identified a single variant in the CBX3 gene (Chromobox 3) that suggestively associated with 

a decreased AD risk, with an odds ratio of 0.2. The variant was carried by 30 individuals, mostly 

controls and several EOAD cases. The protein encoded by CBX3 binds DNA and is a component 

of heterochromatin (54). it is ubiquitously present and, in the brain, mainly expressed in neurons 

(46). Little is known about CBX3 functions in the brain and this protein has been described to 

maintain lineage specificity during neural differentiation (55), as well as promoting glioma cell 

proliferation (56). The CBX3 variant was previously identified to have a suggestive signal in an AD 

WES sequencing analysis (which included overlapping samples with this study)(12). 

 

Last, we identified a suggestive association between variants in the PRSS3 (Serine Protease 3) 

gene and two-fold decreased risk for AD (OR=0.5). We identified 21 variants in this gene carried 

by 111 individuals, of which 14 were singletons. This indicates that the majority of this protective 

signal was effectuated by more common (but still rare) variants. PRSS3 encodes a serine protease 

of the trypsin family which is mainly expressed in pancreas and in the neurons of the brain (46). 

The Kunitz inhibitor domain in APP has been reported to be a highly specific substrate of the 

PRSS3 protease (57), but the protective effect of these variants needs to be replicated and further 

explored in future studies. 

 

This comparison of between exomes from AD cases and controls represents one of the largest 

performed thus far, which allows the detection of differential burden of damaging variants in 

genes that were not yet associated with AD. Across all genes, a large part of the signal depended 

on singletons, indicating that high level of accuracy is warranted. We applied several approaches 

to maximize the statistical power and the accuracy of the discovery study. (i). We collected and 

merged raw WES data on one server which allowed us to uniformly apply a quality control 

pipeline. (ii) We designed custom algorithms that detected and removed the prevalent batch 

effects across all data simultaneously, which were highly prevalent due to the use of different 

WES kits and sequencing laboratories. (iii). We confirmed that the variants were not somatic by 

checking allele balance, indicating that the protective signal in PRSS3 and CBX3 was not a 

consequence of age-related clonal hematopoiesis (ARCH) in our controls (58), who were on 

average older than our cases. (iv). We were able to accommodate differential variant effects by 

performing burden analyses across four different levels of predicted variant deleteriousness. (v). 
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We took into consideration that cases with a higher age at onset may have a lower burden of 

damaging variants.  

Further, we performed several complementary analyses to explore additional potential biases. 

(vi). In an age-matched analysis we investigated whether burden associations with AD could also 

be due to a confounding factor such as age. This analysis supported a role in AD for all the eleven 

genes. (vii) A sensitivity analysis in which we compared our results when corrected and 

uncorrected for APOE-ε4 indicated that the observed associations between variant burden and 

AD risk are independent of APOE genotype. We could not explore possible synergistic or additive 

effects between carrying a damaging genetic variant in one of the identified genes and APOE 

genotype, because part of our sample was selected according to APOE genotype, which 

complicates such an analysis. Moreover, stratification by APOE genotype would reduce statistical 

power. 

 

In conclusion, our study provides further evidence for a pivotal role of APP processing, lipid 

metabolism, and microglia and neuroinflammatory processes in AD pathophysiology (59-61). Of 

the genes identified here, five belong to the Aβ network, either through Aβ production (APP 

processing) or through increased aggregation / decreased clearance. More specifically, the 

suggestive association of rare variants in ADAM10 with increased AD risk is in line with the 

important role of APP processing on top of the contribution of APP, PSEN1, PSEN2, SORL1 and 

ABCA7. Furthermore, next to the known AD-associations of variants in APOE, PLCG2, ABI3, ABCA7 

and TREM2, we find a suggestive association of rare variants in ABCA1 with AD risk, providing a 

novel genetic determinant with a role in Aβ aggregation and clearance. Moreover, with the 

identification of  ATP8B4 as a novel AD genetic risk factor, further strengthening the evidence for 

the involvement of microglia and neuroinflammation in AD. We acknowledge that the novel 

genetic associations we identified will require further investigation and replication in 

independent samples before they can be accepted as genuine AD genetic determinants. Notably, 

with this sample we were able to assess 13,299 genes of the total 19,822 autosomal protein-

coding genes and not all types of genetic variation. A larger sample size and the use of whole 

genome sequencing will allow the investigation of even more genes, which will require continued 

efforts in combining and jointly analyzing samples. 
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Table 1 

gene 

deleteriousness 

threshold p-value FDR 

#variants / 

#carriers 

carrier frequency odds ratio (95% CI) age at onset 

EOAD / LOAD / control case / control EOAD / control LOAD / control median (IQR) 

