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Since its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
caused multiple epidemics in the United States. Because medical treatments for the virus are still emerg-
ing and a vaccine is not yet available, state and local governments have sought to limit its spread by en-
acting various social distancing interventions such as school closures and lockdown, but the effectiveness
of these interventions is unknown. We applied an established, semi-mechanistic Bayesian hierarchical
model of these interventions on SARS-CoV-2 spread in Europe to the United States. We estimated the
effect of interventions across all states, contrasted the estimated reproduction number, Rt, for each state
before and after lockdown, and contrasted predicted future fatalities with actual fatalities as a check on
the model’s validity. Overall, school closures and lockdown are the only interventions modeled that have
a reliable impact on Rt, and lockdown appears to have played a key role in reducing Rt below 1.0. We
conclude that reversal of lockdown, without implementation of additional, equally effective interventions,
will enable continued, sustained transmission of SARS-CoV-2 in the United States.

Keywords: Bayesian hierarchical model, intervention, severe acute respiratory syndrome coronavirus 2,
social distancing, time-varying reproduction number

1. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease
2019 (COVID-19). Initially discovered in Wuhan, China in December 2019, SARS-CoV-2
rapidly spread to the rest of the world, initially through travelers from Wuhan, but later through
community transmission in Asia, Europe, Australia, and North America, until it was declared
a pandemic by the World Health Organization on March 11, 2020. The rapid spread of SARS-
CoV-2 is attributable to its transmissibility by aerosol and fomites (van Doremalen et al., 2020;
Bourouiba, 2020), by presymptomatic/asymptomatic carriers (Bai et al., 2020; Furukawa et al.,
2020), and by the relatively mild clinical characteristics of symptomatic carriers, which often in-
clude fever, cough, and fatigue (Guan et al., 2020). However, approximately 20% of confirmed
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cases develop severe or critical forms of COVID-19, including complications of respiratory fail-
ure, myocardial dysfunction, and acute kidney injury, with approximiately 50% mortality for
critically-ill patients (Phua et al., 2020).

As of July 2020, outbreaks or epidemics of SARS-CoV-2 have emerged in all 50 states, with
over 2.5 million confirmed cases reported. Because medical treatments for and vaccinations
against the virus are still emerging, state and local governments have sought to limit its spread
by enacting various social distancing interventions. Social distancing interventions have varied
widely both within states and across states. Within states, interventions typically have begun
with public health directives like washing hands and staying home if sick, followed by restric-
tions on or closures of places housing vulnerable populations like nursing homes or schools,
followed by successive, increasingly restrictive bans on gathering in groups, culminating in
stay-at-home orders or so-called lockdown. Across states, interventions have been adopted with
different speeds, such that some states moved rapidly to lockdown and other states never entered
lockdown at all. Likewise, states are currently lifting lockdown and reversing social distancing
interventions at different rates.

To explore the effect of social distancing interventions, we applied an established, semi-
mechanistic Bayesian hierarchical model of these interventions on SARS-CoV-2 spread in Eu-
rope (Flaxman et al., 2020a; Flaxman et al., 2020b) to the United States. We estimated the effect
of interventions and the time-varying reproduction number (Rt) for each state using state-level
daily case fatality counts.

2. METHODS

2.1. DATA

In this study, we used data from three different sources: state-level intervention data, infection
fatality rate data, and confirmed case fatality data.

STATE-LEVEL INTERVENTION DATA. We created a dataset of state-level intervention dates
by inspecting the executive orders, public health directives, and official communications (e.g.,
press releases) from state governments (Olney and Olney, 2020). For each intervention date,
we used the effective date, unless the timing of the intervention was so close to midnight as to
only practically have effect the next day. Interventions were only counted if they targeted the
general population, e.g., restricting out-of-state travel by state employees only was not counted
as a travel restriction intervention. All interventions dates are linked to their source documents
with any needed commentary for data provenance. The interventions themselves closely paral-
lel those in the European model we used, but with slightly different operationalizations which
we describe in turn. Self isolating if ill is a recommendation to stay home if sick. Social dis-
tancing encouraged is a recommendation to avoid nonessential travel and/or contact; the mere
words “social distancing” were not counted unless they were elaborated with examples of what
social distancing entails. Schools or universities closing is the date at which schools partly or
completely close; the earlier of schools or universities closing was used. Sport is the banning
of sporting events or public gatherings of more than 1000 persons. Public events is the banning
of public gatherings of more than 100 participants. Finally, lockdown includes banning of non-
essential gatherings or business operations, which is sometimes formalized as a stay-at-home or
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safer-at-home order. Notably some more restrictive interventions imply others, e.g., lockdown
implies all other interventions, and public events implies sport.

