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Abstract

�e unexpected e�ects of medications has led to more than 14 million drug adverse events reported
to the Food and Drug Administration (FDA) over the past 10 years in the United States alone, with a li�le
over 1.3 million of them linked to death, and represents a medical and �nancial burden on our healthcare.
Laboratory tests have the potential to capture inter-individual variability in drug responses, but a
signi�cant portion of the patient population has unique treatment pathways that impedes forecasting
and optimal decision making.

Generative Adversarial Networks (GANs) are �exible implicit generative models that have demon-
strated their ability to capture complex correlations in �eld like computer vision and natural language.
�eir latent representation capacity is an opportunity for drug e�ect simulation on laboratory test
trajectories. In this paper, we developed and evaluated conditional GANs on glucose laboratory tests in
patients exposed to drug combinations and showed a proof of concept for these models in the simulation
of unseen drug combinations. By using conditional Wasserstein GANs (WGANs) to simulate drug e�ects
in laboratory tests, we hope to pave the way for novel clinical decision support (CDM) systems and
enable the development of be�er predictive models for rare cohorts of patients.

1 Introduction

Drug e�ects can be unpredictable.
Each novel therapeutics submi�ed for approval to the Food and Drug Administration (FDA) needs to be

safe and e�ective for its intended use. However, FDA approval does not guarantee safety and e�ectiveness
for all patients. In fact, the response rates of patients to most major drugs fall in the 50 to 75% range.[57]
�is is due to the variability in treatment response among patients, known as inter-patient variability,
caused by factors such as the environment, genetics, polypharmacy or comorbidities [58, 17, 68]. �e
consequences for drug safety are more concerning: out of 222 novel therapeutics approved by the FDA
between 2001 and 2010, 71 (32%) were �agged with post-market safety events, including 61 incremental
boxed warnings for 43 of these therapeutics [18]. Between 2008 and 2017, the FDA approved 321 novel
drugs. Over the same period of time, the FDA Adverse Event Reporting System (FAERS) recorded more
than 10 million AE reports, among which 5.8 million were serious adverse drug reactions (SADRs), and 1.1
million were AEs related to death. AEs burden our health system causing 2 million hospital stays each year
and lengthening visits by 1.7 to 4.6 days[2]. �e economic, social, and health burden of these events make
pharmacovigilance an essential and pressing public health concern.

�e solution is to pick the right treatment for the right patient using all the resources available. While
clinical trials try to ascertain that a drug is safe and e�ective for its intended use before its marketing,
pharmacovigilance centers monitor AE reports and aim at ensuring that a drug’s safety information
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is up to date. However, neither of these processes are error proof. On one hand, clinical trials have
focused on designing drugs for the average patient[60] even at a time when there are increasing calls
for precision medicine to enable the ”right drug at the right dose to the right patient”[14]. On the other
hand, spontaneous reporting systems are known to su�er from biases such as under-reporting which is
especially troublesome for rare events and drug-drug interactions (DDIs)[39]. �erefore it is only by using
post-marketing observational data that we can uncover o�-label uses, treatment pa�erns, patient speci�c
variability in responses, and rare ADRs [28, 51, 52, 53, 54, 55].

Unfortunately, a large number of patients have unique treatment trajectories that makes their outcomes
hard to predict. In a large-scale EHR study, Hirpcsak et al. [29] showed that many patients have unique
treatment pathways. �ey analyzed 11 EHR data sources that had adopted the Observational Health Data
Sciences and Informatics (OHDSI) common data model (CDM), in four di�erent countries and including
250 million patient records. By enumerating 3-year treatment pathways, they found that 10% of patients
with type 2 diabetes, 11% of patients with depression, and 24% of patients with hypertension could not
compare their treatment pathway with anyone else in this quarter billion population of diverse individuals.

�erefore, there is a need to go beyond patient matching and classic supervised machine learning
models that su�er from unbalanced training classes or the sample size of population with rare events.
We need methods to interpolate sets of conditional information unseen – or very rare – in the dataset of
interest, to support decision making and biomedical predictive models.

With the development of novel deep learning methods such as generative adversarial networks (GANs),
there is an opportunity to learn how to augment existing clinical datasets with realistic synthetic data and
increase predictive performances. Moreover, GANs have the potential to simulate e�ects of individual
covariates such as drug exposures by leveraging the properties of implicit generative models. Instead of
modeling every covariate and confounding variable, conditional GANs can learn how to match auxiliary
clinical information to conditionally learned distributions from which they can be stochastically sampled.
Although the amount of information these models can retain naturally cannot exceed the information
available in the input data, conditional models appear to disentangle information from other sample classes,
and other combinations of auxiliary information to infer conditional distributions unseen at training time.

In this paper, our contributions are two-fold:
1. we developed and evaluated deep implicit generative models to learn distributions of laboratory test

time series using two versions of the WGAN: the WGAN with gradient penalty (WGAN-GP) [26],
and the WGAN with Lipschitz penalty (WGAN-LP) [44];

2. we studied the use of conditional generative adversarial networks (GANs) to model laboratory test
time series and demonstrate how these models can be used for the simulation of drug e�ects.

We provided two applications as proof of concepts of these proposed models. �e �rst is to illustrate
the latent representation power of these conditional GAN by showing that we can infer laboratory test
time series associated with drug exposure combinations unseen at training. �e second is its direction
consequence: the data augmentation of rare events to improve their predictability. We conducted the
targeted augmentation of the 10 rarest drug combinations occurring during glucose lab test trajectories and
we were able to improve forecasting on seven of them by adding synthetic samples to real samples during
training of predictive models. �ese are evidence that these methods should be explored further.

2 Methods

2.1 Data selection

All the data come from Columbia University Irving Medical Center/New York Presbyterian Hospital
(CUIMC/NYPH) transformed for the Observational Medical Outcomes Partnership (OMOP) common data
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model (CDM) v5, including inpatient and outpatient records. CUIMC/NYPH is an academic medical center
with over 1000 inpatient beds serving both adult and pediatric populations. �e laboratories receive on
average over 10,000 samples a day. Over 550 di�erent assays are performed on-site in several laboratories,
including Core (Hematology and Chemistry), Microbiology, Molecular Diagnosis, Immunogenetics, Cytoge-
netics, and several Specialty Laboratories and Satellite Laboratories. Over 15 million assays are performed
annually in-house. Due to the complexity of the cases treated at our hospital, over 200,000 assays and
panels are sent to over 60 di�erent outside reference laboratories every year.[33]

As of 2019, we worked with a structured database of 6.38 million patients that counts:

• 78.95 million drug orders, representing 40.76 million single ingredient exposures, for 1.41 million
patients,

• 140.30 million diagnosis codes for 5.40 million patients,

• 64.38 million procedure codes for 3.58 million patients,

• 810.68 million measurements (i.e., laboratory tests and vitals) for 2.29 million patients.