SORL1 LOF+REVEL≥50 1.80E-18 <<0.01% 168 / 291 2.66% / 1.45% / 0.67% 2.6 (2.1-3.3) 3.6 (2.7-4.9) 2.1 (1.5-2.8) 67 (60-74) 

LOF 9.00E-16  38 / 49 0.81% / 0.16% / 0.02% 16.4 (9.0-29.8) 36.1 (10.8-inf) 7.2 (2.0-50.9) 60 (56-68) 

REVEL 50-100 4.80E-10  130 / 245 1.92% / 1.29% / 0.64% 2.2 (1.7-2.8) 2.7 (2.0-3.8) 1.9 (1.4-2.6) 68 (60-75) 

REVEL 50-100 [refined] 6.20E-12  129 / 261 2.02% / 1.44% / 0.63% 2.5 (1.9-3.2) 3.0 (2.1-4.1) 2.2 (1.6-3.0) 68 (60-75) 

TREM2 LOF+REVEL≥25 2.80E-16 <<0.01% 17 / 291 2.12% / 1.83% / 0.55% 3.6 (2.8-4.6) 4.2 (2.9-6.0) 3.4 (2.4-4.7) 70 (63-76) 

LOF 7.60E-03  9 / 39 0.25% / 0.26% / 0.08% 3.3 (1.7-6.5) 3.4 (1.3-9.0) 3.3 (1.4-7.7) 72 (63-76) 

LOF [refined] 4.70E-03  8 / 21 0.20% / 0.14% / 0.01% 10.8 (4.4-26.9) 14.2 (3.3-460.5) 9.4 (2.6-320.4) 70 (63-75) 

REVEL 25-100 8.90E-15  8 / 253 1.87% / 1.58% / 0.47% 3.7 (2.8-4.8) 4.3 (2.9-6.4) 3.4 (2.4-4.9) 69 (63-76) 

REVEL 25-100 [refined] 9.00E-20  10 / 336 2.56% / 2.04% / 0.66% 3.5 (2.8-4.4) 4.4 (3.1-6.1) 3.2 (2.3-4.3) 69 (63-76) 

ABCA7 LOF+REVEL≥25 8.80E-08 0.06% 272 / 1267 7.41% / 6.15% / 5.04% 1.3 (1.2-1.5) 1.5 (1.3-1.7) 1.3 (1.1-1.4) 70 (62-78) 

LOF 1.50E-03  47 / 107 0.81% / 0.54% / 0.32% 1.8 (1.2-2.6) 2.2 (1.4-3.7) 1.5 (1.0-2.4) 69 (60-74) 

REVEL 25-100 4.20E-06  225 / 1162 6.60% / 5.62% / 4.73% 1.3 (1.2-1.5) 1.4 (1.2-1.7) 1.2 (1.1-1.4) 70 (62-79) 

REVEL 25-100 [refined] 4.10E-08  223 / 983 5.91% / 4.91% / 3.69% 1.4 (1.3-1.6) 1.6 (1.4-1.9) 1.3 (1.2-1.6) 70 (62-78) 

ATP8B4 LOF+REVEL≥25 4.60E-07 0.24% 74 / 767 4.43% / 4.12% / 2.68% 1.5 (1.3-1.8) 1.6 (1.3-1.9) 1.5 (1.3-1.8) 72 (62-79) 

LOF 2.10E-01  13 / 34 0.25% / 0.16% / 0.12% 1.5 (0.7-3.1) 1.8 (0.7-4.4) 1.4 (0.6-3.1) 73 (59-78) 

REVEL 25-100 1.10E-06  61 / 733 4.19% / 3.96% / 2.57% 1.5 (1.3-1.8) 1.6 (1.3-1.9) 1.5 (1.3-1.8) 72 (63-79) 

ADAM10 LOF+REVEL≥75 2.70E-06 1% 11 / 12 0.25% / 0.01% / 0.01% 7.3 (1.3-46.0) 19.8 (4.3-inf) 1.1 (0.0-32.2) 62 (59-64) 

LOF 2.40E-04  9 / 9 0.17% / 0.01% / 0.01% 5.4 (1.6-17.9) 13.4 (2.9-inf) 1.1 (0.0-28.7) 63 (59-64) 