INFECTION FATALITY RATE DATA. The infection fatality rate (IFR), or ratio of fatalities to
true infections, was derived via the methods outlined in Flaxman et al. Briefly, IFR estimates
from Verity et al. (2020) were adjusted using an age-specific UK contact matrix to account for
non-uniform attack rates across age groups (see Ferguson et al. 2020 for details and previous US
application). The resulting IFRs were weighted by state-level age demographics and averaged
to produce estimates adjusted for both age and location. Demographic data were obtained from
the 2018 ACS survey 5-year estimates (U.S. Census Bureau, 2020).

CONFIRMED CASE FATALITY DATA. SARS-CoV-2 fatality data was obtained from the New
York Times public data repository (The New York Times, 2020), which describes the data collec-
tion process along with subtle issues in counting cases, e.g. cruise ship passengers. In general,
the dataset counts confirmed cases according to where they were treated. Deaths are counted on
the days they were reported up to midnight Eastern Time. Because this dataset provides cumula-
tive counts, we transformed these into daily counts by taking the difference between successive
daily cumulative counts (setting this difference to zero in the rare instances where cumulative
counts were decreasing due to reporting corrections).

3. MODEL

We applied an established, semi-mechanistic Bayesian hierarchical model of interventions on
SARS-CoV-2 spread in Europe to the United States, and the design and details of this model are
presented elsewhere (Flaxman et al., 2020a; Flaxman et al., 2020b). Notably, a recent variant of
this model has been applied to the United States at the state level, but this variant uses mobility
data rather than interventions as the basis of predictions (Unwin et al., 2020). Briefly stated,
daily death counts in the model follow a negative binomial distribution such that their expecta-
tion is a function of infections on previous days. The model is semi-mechanistic in the sense
that it incorporates classical Susceptible-Infected-Removed concepts (Horsburgh and Mahon,
2008) in a Bayesian framework. The number of infected is modeled using a discrete renewal
process that accounts for population saturation. Death counts are similarly linked to the number
of infected based on the country (or state in the present case) IFR and the distribution of times
from infection to death. Importantly, the model assumes the effect of intervention is that same
regardless of location and that the implementation of an intervention instantaneously reduces
Rt. Making these assumptions allows data from multiple locations to be pooled for estimating
intervention effects. The model was specified using Stan (Carpenter et al., 2017), and model
inference was performed using adaptive Hamiltonian Monte Carlo. We fit our model with a
time series for each state 30 days before the state has experienced seven deaths1, up to April 25,
2020, when some states began reversing their interventions.

1The Europe model used ten deaths as a somewhat arbitrary threshold for excluding imported cases; seven is the
highest number we can use and still obtain valid data for states like Alaska, which have relatively low case count,
cf. Unwin et al. (2020).
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Table 1: National intervention effects on Rt.

Intervention Mean 95% CI

LL UL

Self isolating if ill .012 .000 .059
Sport .021 .000 .102
Social distancing encouraged .033 .000 .162
Public events .103 .000 .379
Schools or universities closing .271 .007 .518
Lockdown .785 .592 .987

Note. Abbreviations: CI, credible interval; LL, lower
limit; UL, upper limit.

4. RESULTS

The mean number of days between the first and last intervention of a state was 19.53 days (SD
= 5.73, range: 8-31). While each of 50 states had the opportunity to implement six different
social distancing interventions, only 289 or 96.33% were implemented, with lockdown being
the least implemented (n = 43). The mean IFR was 1.11% (SD = .12%, range: .76 - 1.35%).
Because confirmed case fatality data increased dramatically over the time period examined,
similar statistics are not reported for these data.

