G6PD Deficiency Overrepresented Among Pediatric COVID-19 Cases in One Saudi Children Hospital

Maryam Al-Aamria, Fatima Al-Khalifaa, Fawatim Al-Nahwia, Heba Al-Ameera, Sameer Al-Abdib,c,d

a Department of Pediatrics, Maternity and Children Hospital, Al-Ahsa, Ministry of Health, Saudi Arabia.

b Department of Pediatrics, King Abdulaziz Hospital, Ministry of the National Guard-Health Affairs, Al-Ahsa, Saudi Arabia.

c King Abdullah International Medical Research Center, Al-Ahsa, Saudi Arabia.

d King Saud Bin Abdulaziz University for Health Sciences, Al-Ahsa, Saudi Arabia.

Cross ponding Author: Sameer Al-Abdi (abdis@ngha.med.sa)

PO Box 2477, Al-Ahsa 31982, Saudi Arabia

Mobile: +966569031455

Abstract

Fluorescent spot test for glucose-6-phosphate dehydrogenase (G6PD) deficiency was performed in 5 boys and 14 girls who had confirmed COVID-19. Out of those, 4 (80\%) boys and 5 (36\%) girls were found to be G6PD deficient.

Main Text

On March 12, 2020, the first case of coronavirus disease 19 (COVID-19) was diagnosed in the Al-Ahsa area, Saudi Arabia [1]. Until the end of April 2020, all children of less than 14 years old with confirmed COVID-19 were admitted to the Maternity and Children hospital in Al-Ahsa area. During this period, 29 children (8 boys and 21 girls) were admitted. All these cases were either asymptomatic or with a mild COVID-19. Fluorescent spot test (FST) for glucose-6-phosphate dehydrogenase (G6PD) deficiency was performed in 5 boys and 14 girls. Out of those, 4 (80\%) boys and 5 (36\%) girls were found to be G6PD deficient. Our FST has a cut-off point of 2.1 Units/gram Hemoglobin, which indicates these cases are moderate to severe G6PD deficiency. All these cases were either asymptomatic or with a
mild COVID-19. The G6PD deficiency is overrepresented in this small case series as the prevalence of G6PD deficiency in Al-Ahsa is 23% in males and 13% in females [2]. We and others anticipate that G6PD deficient individuals will be more vulnerable to severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic [3, 4]. Still, this needs to be confirmed in a large-scale population-based study.

References