We considered inpatient visits as a unit of analysis, with about 38.49 million visit occurrences recorded
in our research database. We mapped each visit to the measurements performed throughout its duration.
Each laboratory test time series (LTTS) was therefore a time series of value from a given laboratory test or
vital, for a given patient, during a unique visit. Limiting these time series to a visit versus considering time
series for the whole patient medical history enabled us to have more reasonable time intervals and account
for clinical events that are more relevant to the time series at hand. �e general statistics of unique time
series length available during these visits are displayed in table 1. �at table has 3 main take aways: (1)
vitals (i.e., respiratory rate, heart rate, blood pressure…) are the most abundant measurements available
but do not represent measurements with the most time series. (2) the most abundant time series are for
laboratory tests that belong to the routine blood panels; (3) extreme values show that we are dealing with
data that can present errors when entered in the EHR or exported for research purpose, and quality control
is required.

We will now focus on the data speci�c to each modality: regularly sampled laboratory tests for the
regular WGAN as a baseline, and irregularly sampled laboratory tests with drug exposures for the conditional
WGAN.

2.1.1 Regularly sampled time series

We restricted the sample set of laboratory test time series (LTTS) to the ones that have a regular sampling
for the experiments with a non-conditional GAN. When multiple measurements were available the same
day, we averaged them. We explored the amount of data available in function of the wanted length of time
series (i.e., 5, 10 or 15 values) and the regular or irregular nature of sampling (Figure 1). We selected a
time windows of 10 days which provided a good balance of number of features available for modeling and
amount of samples. We observed that the longer the time series, the smaller the sample size, in particular
for the most abundance measurements. When a given visit has multiple time series candidates available,
we took the earliest for consistency.

�e regularly sampled laboratory test time series restricted to a 10-day length are characterized in table
2. We computed the average dispersion (i.e., the ratio of the standard deviation by the mean of each time
series) for all laboratory tests to get a sense of the relative variance of each measurement type. We selected
glucose lab (LOINC 2345-7) as the main measurement to be modeled throughout this paper, for its high
dispersion, satisfactory number of samples available, and link to various physiological processes.
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LOINC Laboratory Name # time series Dispersion (Std)

2951-2 Sodium serum/plasma 85,626 0.032 (± 0.050)
2075-0 Chloride serum/plasma 85,614 0.043 (± 0.048)
3094-0 Urea nitrogen serum/plasma 85,600 0.273 (± 0.152)
2160-0 Creatinine serum/plasma 85,586 0.183 (± 0.133)
2345-7 Glucose lab 85,555 0.243 (± 0.141)
2823-3 Potassium serum/plasma 85,441 0.097 (± 0.053)
20570-8 Hematocrit 84,056 0.092 (± 0.049)
718-7 Hemoglobin 83,922 0.092 (± 0.048)
789-8 Erythrocytes [#/volume] in Blood 82,909 0.090 (± 0.048)
785-6 Erythrocyte mean corpuscular hemoglobin [Entitic mass] 82,892 0.019 (± 0.033)
787-2 Erythrocyte mean corpuscular volume [Entitic volume] 82,880 0.020 (± 0.027)
786-4 Erythrocyte mean corpuscular hemoglobin concentration [Mass/volume] 82,867 0.023 (± 0.029)
6690-2 Leukocytes [#/volume] in Blood 82,729 0.266 (± 0.187)
788-0 Erythrocyte distribution width [Ratio] 82,495 0.045 (± 0.093)
26515-7 Platelet count 82,352 0.247 (± 0.167)
17861-6 Calcium serum/plasma serum/plasma 80,667 0.053 (± 0.034)
28542-9 Platelet mean volume [Entitic volume] in Blood 77,582 0.102 (± 0.289)
2339-0 Glucose [Mass/volume] in Blood 62,774 0.192 (± 0.088)
8310-5 Body temperature 62,766 0.053 (± 0.065)
19048-8 Nucleated erythrocytes/100 leukocytes [Ratio] in Blood 62,231 0.931 (± 1.112)

Table 2: Summary statistics for top-20 laboratory tests when �ltering for contiguous time series of length
days=10. �e laboratory test selected for modeling is highlighted in bold.

Before training models on these time series, we proceeded to a quality control step for all laboratory
test to remove values outside of the 1-99 percentile range and remove extreme outliers or spurious values
that could arise at the various steps of data collection and mapping. A time series with such values would
be removed from the dataset.

We also computed the distribution of measurements for glucose lab in �gure 2, a boxenplot to visualize
the mean and percentiles in �gure 3, along with a density heatmap of time series represented by their
standard deviation and mean in �gure 4.

2.1.2 Irregularly sampled time series

For the conditional model, we li�ed the constrain on regularity of the time series, to have a more realistic
model. We used a forecasting task described in the Supplementary Material to evaluate if time information
was relevant. Since time intervals were hurting the prediction of irregular time series, compared to models
on regular time series with no time information, we focused on drug exposures as the sole auxiliary data
type.

We selected time series of 10 values that can be spaced by more than one day, producing a set of
irregularly sampled time series but with an constant number of measurements. In table 3 we can observe
that relaxing the time interval constraints yields higher sample sizes.

A�er quality control, we summarized the among of time series le� to train the models, along with
their associated demographics in table 4. Figures 5,6 and 7 represent the distribution of measurements,
boxenplot, and density heatmaps of the glucose lab irregular time series.

2.1.3 Drug exposure information

�e drug exposure information were used in the conditional WGAN as auxiliary information, to be able to
later simulate time series based on real or hand-picked drug exposure conditional vectors. For each time
series, we collected the drugs at the ingredient level (i.e., referenced by RxNorm) that had a drug era overlap
with the measurements.
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LOINC Laboratory Name # time series Dispersion (Std) Time interval (Std)

20570-8 Hematocrit 120,205 0.093 (± 0.051) 1.271 (± 2.821)
718-7 Hemoglobin 120,107 0.093 (± 0.051) 1.271 (± 2.816)
789-8 Erythrocytes [#/volume] in Blood by Automated count 119,278 0.091 (± 0.050) 1.276 (± 2.839)
785-6 Erythrocyte mean corpuscular hemoglobin [Entitic mass] 119,261 0.021 (± 0.037) 1.276 (± 2.838)
787-2 Erythrocyte mean corpuscular volume [Entitic volume] 119,254 0.022 (± 0.031) 1.276 (± 2.839)
786-4 Erythrocyte mean corpuscular hemoglobin concentration [Mass/volume] 119,251 0.023 (± 0.031) 1.276 (± 2.838)
6690-2 Leukocytes [#/volume] in Blood 119,243 0.264 (± 0.175) 1.277 (± 2.839)
788-0 Erythrocyte distribution width [Ratio] 119,007 0.047 (± 0.094) 1.278 (± 2.842)
26515-7 Platelet count 118,848 0.244 (± 0.165) 1.278 (± 2.845)
28542-9 Platelet mean volume [Entitic volume] in Blood 114,687 0.096 (± 0.266) 1.309 (± 2.892)
3094-0 Urea nitrogen serum/plasma 114,337 0.283 (± 0.156) 1.190 (± 2.400)
2160-0 Creatinine serum/plasma 114,329 0.184 (± 0.131) 1.190 (± 2.406)
2951-2 Sodium serum/plasma 114,324 0.031 (± 0.050) 1.190 (± 2.430)
2075-0 Chloride serum/plasma 114,303 0.042 (± 0.048) 1.190 (± 2.435)
2345-7 Glucose lab 114,248 0.248 (± 0.145) 1.188 (± 2.432)
2823-3 Potassium serum/plasma 114,144 0.100 (± 0.056) 1.190 (± 2.437)
17861-6 Calcium serum/plasma serum/plasma 107,956 0.054 (± 0.034) 1.194 (± 2.360)
19048-8 Nucleated erythrocytes/100 leukocytes [Ratio] in Blood 84,787 0.917 (± 1.114) 1.233 (± 3.034)
30392-5 Nucleated erythrocytes [#/volume] in Blood 83,879 0.711 (± 1.059) 1.233 (± 2.717)
19123-9 Magnesium [Mass/volume] in Serum or Plasma 81,994 0.107 (± 0.061) 1.242 (± 1.569)

