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Abstract 18 

Background: Eosinophils are granulocytes associated with airway inflammation in respiratory 19 

disease. Eosinophil production and survival is controlled by interleukin-5: anti-interleukin-5 agents 20 

reduce asthma and COPD exacerbation frequency, and response correlates with baseline eosinophil 21 

counts. However, causal relationships between eosinophils and other respiratory phenotypes are 22 

less studied.  23 

Methods: We investigated causality between eosinophils and: lung function, acute exacerbations of 24 

COPD (AECOPD), asthma-COPD overlap (ACO), moderate-to-severe asthma, and respiratory 25 

infections. We performed Mendelian randomization (MR) using 151 genetic variants from genome-26 

wide association studies of blood eosinophil counts in UK Biobank/INTERVAL, and respiratory data 27 

from UK Biobank, using MR methods relying on different assumptions for validity. Multivariable MR 28 

using eight blood cell type exposures was performed for outcomes showing evidence of causation by 29 

eosinophils. 30 

Findings: There was evidence that higher eosinophils reduce FEV1/FVC and FEV1 (weighted median 31 

estimator, SD change FEV1/FVC per SD eosinophils: -0.054 [95%CI -0.078,-0.029]. There was also 32 

evidence that eosinophils cause ACO (weighted median OR 1.44 [95%CI 1.19,1.74]), and asthma 33 

(weighted median OR 1.50 [95%CI 1.23,1.83]). Multivariable MR for FEV1/FVC, FEV1, ACO and asthma 34 

suggested that eosinophils were the cell type with the most important effect. Causal estimates of 35 

individual variants were heterogeneous, which may arise from pleiotropy.  36 

Interpretation: We found evidence that eosinophils reduce lung function, and increase ACO and 37 

asthma risk, on average over the set of genetic variants studied. Eosinophils appear to be causal 38 

determinants of fixed airflow obstruction among individuals with features of both asthma and COPD. 39 

Funding: Wellcome, BHF, MRC, BBSRC CASE studentship with GSK, GSK/BLF.40 
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Research in Context 41 

Evidence before this study 42 

High eosinophils are observed in some individuals with asthma and COPD. Anti-IL5 and anti-IL5R 43 

drugs, such as mepolizumab and benralizumab, respectively, are currently licensed for treatment of 44 

severe eosinophilic asthma, and response correlates with baseline eosinophil levels. Clinical trials of 45 

anti-IL5 agents in COPD have reported reductions in blood and sputum eosinophil counts, but not 46 

reproducible reductions in COPD exacerbations, and any clinical improvement in COPD has been 47 

hypothesised to be smaller than that in asthma, and similarly related to the degree of eosinophilic 48 

inflammation. 49 

Added value of this study 50 

We performed Mendelian randomization (MR) analyses, using genetic variants that predict blood 51 

cell counts, to investigate causation between eosinophils and several quantitative lung function 52 

traits and clinical respiratory outcomes, encompassing both fixed and reversible airflow obstruction. 53 

Where there was evidence of causation by eosinophils, we explored whether other blood cell types 54 

may have contributed to this association, since blood cells counts are correlated. Overall, our aim 55 

was to provide a comprehensive assessment of the causal role of blood eosinophil counts in 56 

respiratory health and disease. 57 

Implications of all available evidence 58 

Although clinical trials of anti-IL5 agents have not directly tested the causal role of eosinophils in 59 

asthma and COPD, they are hypothesised to act via a reduction in eosinophil counts. We found 60 

evidence for causality of eosinophils on FEV1 and FEV1/FVC (used in the diagnosis of COPD), on 61 

asthma-COPD overlap, and on asthma. We did not find evidence for eosinophils causing COPD 62 

exacerbations, but cannot rule out a small effect. Whilst the average effect of lowering eosinophils is 63 

to improve certain respiratory phenotypes we noted heterogeneity in our causal estimates from 64 

individual genetic variants, suggesting pleiotropic effects of SNPs affecting eosinophil levels. Taken 65 

together with prior evidence, our findings suggest that clinical trials of eosinophil lowering agents 66 

are warranted in patients with history of both asthma and COPD.67 
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Introduction 68 

Eosinophils are proinflammatory granulocytes associated with symptom severity and exacerbation 69 

frequency in patients with asthma and chronic obstructive pulmonary disease (COPD).2-4 The degree 70 

of eosinophilia in these obstructive lung diseases is variable: whilst eosinophil inflammation brought 71 

about by allergic sensitisation has been considered characteristic of asthma, not all patients with 72 

asthma have eosinophilia.
2,5

 Moreover, whilst airway inflammation in COPD is typically mediated by 73 

neutrophils, a subset of individuals with COPD have raised eosinophil counts.2,6  74 