Estimated national intervention effects on Rt are shown in Table 1. Each estimated effect is
an absolute reduction in Rt. It is evident that only schools or universities closing and lockdown
have a nontrivial impact on Rt. Moreover, schools or universities closing and lockdown are the
only interventions whose 95% credible interval does not cross zero.

State-level measures and estimates of the model are shown in Table 2. Of primary interest
are the Rt estimates before and after lockdown and the corresponding death counts 2 weeks into
the future, which are contrasted with actual deaths to assess model validity. Notably, no state
had a mean Rt below 1.0 pre-lockdown, but 29 states had a Rt below 1.0 after lockdown. While
lockdown had a strong effect in reducing Rt in all states that underwent lockdown, in these 29
states, lockdown appears to have been the single critical intervention allowing containment of
the disease.

Predicted deaths vs. actual deaths in each state serve as a validity check on the model’s
estimates of intervention effects. Thirty-six states (72%) had actual deaths that were within the
95% CI of predicted deaths. Notably, the mean predicted deaths were well above actual (>100
deaths) for Connecticut, New Jersey, Massachusetts, and New York. The mean absolute error
of mean predicted deaths was 50.80, and without these four states the mean absolute error was
10.08.
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5. DISCUSSION

Social distancing interventions are important for limiting the spread of SARS-CoV-2, because
medical treatments for COVID-19 are still emerging and a vaccine is not available. To our
knowledge, we are the first to apply an established, semi-mechanistic Bayesian hierarchical
model of these interventions on SARS-CoV-2 spread in Europe to the United States. We es-
timated the effect of interventions across all states, contrasted the estimated Rt for each state
before and after lockdown, and contrasted predicted future fatalities with actual fatalities as
a check on the model’s validity. Overall, school closures and lockdown orders are the only
interventions modeled that have an estimated effect where the 95% credible interval does not
include zero, i.e. no effect. No state had an estimated Rt below 1.0 before lockdown, but 29
states reached an Rt below 1.0 after lockdown. The model’s ability to successfully predict future
deaths supports the validity of estimated intervention effects. These results suggest that reversal
of lockdown, without implementation of additional, equally effective interventions, will enable
continued, sustained transmission of SARS-CoV-2 in the United States.

Our study has several limitations. First, the assumption that all interventions have the same
implementation and effect in all states is a strong assumption. For example, states with a stronger
culture of recreational sports will likely see a greater impact of the sports intervention than
states without that culture. More directly, the intervention banning public gatherings of 100
persons or more could be met by a ban on 10 persons or more or 50 persons or more; it is
unlikely that such bans are truly equivalent. This limitation has since been partially addressed
in the European model by allowing random effects for lockdown only. Second, the assumption
that interventions are binary rather than continuously varying is also a strong assumption and
clearly an oversimplification, because it does not account for time-varying compliance with
intervention. Several groups are incorporating mobility data as a measure of population mixing
(Unwin et al., 2020; Woody et al., 2020; Team and Murray, 2020). Third, the parameters of the
model are estimated using reasonable, but still uncertain, assumptions about prior distributions.
We have used the same assumptions as in the European model, but these assumptions may be
contradicted by future empirical work.

Modeling of SARS-CoV-2 is emerging and rapidly diversifying, including classical SEIR
models and derivatives (Pei and Shaman, 2020), deep learning (Prakash, 2020), and piecewise
models for sub-exponential growth (Scire et al., 2020). State and local governments are like-
wise rapidly adjusting their policy decisions regarding interventions based on case data and
economic concerns. As the United States adopts an increasingly fragmented response to SARS-
CoV-2, modeling approaches like ours that focus on shared interventions may not be tenable.
While our results give valuable insights into which interventions did and which did not change
the transmission rate substantially, we recommend that future studies measure the change in
behaviors resulting from interventions and then strengthen the predictive relationships between
these behaviors and disease transmission.
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