Table 3: Summary statistics for top-20 irregularly sampled laboratory tests when �ltering for total length=10.
�e top-5 laboratory tests with the highest dispersion index are highlighted.

Drug eras were de�ned at the ingredient level using the de�nition of the OMOP CDM: they are
extrapolated from drug exposures with a persistence window of 30 days, meaning that prescriptions with a
gap lesser or equal to 30 days belong to the same drug era (Figure 9).

�e Anatomical �erapeutic Chemical (ATC) classi�cation system [1] is a hierarchical terminology con-
trolled by the World Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC)
to group drugs (Table 5). We mapped these RxNorm codes to their ATC counterparts. �is RxNorm to ATC
mapping is one-to-many, but it presents the advantage of enabling hierarchical grouping.

ATC categories represent di�erent granularity levels: therapeutic subgroups (second level), therapeu-
tic/pharmacological subgroup (third level), and chemical/therapeutic/pharmacological subgroup (fourth
level), a granularity that resembles the most drug classes. We focused on the third (ATC-3), fourth (ATC-4)
and ��h level (ATC-5, ingredient level similar to RxNorm).

For each of the four representations, we performed a two-sample Kolmogorov-Smirnov test to assess
how di�erent the distributions of the means of the laboratory test time series (LTTS) were between the
exposed and non-exposed groups. We ranked them by p-value, adjusted for multiple hypothesis testing
since we re-used samples between the di�erent tests, and KS statistics. �e drug exposure vector was then
built using the 5 or 10 most signi�cant drugs for each of the four representations: ATC-3 (Table 6), ATC-4
(Table 7), ATC-5 (Table 8) and RxNorm (Table 9).

In addition, we characterized the drug exposure relationship with the laboratory test time series by
representing the density heatmaps of time series exposed to the top-10 drugs according to the KS test, for
each drug representation (Figures 10, 11, 12 and 13).

It is important to note that these heatmaps show that some drug concepts are never occurring by
themselves and always in combination with another top-10 drug concept. Moreover, the center of gravity
of these distributions is usually higher in mean and standard deviation than the time series exposed to none
of the top-10 drug concepts.
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Blood Glucose (2345-7)
regular time series irregular time series

Time series and Patient Counts
Time series 74,189 98,418

Patients 55,112 69,701

Sex
Male, n (%) 30,269 (54.92%) 37,715 (54.11%)

Female, n (%) 24,843 (45.08%) 31,986 (45.89%)

Age
Mean age (years), ± SD 58.35 ± 22.782 57.51 ± 23.906

Race/Ethnicity
Caucasian/White, n (%) 11,874 (21.55%) 13,982 (20.06%)

African American or Black, n (%) 4,051 (7.35%) 5,034 (7.22%)
Hispanic/Latino, n (%) 5,455 (9.90%) 6,925 (9.94%)

Asian, n (%) 590 (1.06%) 690 (0.99%)
Other, unknown, multi-racial, n (%) 33,142 (60.14%) 43,070 (61.79%)

Table 4: Post quality control �ltering demographics for regularly and irregularly sampled blood glucose
time series (days=10)

2.2 Deep learning models

2.2.1 Deep learning experimental pipeline

Deep learning models require a more extensive hyper-parameter tuning. While their �exibility and capacity
make them extremely powerful universal non-linear approximators, it comes at the cost of having to
explore very large hyper-parameter spaces. We designed an experimental pipeline that balances breadth of
hyper-parameters exploration, and depth of model exploration.

We split our dataset with 90/10 for training and testing. �ese two sub dataset were identical for the
generative models and the forecasting models described in the Supplementary Material. For each deep
learning model, we �rst ran a large amount of experiments with a limited amount of epochs (i.e., 50 epochs
or less), determined model by model to be su�cient to observe a plateau in the training and validation loss.
for these general tuning experiments, the loss was computed on the training set and validation set, and the
testing set is held out until the very end of the process.

Following the general tuning, we selected the 10 models that have the lowest validation loss averaged
over the second half of the epochs. For the generative models, we used the Fréchet distance to compare
hyperparameter sets, estimate 10 times between randomly generated samples and the real training dataset.
�ese models were then re-run for 100 epochs, 10 times each with di�erent random seeds to compute more
robust estimates of the performances of these models: this is the �ne tuning step. Based on these estimates,
we selected the model (i.e., hyper parameters set) and the epoch that had the best validation loss averaged
over the 10 separate runs. Generative models went through a double evaluation described in the Evaluation
metrics section.

Concerning the forecasting models, during the testing step we ran the selected model for the number of
epochs determined with �ne tuning on the whole training set and computed MSE and MAE on the test set
with the �nal model. �is step was repeated 10 times to account for the stochastic nature of neural network
training and produce estimates of the MSE and MAE.
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Code Contents
A Alimentary tract and metabolism
B Blood and blood forming organs
C Cardiovascular system
D Dermatologicals
G Genito-urinary system and sex hormones
H Systemic hormonal preparations, excluding sex hormones and insulins
J Anti-infectives for systemic use
L Anti-neoplastic and immunomodulating agents
M Musculo-skeletal system
N Nervous system
P Antiparasitic products, insecticides and repellents
R Respiratory system
S Sensory organs
V Various

Table 5: First level of the Anatomical �erapeutic Chemical (ATC) classi�cation system

2.2.2 WGAN and conditional WGAN: model speci�cations

�e Wasserstein GAN algorithm implemented followed the recommendations of the original paper on
WGAN with gradient penalty [26], including the use of layer normalization in the critic instead of batch
normalization. �e di�erence between gradient and Lipschitz penalty [44] is simply that the la�er takes
the maximum of zero or the gradient penalty, ensuring in e�ect that the gradient penalty is always positive
or null.