The production and survival of eosinophils is regulated by interleukin-5 (IL-5), and anti-IL5 therapies 75 

(e.g. mepolizumab, and the anti-IL5RA agent, benralizumab) are now licensed in many countries for 76 

the treatment of severe eosinophilic asthma.7-13 The decision to treat asthma with these drugs is 77 

currently based upon blood eosinophil count,
2
 since post-hoc analyses of clinical trials stratified by 78 

eosinophil levels have shown increased efficacy of mepolizumab for treating severe asthma in those 79 

with higher baseline eosinophils.3 Results from Mendelian randomization (MR) analyses have also 80 

provided evidence for a causal role of eosinophils in asthma.14 MR analyses use genetic variants as 81 

instrumental variables (IVs) to investigate causality between exposure and outcome, and under 82 

certain assumptions may obviate some of the problems of traditional observational epidemiology 83 

(reverse causation and confounding), permitting causal inference. 84 

In addition to asthma, blood eosinophil counts are associated with quantitative measures of lung 85 

function in healthy populations (i.e. including individuals without asthma).15 However, causality of 86 

these associations has yet to be established, with the only previous MR of lung function being of 87 

small sample size, with imprecise effect estimates precluding confident inference.
16

 Moreover, 88 

causal effects of eosinophils on other respiratory phenotypes, such as asthma-COPD overlap (ACO), 89 

and respiratory infections are yet to be investigated. Diagnosis of COPD is made by spirometry if the 90 

ratio of the forced expiratory volume in one second (FEV1) to the forced vital capacity (FVC), 91 

FEV1/FVC, is <0.7, with airflow obstruction being graded according to predicted values of FEV1. 92 

Therefore, studying the role of eosinophils in determining quantitative lung function (i.e. lung 93 

function measured as continuous traits) is a powerful way of understanding their role in the 94 

development of fixed airflow obstruction such as is observed in COPD.
17,18

 Understanding the causal 95 

relationship between eosinophils and fixed airflow obstruction is particularly pertinent given recent 96 

interest in the potential use of mepolizumab in COPD.10-13 97 

We undertook two-sample MR analyses using summary-level genome-wide association study 98 

(GWAS) data to assess causality between eosinophils and respiratory traits and conditions 99 

encompassing fixed and reversible airflow obstruction, using genetic variants associated with blood 100 
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Box 1 Mendelian randomization: core assumptions 

Assumptions 

Mendelian randomization may be used to test for causality between an exposure (e.g. eosinophils) 

and outcome (e.g. FEV1/FVC), if the following core assumptions hold:  

i) the genetic variation (single nucleotide polymorphisms in this work) used as instrumental 

variables (IVs) are associated with the exposure of interest; 

ii) the genetic variants are not associated with unobserved confounders of the exposure-

outcome association (short dashed arrow). Genetic variants are allocated randomly at 

conception (Mendel’s law of independent assortment) and so typically should not be 

associated with these confounding variables; 

iii) association between the genetic variants and the outcome is via the exposure, and not via 

an alternate pathway (i.e. there is no ‘horizontal pleiotropy’, see long dashed arrow). 

Whilst difficult to verify, reassurance that this assumption holds can be provided using 

biological knowledge of how the SNP functions, and by checking whether multiple MR 

methods, each relying on different assumptions for validity, give consistent results (known 

as triangulation).
1
  

eosinophil counts in the largest GWAS to date as IVs.
14

 First, we investigated a causal effect of 101 

eosinophils on three quantitative lung function traits measured by spirometry, and four clinical 102 

respiratory phenotypes (moderate-to-severe asthma, acute exacerbations of COPD [AECOPD], ACO, 103 

and respiratory infections). We used three MR approaches that rely on different assumptions for 104 

validity, and followed-up traits showing evidence of causality to assess whether the instrumental 105 

variables affected lung function purely via eosinophil counts and not via other blood cell types. 106 