REVEL 75-100 0.0016  2 / 3 0.07% / 0.00% / 0.00% -- -- -- -- 

ABCA1 LOF+REVEL≥50 2.50E-05 6.5% 142 / 216 1.55% / 1.05% / 0.72% 1.7 (1.3-2.3) 2.3 (1.6-3.2) 1.5 (1.1-2.1) 70 (59-76) 

LOF 5.70E-03  21 / 31 0.22% / 0.15% / 0.10% 3.2 (1.5-6.8) 4.2 (1.5-12.0) 2.7 (1.0-7.3) 70 (59-77) 

LOF [refined] 2.50E-03  20 / 24 0.22% / 0.14% / 0.03% 4.9 (2.1-11.4) 6.9 (1.8-25.9) 4.0 (1.1-14.4) 68 (59-77) 

REVEL 50-100 6.20E-04  121 / 185 1.33% / 0.90% / 0.62% 1.6 (1.2-2.2) 2.0 (1.4-3.0) 1.4 (1.0-2.0) 69 (59-76) 

REVEL 50--100 [refined] 1.20E-06  122 / 230 1.70% / 1.23% / 0.63% 2.1 (1.6-2.7) 2.5 (1.7-3.5) 1.9 (1.3-2.6) 68 (58-76) 

ORC6 LOF+REVEL≥25 5.60E-05 12% 15 / 16 0.27% / 0.03% / 0.02% 4.1 (1.3-24.7) 9.4 (3.1-84.2) 1.3 (0.2-12.9) 60 (59-65) 

LOF 5.10E-02  4 / 4 0.07% / 0.00% / 0.01% -- -- -- -- 

REVEL 25-100 0.00042  11 / 12 0.20% / 0.03% / 0.01% 6.4 (1.9-21.3) 13.3 (3.1-inf) 2.7 (0.4-82.7) 61 (59-67) 

CBX3 LOF+REVEL≥25 6.00E-05 12% 1 / 30 0.12% / 0.02% / 0.26% 0.2 (0.1-0.3) 0.3 (0.1-0.9) 0.1 (0.0-0.3) -- 

PRSS3 LOF+REVEL≥25 7.60E-05 14% 21 / 111 0.27% / 0.43% / 0.72% 0.5 (0.3-0.7) 0.3 (0.2-0.7) 0.6 (0.4-0.9) -- 

B3GNT4 LOF+REVEL≥25 9.50E-05 16% 22 / 29 0.32% / 0.16% / 0.02% 8.1 (2.4-32.1) 12.6 (4.0-97.8) 6.0 (2.1-53.3) 66 (60-74) 

SRC LOF+REVEL≥50 1.10E-04 18% 15 / 27 0.32% / 0.10% / 0.06% 3.3 (1.5-7.4) 6.6 (2.3-18.8) 1.9 (0.6-5.8) 64 (58-73) 
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Results from the discovery analysis. Per gene, results are shown for the most significant 

deleteriousness threshold, and separately for LOF variants and missense variants (except for 

CBX3, PRSS3, B3GNT4, SRC which have ≤1 LOF variant carrier). A carrier is an individual with at 

least one or more minor alleles. Carrier frequency is the percentage of people that carry one or 

more variants. Tests were performed at the gene level, putatively gathering several transcripts 

of a same gene. 
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Figure 1 

  

 

A) Sample QC We removed (1) samples with very low read coverage, (2) samples with excessive 

contamination, (3) samples for which the gender-annotation did not fit with the sex-

chromosomal profile, (4) samples that were non-Caucasian, (5,6) samples with an excess of novel 

SNPs or indels, (7) samples that deviated in heterozygous/homozygous or transition/transversion 

ratios, (8) closely related samples (IBD), and (9) samples that were on PCR-plates that were 
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enriched for gender-annotation mismatches, (10) removal of samples that carried variants 

classified as pathogenic or likely pathogenic in Mendelian dementia genes (see supplemental 

data). (11) samples with a mismatch between Braak stage and AD label (AD case with Braak stage 

<= 1 or a control with Braak stage >= 5) or were not annotated as an AD case or control.  