�e conditional architecture was designed by transposing the conditional GAN paper [41] to the WGAN
framework: the auxiliary information were concatenated with the random latent vector at the input of the
generator, to generate the time series. It was then concatenated again to the produced synthetic time series,
and to the real time series at the input of the critic, so that the critic also computes the estimated Wasserstein-
1 distance taking into account the auxiliary information – particularly important for the generator’s training.
Finally, we used RMSProp for the optimization of the WGANs, following the recommendations of Gulrajani
et al, and Petzka et al. [26, 44]. �e objective functions can be found in Supplementary Materials.

2.3 Evaluation metrics

Evaluating implicit models is a hard task. In computer vision for instance, where human inspection can be
used as a sanity check, a dozen of di�erent evaluation metrics have been proposed to compare real and
synthetic data and quantify how close the stochastically generated samples are from the training data.[9]
With EHR data, we do not have the luxury of visual inspection or highly engineered computer vision
networks, and expert evaluation by physician is both time-consuming and costly, and arguably not precise
enough to catch subtle di�erences in very large datasets. More importantly, while computer vision bene�ts
from standard datasets such as MNIST [36], CIFAR-10[34], CelebA[69], or ImageNet [15], biomedical data
sciences do not have standard medical datasets, mainly due to privacy and regulations, although MIMIC-III
is increasingly regarded as such.[30]

Regardless, in spite of the absence of consensus regarding standard datasets, we must be able to design
quantitative evaluation metrics for implicit generative models of EHR data in a single-institution se�ing to
begin with.
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2.3.1 Intrinsic evaluations

In computer vision, a wide variety of evaluation methods have been proposed to evaluate the data �delity of
synthetic images generated by GANs. Among them, an approach has been gaining momentum: inception
distances. Inception distance metrics rely on the Inception Network, a heavily engineered convolutional
neural network (CNN) designed to perform well on image labeling for ImageNet [59]. �e intuition behind
inception distances is that the weights of the penultimate layer of a deep neural network able to successfully
classify images must pick up features that are high level enough to mimic the way the human visual
cortex would work. �erefore, Heusel et al.[27] proposed the Féchet Inception Distance (FID) by using the
distribution of weights of real and synthetic images �owed through a trained Inception network.

Let pw(.) be the probability of observing real data, and p(.) the probability of of generating model data.
�e equality p(.) = pw(.) holds except for a non-measurable set if an only if:∫

p(.)f(x)dx =

∫
pw(.)f(x)dx

for a basis f(.) spanning the function space in which p(.) and pw(.) live. this function f(.) is replaced
by the penultimate layer of an inception network trained on ImageNet and the resulting distributions of
weights are approximated by multidimensional Gaussian to get the �rst two moments: mean and covariance.
�erefore, they used the Fréchet distance [21] or Wassertein-2 distance [62] to de�ne the Fréchet Inception
Distance (FID) d(., .) between the Gaussian (m,C) obtained from p(.) and the Gaussian (mw, Cw) obtained
from pw(.) given by:

d2((m,C), (mw, Cw)) = ||m−mw||22 + Tr(C + Cw − 2 ∗ (CCw)
1/2)

�is quantitative evaluation metric for implicit generative models has shown good performance, and
it has been translated to biomedical sciences for de novo drug design by Preuer et al. [45] who designed
an inception network called ChemblNet, a network trained to predict bioactivities of about 1,300 assays
from ChEMBL[8]. We used this Fréchet distance to evaluate the distance between the real and synthetic
data generated by the GAN models we have trained, and called it FID by analogy with the FID in computer
vision, although no network played the role of an inception network providing abstracted representations.

2.3.2 Extrinsic evaluations

In addition of the intrinsic metrics described in the previous paragraph, we used a train on synthetic test on
real (TSTR) approach, a method proposed by Esteban et al. [19], to compare the real and synthetic datasets
in a supervised learning task and evaluate how well the synthetic data generated can retain the information
needed for the forecasting task, and how well it generalizes.

Other task-based predictions have been described by Razavian et al.[46, 48] and Che et al.[10] using
laboratory test time series for medical outcome prediction, and could be used as alternative extrinsic
evaluations of the synthetic data, compared to the real data. However, these tasks are all classi�cation
tasks, while the forecasting task we describe in the Supplementary Material is a regression, providing a
�ner grained evaluation of the models and their impacts.

2.4 Applications of conditionalWGANs: drug e�ect simulation in laboratory test time
series

�e two main directions of these experiments are: 1/ the simulation of lab test time series by manually
selecting conditional drug exposure vectors, and investigating the interpolation power of these model
to infer the behavior of time series with conditional information not seen during training; 2/ the data
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augmentation task, where real datasets are augmented with synthetic data to improve locally forecasting
performances using the regressors described in the Supplementary Material.

2.4.1 Inference power evaluation

In order to evaluate how well the conditional WGANs trained in the previous Aim 2 can infer samples from
conditional class unseen at training, we designed the following experiments: we removed from the training
dataset glucose time series exposed to a unique drug, trained the GAN from scratch on this new dataset,
and then generated samples with single drug exposures to compare them to real single-drug time series,
and single-drug time series from the Aim 2 WGAN model exposed to them at training. �is experiment
relies on the interpolation power of the latent space in GANs. �e two hypotheses tested in this evaluation
are that conditional GAN can infer the behavior of samples from other classes seen at training (i.e., even
if the GAN has never seen drug A alone, it has seen drug A in combination with other drug exposures),
and that the latent space can continuously interpolate these inferred samples. It means that we could for a
given drug of exposure generate all the states between its two binary states, 0 and 1, and get continuously
closer to samples exposed to the drug.

In order to evaluate the simulation of these time series, we used the Frechet Inception Distance (FID)
introduced in the previous section as a distance metric.

2.4.2 Data Augmentation by conditional generation

A�er analyzing the simulation properties of conditional WGANs, we investigated their usage for data
augmentation. If these models can infer unseen classes, or unseen combinations of classes, they could
in�ate speci�c sub-groups of samples in training sets to improve the performances of the model at testing.
In this second experiment, we �rst augmented time series with unique drug exposures and evaluated the
performances of the MLP forecasting model from Aim 1 with these new training datasets.

�en, we targeted speci�c drug combinations that have low frequency in the training set, and on which
forecasting models yield high error on the testing set. �ese are the most interesting candidates for data
augmentation, as they could bene�t from a high count in the training set to decrease their high testing
errors.

3 Results

3.1 Regular LTTS generation with WGAN-GP

3.1.1 Hyperparameter tuning

�e WGAN hyperparameter tuning was extensive, with more than 7,000 hyperparameter combinations
evaluated (Table 10).

We took the best performing hyperparameter combinations in terms of FID, and tested them, adding
gradient penalty (GP) to the Lipschitz penalty (LP) (Table 11) used for the general tuning above.