Overall, our aim was to provide a comprehensive assessment of the causal role of blood eosinophil 107 

counts in relation to respiratory health and disease.  108 

Methods 109 

We assessed causal associations between eosinophils and other blood cell counts in relation to 110 

multiple respiratory outcomes, using MR.
1,19

 Briefly, MR involves using genetic variants (here single-111 

nucleotide polymorphisms, SNPs), as instrumental variables (IVs) for an exposure of interest, in this 112 

case eosinophil counts. This is done by comparing the magnitude of the effect of the SNPs on the 113 

outcome to the effect of the SNPs on the exposure.
1,19

 All analyses reported here are two-sample 114 
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MR analyses, since SNP-exposure and SNP-outcome associations were extracted from different (yet 115 

overlapping
20

) samples. The core assumptions of MR for inferring causality between an exposure and 116 

outcome are described in Box 1. Additional assumptions required for accurate point estimation are 117 

discussed in the Extended Methods, and elsewhere.21  118 
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All GWAS datasets analysed included participants from UK Biobank,22 incorporating other studies 119 

where available. All GWAS included were of individuals of European ancestry. Datasets are 120 

summarised here, and descriptions of covariate adjustments, and exposure-outcome GWAS overlap 121 

are given in the Extended Methods.  122 

Exposure GWAS data sets (blood cell parameters) 123 

We used summary-level data from a previously published GWAS of blood cell counts 
14

 in the initial 124 

release of UK Biobank genetic data (around one third of all participants), plus the INTERVAL study 125 

(eosinophil GWAS N=172,275, see Extended Methods).14 These included counts of eosinophils, 126 

basophils, neutrophils, monocytes, lymphocytes, platelets, red blood cells and reticulocytes.  127 

Outcome GWAS data sets (respiratory outcomes) 128 

Quantitative lung function GWASs 129 

We used published summary-level data from three GWAS of quantitative lung function (FEV1, FVC 130 

and FEV1/FVC), undertaken in 400,102 individuals.18 131 

Clinical disease GWAS 132 

Moderate-to-severe asthma 133 

We used a published GWAS of moderate-to-severe asthma comprising 5,135 cases and 25,675 134 

controls, sampled from the initial release of UK Biobank, supplemented with external cases.
23

 135 

Acute exacerbations of COPD 136 

We defined acute exacerbations of COPD (AECOPD) in UK Biobank; the eligible sample was restricted 137 

to individuals withFEV1/FVC<0.7. From this subset, exacerbation cases (N=2,771) had an ICD-10 code 138 

for AECOPD or a lower respiratory trait infection in the hospital episode statistics data provided by 139 

UK Biobank (Supplementary Table 1. Controls (N=42,052) were people with COPD without a 140 

recorded ICD-10 AECOPD code. Associations were adjusted for age (at recruitment), age2, sex, 141 

smoking status (ever/never), genotyping array and 10 ancestry principal components. 142 

Asthma-COPD overlap (ACO) 143 

We defined ACO cases in UK Biobank (N=8,068) as individuals with a self-report of a doctor diagnosis 144 

of asthma, and both FEV1/FVC<0.7 and FEV1<80% predicted at any study visit. Controls (N=40,360) 145 

were selected in a ratio of approximately five controls to one case from participants reporting no 146 

asthma or COPD, and with FEV1 >80% predicted and FEV1/FVC>0.7. Associations were adjusted for 147 

age (at recruitment), sex, smoking status, and 10 ancestry principal components. 148 
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Respiratory infections 149 

We defined respiratory tract infections requiring hospital admission in UK Biobank, using a wide 150 

range of ICD-10 codes (Supplementary Table 2). Cases were individuals with one or more admission 151 

for respiratory infections (N=19,459). Controls had no admissions for respiratory infections and were 152 

selected in a ratio of approximately five controls to one case (n=101,438 after exclusions). 153 

Associations were adjusted for age (at recruitment), age2, sex, smoking status, genotyping array, and 154 

10 ancestry principal components. 155 

Statistical methods 156 

Univariable MR analyses of eosinophils and all respiratory traits and diseases 157 

We performed seven separate MR analyses of eosinophils on all outcomes, including three 158 

quantitative lung function traits (FEV1, FVC, and FEV1/FVC); and four clinical disease phenotypes 159 

(asthma, AECOPD, ACO and respiratory infections) utilising genetic IVs selected from 
18

. The selection 160 

of genetic IVs and the harmonisation of SNP-exposure and SNP-outcome datasets is detailed in the 161 