B) Variant QC, Multi-allelic SNPs were split into bi-allelic variants. (1) Variants that were in close 

vicinity, in cis and always occurred together, were merged into single events. (2) We designed a 

custom tool (see supplement to remove G>T and C>A variants, caused by the oxygenation of G 

bases (62). (3) Exclusion of variants in simple tandem repeat (STR) regions and low complexity 

regions (LCR). (4) Exclusion of variants that deviated in allele read balance (<0.25 or >0.75 for 

heterozygous calls and <0.9 for homozygous calls. (5) Exclusion of variants for which 

heterozygous calls had <20% of the coverage of reference calls. (6) Exclusion of variants that 

deviated from Hardy-Weinberg equilibrium in controls (p < 5 * 10e-8). (7) Exclusion of variants 

that failed VQSR (>99.5% tranche for SNPs, >99% tranche for indels). (8) Exclusion of variants that 

still presented batch effects that were not explainable by population structure or phenotype 

effects using a custom tool (see supplement). C) Variant selection. (1) variants in autosomal 

protein-coding genes that were annotated by VEP (version 94.5)(63), (2) selection of variants that 

directly affected the protein (missense or LOF annotation). (3) Missense variants with a REVEL 

score (Rare Exome Variant Ensemble Learner) (13) and LOF variants were annotated using 

LOFTEE (15). Selection of missense variants with a score ≥ 25 (score range 0 - 100). and LOF 

variants with a LOFTEE ‘high-confidence’ flag, and a VEP ‘high impact’ flag. (4) Selection of 

variants that were estimated to have at least one carrier, and had a minor allele frequency (MAF) 

of <1%. (5) Selection of variants with <20% genotyping missingness (genotypes with a read depth 

< 6 are considered missing) that passed a filter for differential missingness between the EOAD, 

LOAD and control groups. Variants were divided in 4 deleteriousness categories.  

 

In colors the deleteriousness categories (translucent) used to construct the deleteriousness 

thresholds (opaque). Four different deleteriousness thresholds were used to perform burden 

tests. Of the missense variants, 572 were also classified as LOF variants and assigned to the LOF 

category.  
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Figure 2  

 

The number of genes tested per variant threshold. Only autosomal genes with a cumulative 

Minor Allele Count (cMAC) ≥10 were tested. 
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Figure 3  

 
Quantile-quantile plot of observed p-values versus expected p-values in the absence of signal 

(log10 scale). In total, results of 31,568 different tests are shown, which were performed for 

13,299 genes. For each gene, the most significant test is shown opaque, tests for which the 

signal was less significant were shown translucent. Multiple testing correction thresholds are 

shown for suggestive and conservative thresholds. Color indicates if burden is enriched in cases 

(‘Damaging’) or controls (‘Protective’). 
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Figure 4  

 
a) Odds ratios (ordinal test) per variant category. Significance is indicated if a trend in odds 

ratios was observed (i.e. a larger effect in the high deleteriousness categories and lower effect 

in lower deleteriousness categories). For missense variants, deleteriousness categories were 

merged when one category for REVEL (not LOF) categories if they had < 5 carriers; this was 

done, both for the visualization and the tests. When there were multiple neighboring 

deleteriousness categories to merge with, we merged with the smallest (in terms of carriers). 

Odds ratios for deleteriousness categories with 0 carriers and odds ratios with 0-inf confidence 

intervals are not shown. Categories with dashed confidence interval lines were not included in 

the most significant variant category. *: FDR < 0.05, **: FDR < 0.01, ***: FDR < 0.001. b) Age at 

onset per deleteriousness category and 95% CI. When the number of carrier cases per 

deleteriousness category was <10 carriers, the age at onset of these carriers was shown as 

individual dots. 
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Figure 5  

 
a) Carrier frequency by age at onset. Carriers have a cumulative dosage >0.5 b) Odds ratio by 

age. Odds ratios are calculated by multinomial logistic regression. Results are shown for 

variants in the most significant deleteriousness threshold (indicated below the gene names). 

The significance symbols indicate if there is a trend towards higher enrichment in younger 

patients (see methods). *: FDR < 0.05, **: FDR < 0.01, ***: FDR < 0.001. 
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Figure 6  

 

a) Cumulative minor allele count by variant frequency For each gene, the number of variants 

(minor alleles) detected in cases and controls in the predicted damagingness levels threshold 

associated with the most significant association with AD (indicated at the top). Variants were 

binned according to “allele count”, the occurrence of each unique variant in the sample (from 

extremely rare singletons to more common variants with more than 10 carriers). The number 

above each bar is the number of unique variants in the bin. b) Odds ratio by variant frequency. 

For the same variants and bins as in A), the odds ratio of the AD association and its confidence 

interval is shown. Odds ratios are not shown for bins with less than 5 carriers.  
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Figure 7 

 
Odds ratios (logistic test) for LOF and missense variants after refinement analysis. Case/control 

(+95%CI), as well as EOAD- and LOAD-specific odds ratios are shown for variant categories with 

≥5 carriers.  
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