3.1.2 Impact of sampling on FID

For each ratio of synthetic data, we generated 10 distinct datasets to get an estimate of the FID and how
much it varies. �e FID values and their sub-components (i.e, di�erence of the means and di�erence of the
covariance matrices) did not change signi�cantly depending on how much synthetic data was generated to
compute the distance. However, the standard deviation tended to decrease as the amount of synthetic data
increases, as expected (Figure 14).
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Parameters Round 1 Round 2 Round 3
Layers width 128 64, 128 128
Number of layers 2 2, 3 2, 3, 5
leakyReLU 1e-1, 1e-3 1e-1, 1e-2, 1e-3 1e-1, 1e-2, 1e-3
Dropout 0.25, 0.50 0.25, 0.50 0.0, 0.25
Batch Size 32 64, 128 32, 64, 128
Critic Update cycle 10, 5 10, 5 10, 5
Critic learning rate 1e-4, 5e-5 5e-5 1e-4, 5e-5
Generator learning rate 1e-4, 5e-5 5e-5 1e-4, 5e-5
Weight decay (L2) 1e-3, 1e-4 5e-3, 1e-4, 0.0 5e-3, 1e-4, 0.0
Lambda penalty 10, 5, 1 10, 5, 1 5, 1, 0.5, 0.1
Latent dimension 100, 10 100, 10 100

Num. combinations 384 1,728 5,184

Table 10: Hyper-parameters for WGAN general tuning on regular glucose lab time series.

Parameters Fine tuning
Layers width 128
Number of layers 2
leakyReLU 1e-2, 1e-3
Dropout 0.0
Batch Size 128
Critic Update cycle 5
Critic learning rate 1e-4
Generator learning rate 5e-5
Weight decay (L2) 5e-3, , 0.0
Lambda penalty 1, 0.5
Latent dimension 100
Penalty type LP, GP

Table 11: Hyper-parameters for WGAN �ne tuning on regular glucose lab time series.

3.1.3 FID evolution during training

�e FID dropped within the �rst 30 epochs or so, and then either stabilized, or showed signs of over��ing
of the WGAN with an upward trend toward epoch 80 (Figure 15). For reference, the FID between the real
training and the testing set was 15.22 (mean di�.: 4.85, cov. di�.: 10.37) while the FID of the top 10 GAN
model spanned from 26.71 to 46.26.

3.1.4 TSTR with an MLP forecasting model

We evaluated the 10 best WGAN models according to their FID with the TSTR extrinsic evaluation (Table
12). We can see that the di�erence in the covariance matrices was more correlated to the TSTR metrics than
the FID itself. �e general trend is a relatively low error on forecasting synthetic samples from the same
generator, a higher error on the training data that the WGAN was trained on, and the highest error on the
testing set that the WGAN was never exposed to. While the MSE on the testing set was above 1,100, it is
not extremely far from the error from the models trained on real regular time series (see Supplementary
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Material). �e GAN model that performed the best at the TSTR task got an average MSE of 1120.84 (±
8.553), and a lowest MSE at 1103.84. Interestingly enough, it was not the model with the lowest FID (39.88).

3.1.5 Density evolution through training of the best regular WGAN

By sampling every 5 epochs a synthetic dataset of the same size as the training dataset, we can visualize
the coverage of the synthetic data compared to the real training data it was ��ed on (Figure 16). We also
computed the weighted ratio of synthetic coverage. On every tile of the density heatmap, We computed
the di�erence of real and synthetic data, and counted hits (correct coverage), wrong (coverage of a tile not
represented in the real data), and miss (absence of coverage of a tile represented in the real data) (Figure 17).
�is barplot summarizes quantitatively the heatmaps by epoch. We can observe that coverage increased fast
and then plateaued around 30 epochs, to increase again past 70 epochs. �e wrong ”modes”, synthetic time
series that have unrealistic summary statistic, decreased within the �rst 30 epochs, and coverage improved
a�er 60 epochs. When observing the kernel density estimation plot, we see that the mean distribution is
approximated �rst, and then the covariance is adjusted in order to cover the real distribution be�er during
that second stage of the training. �e best coverage reached was 88.22% and was reached at epoch 95.

3.2 Irregular LTTS with auxiliary drug exposure generation with conditional WGAN-
GP

We then proceeded to train the conditional WGAN on the irregular laboratory test time series using auxiliary
drug exposures as conditional information. While generating realistic synthetic glucose time series is a
good �rst step, the generation is only random due to the nature of GAN as implicit generative models. We
do not have any control over the mode of the generated samples, the properties, or the sub-group to which
these time series belong. Conditional GANs on the other hand allow for known auxiliary information to be
used during the training, at the input of the generator and the critic. Once trained, the conditional GAN
generator takes as an input a random vector concatenated to an auxiliary information vector. While the
former is useful for diversity in the stochastic generation process, the la�er enables the user to select the
conditional information of the time series generated and therefore direct this generation.

3.2.1 Hyperparameter tuning

Given the major similarities between the WGAN and the conditional WGAN, we only rerun the 10 best
hyperparameter sets from the previous study. �e model selection followed the same process, at the
di�erence that we had to run these experiments for each drug terminology and conditional vector length
(i.e., eight modalities), similarily to the forecasting experiments described in the Supplementary Material:
ATC-3, ATC-4, ATC-5 and RxNorm with 5 or 10 drug concepts. Because RxNorm with 5 drugs yielded the
most realistic conditional WGAN, the �gures illustrating the following analyses are for that dataset only.
�e �gures associated to the other drug terminologies and conditional vector lengths can be found in the
Appendix (Figures �, �, �, �, �, �, �).

3.2.2 Impact of sampling on FID

�e same phenomenon than in the previous section was observed: the FID was stable through sampling
rate, and only the standard deviation of the FID decreased as the sample size of the generated data increased
(Figure 18). �e real training set and the testing set had an FID of 11.04 (mean di�.: 1.06, cov. di�.: 9.98)
while the FID with the synthetic data ranged from 15.67 to 43.26 across the various drug representation
tested.
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3.2.3 FID evolution during training

Similarly to the WGAN analysis, we observe that the covariance di�erence is the main driver of the FID,
and usually decreases almost linearly, while the mean error is much lower and therefore �uctuates more
with less impact on the total distance (Figure 19).

3.2.4 TSTR with a a conditional MLP forecasting model: evaluating di�erent drug representa-
tions

Table 13 presents the best models in the TSTR task for each drug representation. �e MSE on the testing
set spanned from 1088.36 for ATC-5 with 5 drugs, down to 1056.32 for RxNorm with 5 drugs, e�ectively
performing as well as a linear regression trained on the real dataset with RxNorm concepts for the top-5
drugs of exposure. ATC-5 with 5 drugs had the worst TSTR score with its best MSE at 1088.36. �e FID
of these conditional GANs spanned from 17.46 for RxNorm with 10 concepts, to 34.03 for ATC-3 with 10
concepts. For reference, the best non-conditional model in terms of FID scored at 26.71. �e synthetic
samples from conditional models were therefore overall more realistic, at the exception of ATC-3 with 10
concepts, and ATC-5 with 5 concepts. �is might explain their high MSE in the TSTR task. While the best
MSE with non-conditional models was 1103.84, all the TSTR MSEs of the conditional models were between
1056.32 and 1088.36.