Extended Methods. A total of 151 eosinophil IVs were used for this analysis. The primary analysis 162 

used the inverse-variance weighted (IVW) MR method, and we checked sensitivity to condition (iii) 163 

described in Box 1 using sensitivity analyses, conducted using MR-Egger regression,24 and the 164 

weighted median estimator25 (see Extended Methods for details, including the different 165 

assumptions that the methods rely upon for validity). Further sensitivity analyses: i) restricted to 166 

non-UKB FEV1/FVC GWAS data, to assess sensitivity to sample overlap, and ii) restricted to FEV1/FVC 167 

GWAS data in UKB, excluding individuals with asthma. 168 

Multivariable MR analyses of multiple blood cell types and respiratory outcomes 169 

Since SNPs affecting eosinophils also affect other blood count types,14 we used multivariable MR in 170 

order to estimate the influence of multiple cell types on respiratory outcomes, after conditioning on 171 

the effects of the SNPs on other cell types. Multivariable MR analyses were run for respiratory 172 

outcomes that showed evidence of eosinophil causation in the IVW MR analyses above, and that had 173 

broadly consistent effect estimates in the weighted median and MR-Egger analyses. We also 174 

performed an analysis of FEV1/FVC in UKB (excluding asthma cases). 175 

There were 1166 SNPs associated with at least one of eight blood count traits reported by Astle et 176 

al14 at a genome-wide threshold. SNPs were LD clumped, and effect sizes were extracted from each 177 

blood cell trait GWAS, and from the outcome GWASs. Effects for 318 clumped SNPs were 178 

successfully harmonised, i.e. so effect sizes for the SNP-exposure and SNP-outcome effects 179 

corresponded to the same allele (Supplementary Table 3, Extended Methods). 180 
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To implement multivariable MR, we used the mv_multiple() function of the ‘TwoSampleMR’ R 181 

package.
26-28

 182 

This analysis had two aims: i) to further investigate the possibility of horizontal pleiotropy affecting 183 

the results of the eosinophil MR; and ii) to establish whether any other cell types besides eosinophils 184 

could affect the respiratory outcomes studied.  185 
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Results 186 

Univariable MR analyses of eosinophils and respiratory outcomes 187 

There were 151 SNPs available for the univariable MR analyses, which were used in analyses of three 188 

quantitative lung function traits (FEV1, FVC, and FEV1/FVC), and four respiratory disease phenotypes 189 

(moderate-to-severe asthma, AECOPD, ACO and respiratory infections). Details of the selection of 190 

SNP IVs is described in Figure 1. 191 

Figure 1 Selection of SNPs for univariable MR analyses of eosinophils and respiratory outcomes 192 

193 
  194 

Legend 195 

Flowchart describing the analysis workflow for initial MR analyses of eosinophils. Of 209 SNPs 196 

associated with eosinophil count, 167 were available in lung function GWASs (missingness is due to 197 

some SpiroMeta studies not being imputed to the HRC panel).
18

 LD proxies at r
2
 > 0.8 were retrieved 198 

for 24/42 missing variants. Of the resulting 191 SNPs, 188 were successfully harmonised between the 199 

SNP-eosinophil and SNP-lung function data sets, and 151* remained after LD clumping at an r
2
 200 

threshold of 0.01. These 151 SNPs were used in analyses. *One SNP, rs9974367, was missing in the 201 

moderate-severe asthma GWAS. AECOPD=acute exacerbation of COPD; ACO=asthma-COPD overlap. 202 

Results are presented in Figure 2. Amongst the quantitative lung function traits, there was strongest 203 

evidence for a causal effect of eosinophils on FEV1/FVC (SD change in FEV1/FVC per SD eosinophils, 204 

IVW estimate=-0.049 [95% CI: -0.079, -0.020]), with a smaller effect on FEV1 (IVW estimate=-0.028 205 

[95% CI: -0.054, -0.003]). There was substantial heterogeneity of SNP-specific causal estimates for all 206 
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three traits, as evidenced by the large values of Cochran’s Q statistic. However, heterogeneity was 207 

likely due to balanced pleiotropy, since weighted median estimates were consistent with the IVW 208 

estimates. Confidence intervals for the MR Egger estimates were broad, consistent with the low 209 

power of this method, but there was no evidence of unbalanced pleiotropy, as evidenced by the p-210 

values for the intercept of the MR Egger intercept term. Scatterplots of SNP-outcome against SNP-211 

exposure effects for the three quantitative outcomes are given in Supplementary Figure 1. 212 

Amongst the respiratory disease phenotypes (also Figure 2), there was strong evidence for a causal 213 

effect of eosinophils on asthma (OR per SD eosinophil count, IVW method=2.46 [95% CI: 1.98, 3.06]), 214 

and ACO (IVW OR=1.86 [95% CI: 1.52, 2.27]). There was substantial heterogeneity of SNP-specific 215 

causal estimates for these two traits, and the weighted median estimates were smaller in magnitude 216 

than the IVW estimates (weighted median OR: 1.50 [95% CI: 1.23, 1.83] for asthma, and 1.44 [95% 217 

CI: 1.19, 1.74] for ACO). Whilst the confidence intervals for the MR Egger estimates were still broad, 218 

estimates were generally closer to the weighted median estimates, suggesting that the IVW 219 

estimates were inflated due to the presence of horizontal pleiotropy, particularly for asthma. 220 

Inflation for the asthma estimate is also more likely due to larger overlap between the SNP-exposure 221 

and SNP-outcome datasets for this analysis (see Extended Methods). Scatterplots of SNP-outcome 222 

against SNP-exposure effects for all four outcomes are given in Supplementary Figure 2, which 223 

clearly demonstrate the heterogeneity in causal effect estimates. Conversely, there was no evidence 224 

of association of eosinophil counts with AECOPD or respiratory infections. For both outcomes, 225 

confidence intervals for all three MR estimates included the null, and all estimates were close to the 226 

null. 227 

See Supplementary Table 4 for full results for all models.  228 

Sensitivity analysis to assess the effects of sample overlap for quantitative lung function traits 229 

UK Biobank featured in all GWAS datasets used, albeit the blood cell count GWAS and asthma GWAS 230 

included only approximately one third of the UK Biobank genotype data.14 Since we had access to 231 

data from the subset of the quantitative lung function GWASs that did not include UK Biobank, we 232 

conducted sensitivity analyses to assess for the effect of sample overlap (see Extended Methods). 233 

Results were generally consistent with the main results (e.g. SD change in FEV1/FVC per SD 234 

eosinophil count, IVW estimate=-0.041 [95% CI: -0.072, -0.009]; SD change FEV1 per SD eosinophil 235 

count=-0.043 [95%CI -0.077,-0.010]) (Supplementary Table 5). 236 

Sensitivity analysis to assess the effect on FEV1/FVC in individuals without asthma 237 

The causal effect of eosinophils on FEV1/FVC was recalculated using data from UK Biobank, excluding 238 

individuals with an asthma diagnosis. The effect size was attenuated compared to the main results, 239 
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and the 95% confidence interval overlapped the null: IVW -0.013 [95% CI: -0.041, 0.015] (see 240 

Supplementary Table 6).241 
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Figure 2 MR analyses of eosinophils (exposure) on three quantitative lung function traits (top) and 242 

four respiratory disease phenotypes (bottom), using 151 eosinophil-associated SNPs  243 

244 
 245 

246 
  247 

Legend 248 

Top: Results of MR analyses of eosinophil counts (exposure) on three quantitative lung function traits 249 

(outcome), FEV1, FVC, and FEV1/FVC. A forest plot of three estimates for each traits is shown (IVW, 250 

MR Egger, weighted median), along with the maximum sample size in the outcome GWAS (N), the 251 

effect size in SD change in outcome trait per SD eosinophil count, and 95% confidence interval, values 252 

for Cochran’s Q statistic (Q) and the associated degrees of freedom (Q_df), and the P-value for the 253 

MR Egger intercept (Intercept_P). Boxes of the forest plot represent effect sizes, whiskers are 95% 254 

confidence intervals. 255 

Bottom: Results of MR analyses of eosinophil counts (exposure) on four respiratory disease 256 

phenotypes (outcome), moderate-to-severe asthma, acute exacerbations of COPD (AECOPD), 257 
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asthma-COPD overlap (ACO), and respiratory infection (Resp. Ix). A forest plot of three estimates for 258 

each traits is shown (IVW, MR Egger, weighted median), along with sample size in the outcome 259 

GWAS for cases and controls, respectively (N), the effect size as odds ratio (OR) per SD eosinophil 260 

count, and 95% confidence interval, values for Cochran’s Q statistic (Q) and the associated degrees of 261 

freedom (Q_df), and the P-value for the MR Egger intercept (Intercept_P). Boxes of the forest plot 262 

represent odds ratios, whiskers are 95% confidence intervals. NB only 150/151 of the eosinophil SNPs 263 

were available in the moderate-to-severe asthma GWAS.264 
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Multivariable MR analyses of blood cell counts and respiratory outcomes 265 