3.2.5 Density evolution through training of the best conditional WGAN

�e best conditional GAN with 5 RxNorm concepts as auxiliary information presented an analogous
behavior during training as observed in the non-conditional GAN: �e learned distribution �rst adjusted
its mean, and then its variance and covariance (Figure 20). �e analysis of the coverage, wrong modes, and
missed modes (Figure 21) showed a peak coverage of 92.07% at epoch 100.

3.3 Inferring glucose time series with drug exposures unseen at training

�e original dataset contained 11,746 glucose time series exposed to a single drug at a time. �ese were
removed from the training set that was le� with 64,857 samples. the conditional WGAN was trained with
the hyperparameters that yielded the best FIDs in Aim 2, and the best model out of 10 runs was selected for
the simulation experiment (FID: 22.31). Let’s call this conditional WGAN the inference model.

For each of the 10 drugs, we generated 10,000 synthetic samples with a conditional vector incrementally
increasing between 0.0 and 1.0 by steps of 0.1 for that drug of interested, and computed at every step the
FID between these synthetic samples and the real samples only exposed to that drug. In order to get FID
ranges of reference, we also computed the FID between synthetic samples and real single-drug samples
using the conditional WGAN from Aim 2, that was exposed at training to samples with single drug of
exposure (i.e., the exposed model). �e FID between synthetic and real samples at di�erent interpolation
values in the latent spaces are displayed in �gures 22 to 31.

We observed two phenomenons: (1) sample sets generated along that interpolated conditional exposure
vector presented a continuously decreasing FID with the real data, showing the interpolation power of
the latent space in generative adversarial networks; (2) for all drugs, the model never exposed to single
drug exposures got an FID close to the model that was trained with single-drug exposure samples. Insulin
detemir exposed time series were inferred by the inference model with an FID comparable to the model
that was exposed to it. �ere was one outlying drug: isopropanol, where our inference model samples were
more realistic than the sample of the exposed GAN that was trained on these single exposure time series.
Table 14 summarizes the FID between synthetic and real samples for the model exposed at training, and the
model not exposed at training.
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drug of exposure inference WGAN FID (± SD) exposed WGAN FID (± SD)

insulin detemir 6994.51 (± 173.328) 7221.17 (± 189.009)
sitagliptin 1770.57 (± 49.856) 589.87 (± 25.828)

insulin glargine 952.76 (± 76.363) 249.47 (± 11.458)
insulin lispro 5700.67 (± 84.937) 2094.06 (± 91.808)

metformin 643.97 (± 37.603) 249.45 (± 19.172)
isopropanol 1184.67 (± 61.595) 2051.22 (± 63.224)

glipizide 1127.71 (± 41.407) 478.10 (± 11.196)
glimepiride 2049.26 (± 55.207) 1757.40 (± 71.324)

glibenclamide 2099.16 (± 84.242) 1094.61 (± 41.500)
insulin (human) 359.62 (± 29.739) 66.40 (± 8.364)

Table 14: FID between real and synthetic data for exposure to a unique drug at a time: inference conditional
WGAN never exposed to these single-exposure samples, and exposed conditional WGAN that was trained
with samples exposed to these unique drug exposures.

For visualization purposes, we represented these single-exposure samples for the inference model, the
expose model, and the real data density represented by variance and mean of the time series (Figures 32,
33).

3.4 Targeted data augmentation with conditional WGANs

Now that we demonstrated that conditional WGAN can generate time series with conditional information
that was not seen at training, we built some con�dence about the ability of these models to augment real
datasets. Indeed, the ideal target for data augmentation are sub-groups of samples that have low sample
counts in the training set and high errors when the model is applied on the testing set. We showed that
conditional WGAN can simulate glucose time series even when their belong to subgroups not seen at
training, which should extend to time series with very few samples at training.

As a �rst experiment, we augmented the single drug exposure time series. �ality control of the input
time series seemed to be very important in the data augmentation part when adding synthetic data to real
data. By applying the same criteria applied to the real data to the synthetic data, forecasting performances
dramatically improved between no quality control 15, and identical quality control as in the forecasting
experiments of Aim 1 with real data 16. Only drugs 1 (insulin detemir), 4 (insulin lispro) and 10 (insulin
(human)) showed improvements when the training set was augmented with simulated time series exposed
to these drugs only.

We grouped irregular glucose time series by drug exposures (RxNorm, 10 concepts), and represented
these groups by their count in the training set and the MSE on the testing set based on the MLP forecasting
model from Aim 1 (Figure 34).

In spite of the low number of samples for these combinations, augmenting these types of glucose time
series in the training set led to improved MSE in 7 out of 10 cases (Table 17).

4 Discussion

In this study, we demonstrated that we can build generative adversarial networks able to generate synthetic
laboratory test time series that look like real data. we compared two di�erent models: a Wasserstein GAN
with gradient penalty (WGAN-GP) to model regular glucose lab time series, and a conditional WGAN-GP
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conditional drug vector # in training # in testing MSE in testing MSE w/ data augmentation

(1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) 32 1 11754.32 7450.01
(1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 8 3 10769.26 7694.08
(0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0) 14 1 10080.28 12973.09
(0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0) 11 3 9711.61 9644.60
(0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0) 5 1 8364.84 5846.65
(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0) 11 1 8231.11 11230.28
(1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0) 2 1 7086.89 8151.28
(0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0) 6 2 6345.81 3216.27
(1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0) 5 2 6302.25 5368.03
(0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0) 1 1 5895.70 4703.74

Table 17: MSE before and a�er targeted augmentation of the 10 drug combinations with the highest MSE.

that uses the drug exposure representation introduced in the previous aim to learn be�er models, but also
to control the drug exposure of the synthetic generated time series.

We used two di�erent quantitative methods to evaluate these models: an intrinsic metric called the
Fréchet Inception Distance (FID) that consists of measuring the di�erent of the mean and covariance
between the synthetic data and the real data; and an extrinsic evaluation that uses the forecasting models
developed in the previous aim to evaluate how well models trained on synthetic data only perform on never
seen before testing sets.

We �rst studied the properties of the FID by comparing how the amount of generated data impact the
metric when it’s computed with a �xed size training set the GAN was trained on. �is experiment showed
that the generated data are very stable in spite of the stochasticity of the implicit generative process. We
then computed the FID and it’s two components (i.e., the mean and the covariance di�erences) across
epochs to see how they evolve. It seems that most of the time the covariance di�erence is the main driver
of the FID, and that the FID could be a good tool to visualize over��ing of a WGAN model where the FID
starts going back up.

We also added visual inspection of the data using the density heatmaps we have been generating
throughout the experiments, to help understand how the density learned by the WGAN evolves throughout
epochs. It is important to note that all the GAN models developed in this aim had, in spite of their similar
mean and standard deviation densities, longer tails. �ese models generated more extreme values, including
some negative measurements (i.e., unrealistic). It exposes one of the main limitation of the Frechet distance
that approximates Gaussians and is less sensitive to these longer tails than kernel-based metrics such as
maximum mean discrepancy (MMD). Similarly to the forecasting model, these GANs could also bene�t
from clinically relevant intrinsic evaluation metrics, for instance comparing how real and synthetic data
stand in terms of normal ranges, or involving physicians in a qualitative expert evaluation.