To further explore causality between blood cell parameters and FEV1, FEV1/FVC, moderate-to-severe 266 

asthma and ACO, we carried out multivariable MR analyses, using eight cell types as exposures 267 

(basophils, eosinophils, neutrophils, monocytes, lymphocytes, platelets, red blood cells and 268 

reticulocytes). 269 

The selection of SNP IVs for multivariable MR is described in the Methods, and Supplementary Table 270 

3. Briefly, 1166 unique SNPs were associated with at least one of the eight cell types at p<8.31x10-9 271 

in Astle et al., and were available in the outcome GWASs. After LD-clumping, 329 SNPs remained, 272 

and after harmonising SNP-exposure and SNP-outcome effects, 318 SNPs remained. Estimated 273 

variance explained (r
2
) and instrument strength (F-statistics) by cell-type are also given in 274 

Supplementary Table 3. We present these estimates as a guide of relative strength of sets of IVs, but 275 

do not intend for them to be interpreted as measures of absolute strength, given the likelihood of 276 

Winner’s curse bias.
20

 277 

Multivariable MR results for FEV1 and FEV1/FVC are presented in Figure 3. Even after conditioning on 278 

the effects of the SNPs on other cell types, eosinophils reduced lung function as measured by 279 

FEV1/FVC (multivariable estimate, SD change in FEV1/FVC per SD eosinophils adjusted for other cell 280 

types: -0.065 [95% CI: -0.104, -0.026]). The eosinophil point estimate for FEV1 was consistent with 281 

the univariable estimate (Figure 2), but results for eosinophils (-0.032 [95%CI: -0.068, 0.005]) and 282 

other cell types were consistent with the null. When asthma cases were excluded from SNP-283 

FEV1/FVC results, the eosinophil estimate attenuated, and confidence intervals overlapped the null (-284 

0.028 [95%CI: -0.069, 0.013]) consistent with the causal effect of eosinophils on lung function being 285 

of greater magnitude in people with a history of asthma (Supplementary Figure 3).  286 

Results of the multivariable MR analysis for the two respiratory disease outcomes (ACO and asthma) 287 

are presented in Figure 4. There was an association of eosinophil count with both ACO (OR 1.95 288 

[95% CI: 1.57, 2.42]) and asthma [OR 2.90 [95% CI: 2.31, 3.65]], after adjusting for the effects of the 289 

SNPs on other cell types. Confidence intervals for other cell type estimates were consistent with the 290 

null effect of 1, with the exception of neutrophils for ACO.291 
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Figure 3 Multivariable MR analyses of eight cell types and FEV1 and FEV1/FVC 292 

 293 

Forest plot showing multivariable MR estimating the causal effect of multiple cell types on 294 

quantitative lung function outcomes, after conditioning on the effects of the SNPs on other cell types. 295 

Models were run for each of forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to 296 

forced vital capacity (FVC) separately, but effect sizes are shown next to one another for comparison. 297 

Effect sizes (beta, 95% confidence interval, 95CI) are in SD change in lung function outcome per SD 298 

cell count (adjusted for the effects of other cell types). Points of the forest plot represent effect size 299 

estimate; whiskers are 95% confidence intervals. 300 

 301 

  302 
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Figure 4 Multivariable MR analyses of eight cell types and two respiratory disease outcomes, ACO 303 

and asthma 304 

 305 

Legend 306 

Forest plot showing multivariable MR estimating the causal effect of multiple cell types on 307 

respiratory disease outcomes, after conditioning on the effects of the SNPs on other cell types. 308 

Models were run for each of ACO and asthma separately, but effect sizes are shown next to one 309 

another for comparison. Odds ratios (OR, 95% confidence interval, 95CI) are per SD cell count 310 

(adjusted for the effects of other cell types). Points of the forest plot represent odds ratios; whiskers 311 

are 95% confidence intervals.  312 
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Discussion 313 

Using Mendelian randomization, we found evidence for a causal effect of eosinophils in determining 314 

FEV1/FVC, FEV1, ACO and asthma. For these four outcomes, we additionally performed multivariable 315 

MR to investigate the causal role of a broader range of eight blood cell types, and found that 316 

amongst these cell types eosinophils had the strongest evidence of an effect on the respiratory 317 

outcomes studied. 318 

To our knowledge, this is the largest MR study of eosinophils in relation to lung function, and the 319 

first to investigate the relationship between eosinophils and AECOPD, ACO, and respiratory 320 

infections. Whilst terminology of ACO has changed over time, the recognition that asthma and COPD 321 

coexist in some patients has not changed,
29

 and this is what our analysis aimed to capture. 322 

A previous two-sample MR analysis of eosinophils in relation to asthma was undertaken by the 323 

authors of the cell count GWAS used to derive IVs in the current study; these authors used asthma 324 

GWAS data from the GABRIEL study.
14

 Our results support their conclusion that eosinophils are 325 

causal determinants of asthma. We are aware of one other MR study of eosinophil counts in relation 326 

to asthma, COPD, FEV1 and FEV1/FVC, conducted entirely within the LifeLines cohort (N=13,301, 5 327 

SNPs used as IVs).
16

 In that study, confidence intervals for causal estimates of eosinophils were 328 

consistent with the null, albeit point estimates were consistent with a harmful effect for FEV1/FVC, 329 

asthma and COPD. Here, we used the largest eosinophil count GWAS to date (N=172,275)14 to derive 330 

IVs, and found evidence for causality of eosinophils in reducing FEV1/FVC, the lung function trait in 331 

which impairment is the key feature of COPD diagnosis, and FEV1, the trait used to grade airflow 332 

limitation in COPD. We did not find strong evidence of a causal effect of eosinophils on FVC, despite 333 

observing negative point estimates. This is of interest because it is a reduction in FEV1 (and therefore 334 

in FEV1/FVC) that is a hallmark of obstructive lung diseases, with effects on FVC being generally less 335 

prominent. Our sensitivity analyses highlighted a larger estimated causal effect of eosinophils on 336 

FEV1/FVC among individuals with a history of asthma, with an attenuation of effect size estimates 337 

seen when excluding this group. Together with the effect shown for ACO, our findings highlight the 338 

importance of eosinophils on lung function and airflow obstruction in people with a history of 339 

asthma. 340 

Amongst the outcome traits showing evidence for causation by eosinophils, we observed substantial 341 

heterogeneity in causal estimates for individual SNPs, i.e. different causal effects on the outcome 342 

phenotypes may arise from different genetic variants influencing eosinophils. Accordingly, we 343 

compared MR methods that rely on differing assumptions for validity (Box 1). When comparing the 344 

IVW, MR-Egger and weighted median results, effect estimates for eosinophils on quantitative lung 345 
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function traits were broadly consistent, but point estimates for ACO and asthma attenuated 346 

substantially when using the MR-Egger and weighted median approaches (albeit estimates were still 347 

consistent with a harmful effect of raised eosinophils). This suggests there were SNPs with 348 

pleiotropic associations, e.g. SNPs associated with asthma and ACO via pathways other than 349 

eosinophils, which is a known challenge in MR studies (see also Box 1). 350 

Since many of the SNPs used as IVs for eosinophil count are also associated with other cell counts,14 351 

we performed multivariable MR to estimate the influence of multiple cell types simultaneously, after 352 

conditioning on the effects of the SNPs on other cell types. Whilst such an analysis has previously 353 

been undertaken for asthma,14 we also performed multivariable MR analyses for FEV1, FEV1/FVC, 354 

asthma and ACO. Whilst we did not find substantial evidence for a harmful effect of neutrophils on 355 

asthma, nor a protective effect of monocytes and lymphocytes, as reported by Astle et al.,
14

 the 356 

effect directions in our multivariable MR analysis were consistent with those of this previous study 357 

for neutrophils, monocytes and lymphocytes. In multivariable MR analyses, we observed a larger 358 

effect of eosinophils on asthma than reported previously: this could be because our SNP-outcome 359 

dataset was of moderate-to-severe asthma, and around half of the cases and the majority of 360 

controls were also included in the exposure GWAS. Nevertheless, the univariable MR estimates from 361 

MR-Egger regression and weighted median estimation were consistent with the previous estimate 362 

reported for asthma in multivariable analysis by Astle et al.
14

 363 

In comparison with the harmful effect of eosinophils on FEV1/FVC, we did not observe a harmful 364 

effect of neutrophils on FEV1/FVC, despite the known relationship between neutrophilia and COPD.
30

 365 

This could be due to lower power of the neutrophil IVs compared to the eosinophil IVs 366 