�e TSTR evaluation demonstrated that the covariance of the synthetic data has an enormous weight
on the generalizability of models trained on them. It is also important to note that the performances
obtained with synthetic data from conditional models are on-par with the performances of models trained
on real data, with an increased MSE that stays within performances obtained with classic machine learning
regression models.

Finally, while ATC-3 was a good drug representation for regression, RxNorm appears to be the best
conditional information to generate more realistic and generalizable synthetic glucose lab time series. More
importantly conditional GANs outperformed the non-conditional model in spite of having to learn a more
complex representation of the laboratory test time series.

Only one type of deep generative models, namely generative adversarial networks (GANs) was used.
�ey are not the only types of deep generative models that could have been used. While GANs are implicit
models, Variational Autoencoders (VAEs), a type of prescribed model, represent an alternative. Further
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investigation could be done using VAE, and hybrid models called VAE-GAN [40]. Moreover, supervised
models using LSTM have been the standard for sequence generation[24], where text can be generated token
by token by sampling from a distribution conditioned on the previous token and a hidden representation of
all the tokens already generated. However there are known issues where the models have to sample from
conditional distributions never seen at training and their solutions lead to models with no cost function
speci�cally designed to encourage synthetic data �delity.[35, 20] �e GAN models of this aim present the
advantage of being self-supervised with a cost function, the Wasserstein distance, designed to explicitly
compute an estimate of the distance between real and synthetic samples.

Other auxiliary data could be used as conditional information, such as demographics (i.e., sex, age,
race/ethnicity) as they are known to have a direct impact of the laboratory tests distribution and dynamics.
Such as conditional WGAN generating laboratory test time series based on demographics, drug exposures,
and other clinical covariates could be a module in a larger analysis where these covariates are handpicked
by the user for speci�c generation, or generated themselves stochastically using discrete GANs. With an
increasing number of clinical variables, and therefore an increased sparsity, methods to compress patient
representations could be used to improve the learning with large auxiliary datasets.

A�er having evaluated our generative models, we then showed the potential applications for conditional
WGAN that can generate irregular glucose time series based on a conditional vector of drug exposures. �e
two avenues investigated were the inference ability of these generative models, directly tied to arithmetic
properties in the latent space of the generator network, and data augmentation in supervised tasks.

In the �rst experiment, one of the main limitation is the conditional WGAN used, along with the drugs
of exposure. �is model was selected based on its overall performances at generating synthetic samples
close to the real data, and using the Frechet Inception distance. �e FID is a good metric to get a sense of the
distance between gaussians approximated on two datasets, but not �ne grained enough for more thorough
comparisons. �is is where the maximum mean discrepancy (MMD) metric, a kernel based distance, could
be useful. Moreover, there are only 10 drugs in the auxiliary information vector while this population was
exposed to hundreds of them. Adding drugs to the auxiliary vector, along with other clinical covariates as
discussed in the previous chapter would yield to a be�er conditional WGAN and be�er inference. However,
most of the inferred time series sub-groups were very close to the data generated by the WGAN that was
exposed to them at training.

In the data augmentation task, there was an obvious limitation with the sample size of the time series
groups in the testing set. A lot of them had only one sample, resulting in a very noisy and sensitive MSE.
Another di�culty comes from the fact that the task is a regression task. Every data augmentation study
that has used GANs to improve supervised learning results was applied to classi�cation task. We do think
that classi�cation tasks are more robust to data augmentation than regression, due to the more discrete
process of selecting a decision threshold, versus a continuous non-linear relationship between inputs and
output in regressions. It would also be bene�cial to compare the GAN-powered data augmentation with
more classic data augmentation methods as a baseline of comparison.

Another limitation of this study was that only one laboratory test, blood glucose, was investigated.
However it opens the way for subsequent studies to systematize the methods presented here and re�ne
them.

5 Conclusion

�e model evaluation tier of this paper is the proof of concept that we can generate laboratory test time
series from visits with generative adversarial networks. �ese synthetic time series are close to the real
ones, and yield on-par results when used to train forecasting models then tested on real data never seen by
the GAN. �e conditional WGAN demonstrated two properties: conditional GANs generate higher quality
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samples than non-conditional GANs, and they enable the targeted generation of synthetic laboratory test
time series exposed to drugs de�ned at the input of the generator.

With regards to the applications, we demonstrated useful properties of conditional WGAN to simulate
drug exposures on laboratory test time series. We showed that these generative models can infer samples
behavior based on latent space arithmetic when there is enough useful conditional information available.
We also showed that these simulated data can be used in speci�c tasks where sub-groups of samples are
under-powered, causing high errors in these sub-groups. While these studies are only proof of concepts,
they show promising applications that could directly impact how researchers work with medical data,
and provide the bases for next generation clinical decision making tools that would be able to simulate
population speci�c laboratory test time series.
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Figure 1: Laboratory test time series above 10,000 samples, for 3 di�erent lengths, and 2 types of sampling.
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Figure 2: Distribution of glucose lab measurements post-quality control for regular time series.

50 100 150 200 250 300 350

Glucose lab (2345-7)
 boxenplot of all measurements - 10 days

Figure 3: Boxenplot of glucose lab measurements post-quality control for regular time series to visualize
percentiles and potential outliers.
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Figure 4: Density heatmap of regular glucose lab measurements time series represented by their standard
deviations and mean.
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Figure 5: Distribution of glucose lab measurements post-quality control for irregular time series.
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Figure 6: Boxenplot of glucose lab measurements post-quality control for irregular time series to visualize
percentiles and potential outliers.
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Figure 7: Density heatmap of regular glucose lab measurements time series represented by their standard
deviations and mean.
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Figure 8: Time intervals heatmap of regular glucose lab measurements time series represented by their
standard deviations and mean.
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Figure 9: Construction of drug eras in the OMOP CDM
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(a) Time series only exposed to one of the top-10
ATC-3 concepts.
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top-10 ATC-3 concepts.

Figure 10: Density heatmap of irregular glucose lab time series exposed to the top-10 ATC-3 concepts
ranked by KS statistics.
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(a) Time series only exposed to one of the top-10
ATC-4 concepts.
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Figure 11: Density heatmap of irregular glucose lab time series exposed to the top-10 ATC-4 concepts
ranked by KS statistics.
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(a) Time series only exposed to one of the top-10
ATC-5 concepts.
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(b) Time series non-exclusively exposed to one of the
top-10 ATC-5 concepts.

Figure 12: Density heatmap of irregular glucose lab time series exposed to the top-10 ATC-5 concepts
ranked by KS statistics.
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(a) Time series only exposed to one of the top-10
RxNorm concepts.
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(b) Time series non-exclusively exposed to one of the
top-10 RxNorm concepts.

Figure 13: Density heatmap of irregular glucose time series exposed to the top-10 RxNorm concepts ranked
by KS statistics.
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Figure 16: Evolution of the synthetic density of time series for the best WGAN trained on regular glucose
lab time series, every 5 epochs.
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Figure 17: Weighted ratio of density categories covered by the best synthetic density every 5 epochs.