(Supplementary Table 3), but it is also possible that neutrophilic inflammation is more of a 367 

consequence than a cause of reduced FEV1/FVC, for example in response to infection,31 and 368 

therefore may represent a marker of disease progression. There was very weak evidence for a 369 

harmful effect of neutrophils on ACO. Whilst we did not find strong evidence for causality of 370 

eosinophils on AECOPD and respiratory infections, point estimates were consistent with a harmful 371 

effect on AECOPD, and may have been limited by power. The effects of anti-IL5 drugs that have been 372 

attributed to the reduction of eosinophils have been noted to be smaller in acute exacerbations of 373 

COPD compared to asthma.3,32 374 

Key strengths of the study are that we carried out two-sample analyses with differing sensitivities to 375 

underlying assumptions (including MR-Egger and weighted median analysis). We used the largest 376 

GWAS dataset available for eosinophil count together with multiple large GWASs of lung function 377 

and respiratory disease. In addition to the advantages of valid MR analyses in mitigating against 378 
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some key limitations of observational epidemiology (reverse causality and confounding), using 379 

genetic proxies for eosinophils may provide a better estimate for long-term eosinophilia, which may 380 

be useful, since one-off assays of cell counts may show a degree of lability.33 Another strength of our 381 

work is that we undertook multivariable MR analyses to investigate causality between multiple cell 382 

types and the outcomes studied, whilst controlling for the effects of IVs that may have had 383 

pleiotropic effects via other cell types. 384 

We acknowledge several limitations. We did not have post-bronchodilator measures of spirometry 385 

available. However, our criterion for defining asthma-COPD overlap required a % predicted FEV1 of 386 

less than 80% (consistent with a spirometric definition of GOLD Stage 2-4 COPD); using the same 387 

pre-bronchodilator spirometry definition of COPD we have previously shown a positive predictive 388 

value of 98% for diagnosis of postbronchodilation-defined COPD.
34

 Sample overlap between the 389 

SNP-eosinophil and SNP-outcome datasets (all datasets included participants from UK Biobank) 390 

could bias estimates towards the observational  eosinophil-outcome association.20 As a sensitivity 391 

analysis, we repeated the univariable lung function MR analysis of eosinophils using SNP-lung 392 

function results from the SpiroMeta consortium (i.e. omitting UK Biobank), and found a consistent 393 

IVW estimate. Nevertheless, we acknowledge that our analyses of other outcomes (particularly the 394 

asthma analysis) could be vulnerable to a degree of non-conservative bias.19,20 The results of our MR 395 

analyses also use genome-wide results adjusted for covariates, and therefore may be susceptible to 396 

collider bias.19 For the binary phenotypes of asthma, AECOPD and respiratory infections, there may 397 

also have been bias due to misclassification in electronic healthcare records, which we would expect 398 

to be non-differential, and therefore towards the null. There is also potential bias in the causal 399 

estimates for binary outcomes due to non-collapsibility of the odds ratio.21 Our analyses do not 400 

consider the possibility of non-linear effects between eosinophil counts and lung function, which 401 

have been observed: the results presented are the average difference in lung function if eosinophils 402 

were increased by the same amount for every individual in the population. Finally, we acknowledge 403 

that the multivariable analyses may still be vulnerable to residual pleiotropy via pathways other than 404 

the eight cell types studied. However, we argue that the sensitivity analyses undertaken together 405 

support a causal role for eosinophils in the traits studied. The significant heterogeneity in SNP-406 

specific causal estimates may arise from pleiotropy. A specific genetic variant influencing eosinophils 407 

may have a greater or lesser effect on these respiratory phenotypes than the direct effect of 408 

eosinophils, possibly in the opposing direction.  409 

Our work provides insight into the role of eosinophils in causing respiratory conditions characterised 410 

by airflow obstruction. At present, treatment with the anti-IL5 agents mepolizumab and 411 

benralizumab in asthma is initiated according to levels of eosinophil counts,
9
 yet it is possible that a 412 
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more proximal factor, potentially such as IL5 itself, may be an even better predictor of drug 413 

response. Future work could seek therefore to identify whether particular pathways upstream of 414 

eosinophil counts might help design better methods for deciding upon treatment initiation. 415 

To conclude, we found new evidence for a causal effect of eosinophils on ACO, FEV1, and FEV1/FVC, 416 

as well as reproducing a previous association with asthma. Taken together, our findings support 417 

eosinophils being important causal determinants of airflow obstruction, and suggest that the 418 

strongest causal effects of eosinophils are in people with a history of reversible airflow obstruction, 419 

including the patient group with features of both asthma and COPD. 420 
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