40

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.20157321doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157321
http://creativecommons.org/licenses/by-nc-nd/4.0/


102030405060 distance

78
7b

d5
40

-1
01

c-
45

29
-8

85
5-

86
9e

cf
b8

4d
ed

fd
5a

94
a6

-1
00

3-
49

28
-a

1d
b-

e4
61

1b
96

4e
8a

f1
8b

c6
90

-d
db

3-
4d

a5
-b

c1
6-

88
e5

aa
a3

d9
82

b1
37

ca
1a

-2
4f

5-
4f

9d
-b

80
c-

1b
a8

26
d7

5d
9e

34
52

22
e4

-5
00

7-
48

3b
-b

24
f-c

9c
3d

d2
76

09
b

0.
5

1.
0

5.
0

10
.0

sa
m

pl
in

g

102030405060 distance

9d
f6

71
08

-2
65

1-
4d

a8
-a

09
f-b

3f
0b

ee
2f

57
5

0.
5

1.
0

5.
0

10
.0

sa
m

pl
in

g

a1
99

c7
a5

-1
e4

9-
4e

49
-9

f9
8-

f5
91

2c
e6

76
f9

0.
5

1.
0

5.
0

10
.0

sa
m

pl
in

g

11
ca

91
a2

-9
7f

8-
40

41
-8

40
b-

43
43

ff
e0

61
da

0.
5

1.
0

5.
0

10
.0

sa
m

pl
in

g

d8
64

31
6d

-5
e8

0-
41

ce
-9

c5
4-

53
bb

0c
03

fb
5d

0.
5

1.
0

5.
0

10
.0

sa
m

pl
in

g

ae
27

cb
9c

-0
ec

a-
47

82
-a

99
f-a

08
7d

60
2c

2d
3

D
is

ta
nc

e 
ty

pe
FI

D
m

ea
n 

di
st

an
ce

co
va

ri
an

ce
 d

is
ta

nc
e

Fi
gu

r e
18

:E
vo

lu
tio

n
of

th
eF

ID
fo

rd
i�

er
en

ta
m

ou
nt

so
fs

am
pl

ed
sy

nt
he

tic
da

ta
,e

xp
re

ss
ed

in
ra

tio
of

re
al

da
ta

,f
or

co
nd

iti
on

al
W

GA
Ns

on
irr

eg
ul

ar
gl

uc
os

e
la

b
tim

e
se

rie
sw

ith
au

xi
lia

ry
Rx

N
or

m
5

dr
ug

ex
po

su
re

s.

41

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.20157321doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157321
http://creativecommons.org/licenses/by-nc-nd/4.0/


24681012 log-distance

78
7b

d5
40

-1
01

c-
45

29
-8

85
5-

86
9e

cf
b8

4d
ed

fd
5a

94
a6

-1
00

3-
49

28
-a

1d
b-

e4
61

1b
96

4e
8a

f1
8b

c6
90

-d
db

3-
4d

a5
-b

c1
6-

88
e5

aa
a3

d9
82

b1
37

ca
1a

-2
4f

5-
4f

9d
-b

80
c-

1b
a8

26
d7

5d
9e

34
52

22
e4

-5
00

7-
48

3b
-b

24
f-c

9c
3d

d2
76

09
b

10
20
30
40
50
60
70
80
90
10

0

ep
oc

h

24681012 log-distance

9d
f6

71
08

-2
65

1-
4d

a8
-a

09
f-b

3f
0b

ee
2f

57
5

10
20
30
40
50
60
70
80
90
10

0

ep
oc

h

a1
99

c7
a5

-1
e4

9-
4e

49
-9

f9
8-

f5
91

2c
e6

76
f9

10
20
30
40
50
60
70
80
90
10

0

ep
oc

h

11
ca

91
a2

-9
7f

8-
40

41
-8

40
b-

43
43

ff
e0

61
da

10
20
30
40
50
60
70
80
90
10

0

ep
oc

h

d8
64

31
6d

-5
e8

0-
41

ce
-9

c5
4-

53
bb

0c
03

fb
5d

10
20
30
40
50
60
70
80
90
10

0

ep
oc

h

ae
27

cb
9c

-0
ec

a-
47

82
-a

99
f-a

08
7d

60
2c

2d
3

D
is

ta
nc

e 
ty

pe
FI

D
m

ea
n 

di
st

an
ce

co
va

ri
an

ce
 d

is
ta

nc
e

Fi
gu

re
19

:E
vo

lu
tio

n
of

th
e

FI
D

du
rin

g
tra

in
in

g
of

W
GA

Ns
on

irr
eg

ul
ar

gl
uc

os
e

la
b

tim
es

er
ie

sw
ith

Rx
No

rm
-5

au
xi

lia
ry

dr
ug

in
fo

rm
at

io
n,

ev
er

y
5

ep
oc

hs
.

42

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.19.20157321doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157321
http://creativecommons.org/licenses/by-nc-nd/4.0/


tim
e 

se
rie

s m
ea

n

epoch - 5 epoch - 10 epoch - 15 epoch - 20

tim
e 

se
rie

s m
ea

n

epoch - 25 epoch - 30 epoch - 35 epoch - 40

tim
e 

se
rie

s m
ea

n

epoch - 45 epoch - 50 epoch - 55 epoch - 60

tim
e 

se
rie

s m
ea

n

epoch - 65 epoch - 70 epoch - 75 epoch - 80

time series variance

tim
e 

se
rie

s m
ea

n

epoch - 85

time series variance

epoch - 90

time series variance

epoch - 95

time series variance

epoch - 100

Figure 20: Evolution of the synthetic density of time series for the best conditional WGAN trained on
irregular glucose lab time series with RxNorm-5 auxiliary drug information, every 5 epochs.
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Figure 21: Weighted ratio of density categories covered by the best conditional WGAN trained on irregular
glucose lab time series with RxNorm-5 auxiliary drug information, every 5 epochs.
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Figure 22: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to insulin detemir
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Figure 23: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to sitagliptin
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Figure 24: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to insulin glargine
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Figure 25: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to insulin lispro
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Figure 26: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to metformin
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Figure 27: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to isopropanol
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Figure 28: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to glipizide
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Figure 29: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to glimepiride
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Figure 30: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to glibenclamide
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Figure 31: FID between synthetic and real glucose time series, for di�erent values in the conditional vector
between 0, non-exposed, and 1, exposed to insluin (human)
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(a) Inference model.
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(b) Exposed model.

Figure 32: Density heatmap of irregular glucose lab time series exposed to the top-10 RxNorm, synthetic
vs. real with equal sampling.
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(b) Real data.

Figure 33: Density heatmap of irregular glucose lab time series exposed to the top-10 RxNorm, synthetic
vs. real with �xed synthetic sampling at 10% of the training set size.
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Figure 34: Drug exposures represented by their count in gluocose time series in the training set, and their
MSE in the testing set using the best performing MLP forecasting model.
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